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IMAGE COMPRESSION- I   

Week VIII 
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Reading..  

 Chapter 8 
–  Section 8.1 
–  8.2.1 Huffman, 8.2.5 run-length 
–  8.2.8 Block transform coding & JPEG 
–  8.2.9 Predictive coding--spatial & temporal,, 

lossless and lossy 
–  8.2.10 wavelet compression 
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Image compression 

Objective:  To reduce the amount of data required to 
represent  an image. 

Important in  data storage and transmission 
•  Progressive transmission of images (internet, www) 
•  Video coding (HDTV, Teleconferencing, digital 
cinema) 
•  Digital libraries and image databases 

• Medical imaging 
• Satellite images 
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IMAGE COMPRESSION 

 Data redundancy 
  Self-information and Entropy 
 Error-free and lossy compression 
 Huffman coding 
  Predictive coding 
 Transform coding 
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Lossy vs Lossless Compression 
Compression techniques 

Information preserving Lossy 

(loss-less) 

Images can be compressed 
and restored without any loss 
of information. 
Application: Medical images, 
GIS 

Perfect recovery is not 
possible but provides a 
large data compression. 
Example : TV signals, 
teleconferencing 
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Data Redundancy 

•  CODING: Fewer bits to represent frequent symbols. 

•  INTERPIXEL / INTERFRAME: Neighboring pixels  
have similar values. 

•  PSYCHOVISUAL: Human visual system can not             
simultaneously distinguish all colors. 
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Coding Redundancy 

Fewer number of bits to represent frequently occurring 
symbols.  
Let pr(rk) = nk / n, k = 0,1,2, . ., L-1; L  # of gray levels. 

Let  rk  be represented by l (rk ) bits. Therefore average 
# of bits required to represent each pixel is 

L l r p r Aavg k
k

L
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−
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Usually  l(rk) = m  bits  (constant). ⇒ = =∑L m p r mavg r k
k

( )
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Coding Redundancy (contd.) 

 Consider equation (A): It makes sense to 
assign fewer bits to those rk for which pr(rk) 
are large in order to reduce the sum. 

   this achieves data compression and results 
in a variable length code.  

 More probable gray levels will have fewer # 
of bits. 



Example of a variable length code  
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Coding: Example 

  

Example  (From text)
rk pr (rk ) Code l(rk )
r0 = 0 0.19 11 2
r1 =

1
7 0.25 01 2

r2 =
2

7 0.21 10 2
r3 =

3
7 0.16  001 3

r4 =
4

7 0.08 0001 4
r5 =

5
7 0.06 00001 5

r6 =
6

7 0.03 000001 6
r7 = 1 0.02 000000 6

L

r l r
avg

k k=

=
∑ρ( ) ( )
.2 7 Bits

10% less code 
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Inter-pixel/Inter-frame 

spatial 
Interframe 

f(x,y) 

f(x,y,t3) 

f(x,y,t2) 
f(x,y,t1) 

f(x,y,t0) 

 . N(x,y) 

Depends on 
f (x’, y’) , (x’, y’) ε Nxy  
Nxy : Neighbourhood 
of pixels around (x,y) 

f(x, y, ti )   i=1, 2, 3, . . .  
are related to each other. 
This can be exploited for 
video compression. 
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Psychovisual 

   Human visual system has limitations ; 
good example is quantization. conveys 
infromation but requires much less 
memory/space. 

  (Example: Figure 8.4 in text; matlab) 



Image Compression 
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Source Encoder 
Mapper:  Designed to reduce interpixel redundancy. 
example:   
  Run length encoding results in compression. 
  Transfrom to another domain where the coefficients are 

less correlated then the original. Ex: Fourier transfrom. 
Quantizer:  reduces psychovisual redundancies in the image 

- should be left out if error-free encoding is desired. 
Symbol encoder: creates a fixed/variable length code - 

reduces coding redundancies. 
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Source Decoder 

from 
channel 

symbol 
decoder 

Inverse 
mapper 

f (x,y) 

Note:  Quantization is NOT reversible 

Question(s):   
•  Is there a minimum amount of data that is sufficient to    
completely describe an image without any loss of 
information?   
•  How do you measure information? 

 ̂



Image Compression-I 17 

Self-Information 
  Suppose an event E occurs with probability P(E) ; 

then it is said to contain  I (E) = -log P(E) units of 
information. 

  P(e) = 1 [always happens] => I(e) = 0  [conveys 
no information] 

  If the base of the logarithm is 2, then the unit of 
information is called a “bit”. 

  If P(E) = 1/2 ,  I(E) = -log2(1/2)  = 1 bit. Example: 
Flipping of a coin ; outcome of this experiment 
requires one bit to convey the information. 
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Self-Information (contd.) 

Assume an information  source which generates the 
symbols   {a0, a1, a2, . . . , a L-1}  with 

prob a p a p a

I a p a

i i i
i

L

i i

{ } ( ) ; ( )

( ) log ( )

= =

= −
=

−

∑ 1
0

1

2 bits.
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ENTROPY 
Average information per source output is 

H is called the uncertainity or the entropy of the source. 
If all the source symbols are equally probable then the source 

has a maximum entropy. 
H gives the lower bound on the number of bits required to 

code a signal. 

H p a p ai i
i

L
= −

=

−

∑ ( ) log ( )2
0

1
bits / symbol

Image Compression-I 20 

Noiseless coding theorem 

(Shannon) 
It is possible to code, without any loss of 
information, a source signal with entropy H bits/
symbol, using H + ε bits/symbol where ε is an 
arbitrary small quantity. 

ε can be made arbitrarily small by considering 
increasingly larger blocks of symbols to be 
coded. 
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Error-free coding 

Coding redundancy Interpixel redundancy 

Ex: Huffman coding Ex: Runlength coding 

Yeilds smallest possible # of code 
symbols per source symbol when 
symbols are coded one at a time.   

Error-free coding 
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Huffman code: example 

Huffman code:    Consider a 6 symbol source 
           a1  a2  a3  a4  a5  a6 

p(ai)    0.1     0.4     0.06     0.1     0.04    0.3  
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Huffman coding: example 
(contd.) 

a2  0.4(1)          0.4(1)       0.4(1)        0.4(1)   0.6(0) 

a6  0.3(00)          0.3(00)      0.3(00)      0.3(00)       0.4(1) 

a1  0.1(011)         0.1(011)     0.2(010)     0.3(01)   

a4  0.1(0100)          0.1(0100)      0.1(011) 

a3  0.06(01010)      0.1(0101)
 

a5  0.04(01011)   
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Example (contd.) 

Average length:  
(0.4) (1) + 0.3 (2) + 0.1 X 3 + 0.1 X 4 + (0.06 + 
0.04) 5  = 2.2 bits/symbol 

-Σ pi log pi = 2.14 bits/symbol  (Entropy) 
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Huffman code: Steps 

  Arrange symbol probabilities pi in decreasing 
order 

  While there is more than one node 
–  Merge the two nodes with the smallest 

probabilities   to form a new node with probabilities 
equal to their sum. 

–  Arbitrarily assign 1 and 0 to each pair of branches 
–   merging in to a node. 

  Read sequentially from the root node to the 
leaf node where the symbol is located. 
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Huffman code (final slide) 
 Lossless code 
 Block code 
 Uniquely decodable 
  Instantaneous  (no future referencing is 

needed) 
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Run-length Coding 
Run-length encoding (Binary images) 

 0 0 0 0  1 1 1 1 1 1  0 0 0   1 1 1  0 0 
  4  6  3  3  2 

Lengths of 0’s and 1’s is encoded. Each of the bit planes in a 
gray scale image can be run length - encoded. 

One can combine run-length encoding with variable length 
coding of the run-lengths to get better compression. 


