Averaging

$$
\begin{aligned}
& g(x, y)=f(x, y)+\eta(x, y) \\
& \bar{g}(x, y)=\frac{1}{M} \sum_{i=1}^{M} g_{i}(x, y) \\
& E(\bar{g}(x, y))=f(x, y) \text { and } \sigma_{g}^{2}=\frac{1}{M} \sigma^{2}{ }_{\eta}(x, y) \\
& \eta(x, y) \quad \rightarrow \text { Uncorrelated zero mean } \\
& \sigma^{2}{ }_{\eta}(x, y) \rightarrow \text { Re duces the noise variance }
\end{aligned}
$$

Fig 3.30

Spatial Filtering

Chapter 3

Required Reading: All sections except 3.8

Image Forensics Project Guidelines

- Process
- Images

Smoothing (Low Pass) Filtering

Replace $f(x, y)$ with

$$
\begin{aligned}
\hat{f}(x, y)= & \sum_{i} \omega_{i} f_{i} \\
& \text { Linear filter }
\end{aligned}
$$

LPF: reduces additive noise \rightarrow blurs the image
\rightarrow sharpness details are lost
(Example: Local averaging)

Fig 3.35

Fig 3.35: smoothing

$\begin{array}{ll}\text { a } & \text { bIGURE } 3.35 \text { (a) Original image, of size } 500 \times 500 \\ \text { c dixels (b)-(f) Results of smoothing } \\ \text { d }\end{array}$ with square averaging filter masks of sizes $n=3,5,9,15$, and 35 , respectively. The black squares at the top are of sizes $3,5,9,15,25,35,45$, and 55 pixels respectively, their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in ders are 22 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of popoinst the large leter at the top is 0 points The vertical bars are 5 pix-
els wide and increments of 2 points: the large etter at the top is 60 points. The vertical bars are 5 pix-
els wide and 100 pixels high, their separation is 20 pixels The diameter of the circles is
25 pixels. and their borders are 15 pixels apart their 25 pixels, and their borders are 15 pixels apart, their gray levels range from 0% to 100%
black in increments of 20% The background of the image is 10% black. The noisy recblank ins increme of size 50×120 pixe
tat
Local Enhancement

Fig 3.36: another example

a b c
FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

Image Dithering

- Dithering: to produce visually pleasing signals from heavily quantized data.
- Halftoning: convert a gray scale image to a binary image by thresholding.
- Dithering to "add" noise so that the resulting image is smoother than just thresholding (but still it is a binary image)
- Your homework \#4 explores this further with a MATLAB exercise.

Replace $f(x, y)$ with median [$f\left(x^{\prime}, y^{\prime}\right)$]
($\left.\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) \mathcal{E}$ neighbourhood

- Useful in eliminating intensity spikes. (salt \& pepper noise)
- Better at preserving edges.

Example:

10	20	20
20	15	20
25	20	100

$$
\longrightarrow(10,15,20,20,20,20,20,25,100)
$$

Median=20
So replace (15) with (20)

Median Filter: Root Signal

Repeated applications of median filter to a signal results in an invariant signal called the "root signal".
A root signal is invariant to further application of the medina filter.

Example: 1-D signal: Median filter length $=3$
$\begin{array}{lllllllllllll}0 & 0 & 0 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllllllll}0 & 0 & 0 & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllllllll}0 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllllllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & \underline{\text { root signal }}\end{array}$

Invariant signals to a median filter:

Fig 3.37: Median Filtering example

a b c
FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Media Filter: another example

Original and with salt \& pepper noise imnoise(image, 'salt \& pepper');

Donoised images

Local averaging
K=filter2(fspecial('average',3),image)/255.

Median filtered
L=medfil2 (image, [3 3]);

- Enhance finer image details (such as edges)
- Detect region /object boundaries.

Example:

-1	-1	-1
-1	8	-1
-1	-1	-1

Unsharp Masking

Subtract Low pass filtered version from the original emphasizes high frequency information
$I^{\prime}=A($ Original $)-$ Low pass
$\mathrm{HP}=\mathrm{O}-\mathrm{LP} \quad \mathrm{A}>1$
$I^{\prime}=(\mathrm{A}-1) \mathrm{O}+\mathrm{HP}$
$\mathrm{A}=1 \quad \Rightarrow \quad \mathrm{I}^{\prime}=\mathrm{HP}$
A $>1 \Rightarrow$ LF components added back.

Derivative Filters

1/9

Gradient
$\nabla f=\left[\begin{array}{ll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}\end{array}\right]^{T}$
$\|\nabla f\|=\left[\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right]^{1 / 2}$

Edge Detection

Digital edge detectors

$$
\begin{aligned}
& |\nabla f| \approx\left[\left(z_{5}-z_{8}\right)^{2}+\left(z_{5}-z_{6}\right)^{2}\right]^{1 / 2} \\
& |\nabla f| \approx\left|z_{5}-z_{8}\right|+\left|z_{5}-z_{6}\right|
\end{aligned}
$$

Robert's operator

$$
\left|z_{5}-z_{9}\right| \quad\left|z_{6}-z_{8}\right|
$$

prewitt

Sobel's

-1	-2	-1				
0	0	0				
1	2	1		-1	0	1
:---:	:---:	:---:				
-2	0	2				
-1	0	1				

Fig 3.45: Sobel edge detector

ab
FIGURE 3.45
Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o'clock).
(b) Sobel
gradient.
(Original image
courtesy of
Mr. Pete Sites,
Perceptics
Corporation.)

Laplacian based edge detectors

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

-Rotationally symmetric, linear operator

- Check for the zero crossings to detect edges
- Second derivatives => sensitive to noise.

