ECE 178: Introduction (contd.)

Lecture Notes \#2: more basics
■ Section 2.4 -sampling and quantization
\square Section 2.5 -relationship between pixels, connectivity analysis

Light and the EM Spectrum

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

Digial Image Acquisition

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An el ement of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Sampling and Quantization

a b
c
c
d
FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image.
used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Sampling \& Quantization (contd.)

a b
FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Digital Image: Representation

FIGURE 2.18
Coordinate
convention used in this book to represent digital images.

Storage Requirement

Image Dimension: $\mathrm{NxN} ; \mathrm{k}$ bits per pixel.

TABLE 2.1
Number of storage bits for various values of N and k.

$\boldsymbol{N} / \boldsymbol{k}$	$\mathbf{1}(\boldsymbol{L}=\mathbf{2})$	$\mathbf{2}(\boldsymbol{L}=\mathbf{4})$	$\mathbf{3}(\boldsymbol{L}=\mathbf{8})$	$\mathbf{4}(\boldsymbol{L}=\mathbf{1 6})$	$\mathbf{5}(\boldsymbol{L}=\mathbf{3 2})$	$\mathbf{6}(\boldsymbol{L}=\mathbf{6 4})$	$\mathbf{7}(\boldsymbol{L}=\mathbf{1 2 8})$	$\mathbf{8}(\boldsymbol{L}=\mathbf{2 5 6})$
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	$1,048,576$	$1,310,720$	$1,572,864$	$1,835,008$	$2,097,152$
1024	$1,048,576$	$2,097,152$	$3,145,728$	$4,194,304$	$5,242,880$	$6,291,456$	$7,340,032$	$8,388,608$
2048	$4,194,304$	$8,388,608$	$12,582,912$	$16,777,216$	$20,971,520$	$25,165,824$	$29,369,128$	$33,554,432$
4096	$16,777,216$	$33,554,432$	$50,331,648$	$67,108,864$	$83,886,080$	$100,663,296$	$117,440,512$	$134,217,728$
8192	$67,108,864$	$134,217,728$	$201,326,592$	$268,435,456$	$335,544,320$	$402,653,184$	$469,762,048$	$536,870,912$

Re-sampling...

$\begin{array}{lll}\text { a b } \\ \text { d } & \text { e f } \\ \text { l }\end{array}$
FIGURE 2.20 (a) 1024×1024, 8 -bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) $256 \times 256,128 \times 128,64 \times 64$, and 32×32 images resampled into 1024×1024 pixels.

Quantization: Gray-scale resolution

FIGURE $\mathbf{2 . 2 1}$
(a) 452×374
256 -level image. (b)-(d) Image
displayed in 128, displayed in 128 ,
64, and 32 gray
levels, while
. 64, and 22 gra
levels. while
keeping the keeping the
spatial resolution
constant.
constant.

...false contouring

Sampling and Aliasing

FIGURE 2.24 Illustration of the Moire pattern effect.

Additional Reading

■ Chapter 1, Introduction

- Chapter 2, Sections 2.1-2.4
- We will discuss sampling and quantization in detail later
Next:
- some basic relationships between pixels (Section 2.5)

Relationship between pixels

Neighbors of a pixel

- 4-neighbors (N,S,W,E pixels) $==N_{4}(p)$. A pixel p at coordinates (x, y) has four horizontal and four vertical neighbors:
- $(x+1, y),(x-1, y),(x, y+1),(x, y-1)$
- You can add the four diagonal neighbors to give the 8neighbor set. Diagonal neighbors $==N_{D}(p)$.
- 8-neighbors: include diagonal pixels $==N_{8}(p)$.

Pixel Connectivity

Connectivity -> to trace contours, define object boundaries, segmentation.
In order for two pixels to be connected, they must be "neighbors" sharing a common property-satisfy some similarity criterion. For example, in a binary image with pixel values " 0 " and " 1 ", two neighboring pixels are said to be connected if they have the same value.

Let V: Set of gray level values used to define connectivity; e.g., $\mathrm{V}=\{1\}$.

Connectivity-contd.

4-adjacency: Two pixels p and q with values in V are 4-adjacent if q is in the set $N_{4}(p)$.
8-adjacency: q is in the set $\mathrm{N}_{8}(\mathrm{p})$.
■ m-adjacency: Modification of 8-A to eliminate multiple connections.
$-q$ is in $N_{4}(p)$ or
$-q$ in $N_{D}(p)$ and $N_{4}(p) \cap N_{4}(q)$ is empty.

Connected components

- Let S represent a subset of pixels in an image.
- If p and q are in S, p is connected to q in S if there is a path from p to q entirely in S.
- Connected component: Set of pixels in S that are connected; There can be more than one such set within a given S .

4-connected components

$\mathrm{p}=0$: no action;
$\mathrm{p}=1$: check r and t .

- both r and $t=0$; assign new label to p;
- only one of r and t is a 1 . assign that label to p;
- both r and t are 1.
- same label => assign it to p;
- different label=> assign one of them to p and establish equivalence between labels (they are the same.)

Second pass over the image to merge equivalent labels.

Exercise

Develop a similar algorithm for 8connectivity.

Problems with 4- and 8-connectivity

Neither method is satisfactory.

- Why? A simple closed curve divides a plane into two simply connected regions.
- However, neither 4-connectivity nor 8-connectivity can achieve this for discrete labelled components.
- Give some examples..

Related questions

■ Can you "tile" a plane with a pentagon?

Distance Measures

- What is a Distance Metric?

For pixels p, q, and z, with coordinates $(x, y),(s, t)$, and (u, v), respectively:
$D(p, q) \geq 0 \quad(D(p, q)=0$ iff $p=q)$
$D(p, q)=D(q, p)$
$D(p, z) \leq D(p, q)+D(q, z)$

Distance Measures

- Euclidean

$$
D_{e}(p, q)=\sqrt{(x-s)^{2}+(y-t)^{2}}
$$

■ City Block

$$
D_{4}(p, q)=|x-s|+|y-t|
$$

- Chessboard

$$
D_{8}(p, q)=\max (|x-s|,|y-t|)
$$

