
Image Compression-I 1

IMAGE COMPRESSION- I

Week VIII

Image Compression-I 2

Reading..

 Chapter 8
–  Section 8.1
–  8.2.1 Huffman, 8.2.5 run-length
–  8.2.8 Block transform coding & JPEG
–  8.2.9 Predictive coding--spatial & temporal,,

lossless and lossy
–  8.2.10 wavelet compression

Image Compression-I 3

Image compression

Objective: To reduce the amount of data required to
represent an image.

Important in data storage and transmission
•  Progressive transmission of images (internet, www)
•  Video coding (HDTV, Teleconferencing, digital
cinema)
•  Digital libraries and image databases

• Medical imaging
• Satellite images

Image Compression-I 4

IMAGE COMPRESSION

 Data redundancy
  Self-information and Entropy
 Error-free and lossy compression
 Huffman coding
  Predictive coding
 Transform coding

Image Compression-I 5

Lossy vs Lossless Compression
Compression techniques

Information preserving Lossy

(loss-less)

Images can be compressed
and restored without any loss
of information.
Application: Medical images,
GIS

Perfect recovery is not
possible but provides a
large data compression.
Example : TV signals,
teleconferencing

Image Compression-I 6

Data Redundancy

•  CODING: Fewer bits to represent frequent symbols.

•  INTERPIXEL / INTERFRAME: Neighboring pixels
have similar values.

•  PSYCHOVISUAL: Human visual system can not
simultaneously distinguish all colors.

Image Compression-I 7

Coding Redundancy

Fewer number of bits to represent frequently occurring
symbols.
Let pr(rk) = nk / n, k = 0,1,2, . ., L-1; L # of gray levels.

Let rk be represented by l (rk) bits. Therefore average
of bits required to represent each pixel is

L l r p r Aavg k
k

L

r k= →
=

−

∑ () () ()
0

1

Usually l(rk) = m bits (constant). ⇒ = =∑L m p r mavg r k
k

()

Image Compression-I 8

L l r p r Aavg k
k

L

r k= →
=

−

∑ () () ()
0

1

Coding Redundancy (contd.)

 Consider equation (A): It makes sense to
assign fewer bits to those rk for which pr(rk)
are large in order to reduce the sum.

  this achieves data compression and results
in a variable length code.

 More probable gray levels will have fewer #
of bits.

Example of a variable length code

Image Compression-I 10

Coding: Example

Example (From text)
rk pr (rk) Code l(rk)
r0 = 0 0.19 11 2
r1 =

1
7 0.25 01 2

r2 =
2

7 0.21 10 2
r3 =

3
7 0.16 001 3

r4 =
4

7 0.08 0001 4
r5 =

5
7 0.06 00001 5

r6 =
6

7 0.03 000001 6
r7 = 1 0.02 000000 6

L

r l r
avg

k k=

=
∑ρ() ()
.2 7 Bits

10% less code

Image Compression-I 11

Inter-pixel/Inter-frame

spatial
Interframe

f(x,y)

f(x,y,t3)

f(x,y,t2)
f(x,y,t1)

f(x,y,t0)

 . N(x,y)

Depends on
f (x’, y’) , (x’, y’) ε Nxy
Nxy : Neighbourhood
of pixels around (x,y)

f(x, y, ti) i=1, 2, 3, . . .
are related to each other.
This can be exploited for
video compression.

Image Compression-I 12

Psychovisual

  Human visual system has limitations ;
good example is quantization. conveys
infromation but requires much less
memory/space.

  (Example: Figure 8.4 in text; matlab)

Image Compression

Image Compression-I 13

Image Compression-I 14

Image Compression-I 15

Source Encoder
Mapper: Designed to reduce interpixel redundancy.
example:
  Run length encoding results in compression.
  Transfrom to another domain where the coefficients are

less correlated then the original. Ex: Fourier transfrom.
Quantizer: reduces psychovisual redundancies in the image

- should be left out if error-free encoding is desired.
Symbol encoder: creates a fixed/variable length code -

reduces coding redundancies.

Image Compression-I 16

Source Decoder

from
channel

symbol
decoder

Inverse
mapper

f (x,y)

Note: Quantization is NOT reversible

Question(s):
•  Is there a minimum amount of data that is sufficient to
completely describe an image without any loss of
information?
•  How do you measure information?

 ̂

Image Compression-I 17

Self-Information
  Suppose an event E occurs with probability P(E) ;

then it is said to contain I (E) = -log P(E) units of
information.

  P(e) = 1 [always happens] => I(e) = 0 [conveys
no information]

  If the base of the logarithm is 2, then the unit of
information is called a “bit”.

  If P(E) = 1/2 , I(E) = -log2(1/2) = 1 bit. Example:
Flipping of a coin ; outcome of this experiment
requires one bit to convey the information.

Image Compression-I 18

Self-Information (contd.)

Assume an information source which generates the
symbols {a0, a1, a2, . . . , a L-1} with

prob a p a p a

I a p a

i i i
i

L

i i

{ } () ; ()

() log ()

= =

= −
=

−

∑ 1
0

1

2 bits.

Image Compression-I 19

ENTROPY
Average information per source output is

H is called the uncertainity or the entropy of the source.
If all the source symbols are equally probable then the source

has a maximum entropy.
H gives the lower bound on the number of bits required to

code a signal.

H p a p ai i
i

L
= −

=

−

∑ () log ()2
0

1
bits / symbol

Image Compression-I 20

Noiseless coding theorem

(Shannon)
It is possible to code, without any loss of
information, a source signal with entropy H bits/
symbol, using H + ε bits/symbol where ε is an
arbitrary small quantity.

ε can be made arbitrarily small by considering
increasingly larger blocks of symbols to be
coded.

Image Compression-I 21

Error-free coding

Coding redundancy Interpixel redundancy

Ex: Huffman coding Ex: Runlength coding

Yeilds smallest possible # of code
symbols per source symbol when
symbols are coded one at a time.

Error-free coding

Image Compression-I 22

Huffman code: example

Huffman code: Consider a 6 symbol source
 a1 a2 a3 a4 a5 a6

p(ai) 0.1 0.4 0.06 0.1 0.04 0.3

Image Compression-I 23

Huffman coding: example
(contd.)

a2 0.4(1) 0.4(1) 0.4(1) 0.4(1) 0.6(0)

a6 0.3(00) 0.3(00) 0.3(00) 0.3(00) 0.4(1)

a1 0.1(011) 0.1(011) 0.2(010) 0.3(01)

a4 0.1(0100) 0.1(0100) 0.1(011)

a3 0.06(01010) 0.1(0101)

a5 0.04(01011)

Image Compression-I 24

Example (contd.)

Average length:
(0.4) (1) + 0.3 (2) + 0.1 X 3 + 0.1 X 4 + (0.06 +
0.04) 5 = 2.2 bits/symbol

-Σ pi log pi = 2.14 bits/symbol (Entropy)

Image Compression-I 25

Huffman code: Steps

  Arrange symbol probabilities pi in decreasing
order

  While there is more than one node
–  Merge the two nodes with the smallest

probabilities to form a new node with probabilities
equal to their sum.

–  Arbitrarily assign 1 and 0 to each pair of branches
–  merging in to a node.

  Read sequentially from the root node to the
leaf node where the symbol is located.

Image Compression-I 26

Huffman code (final slide)
 Lossless code
 Block code
 Uniquely decodable
  Instantaneous (no future referencing is

needed)

Image Compression-I 27

Run-length Coding
Run-length encoding (Binary images)

 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0
 4 6 3 3 2

Lengths of 0’s and 1’s is encoded. Each of the bit planes in a
gray scale image can be run length - encoded.

One can combine run-length encoding with variable length
coding of the run-lengths to get better compression.

