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2D Fourier Transform 

 2-D DFT  & Properties 
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Fourier Transform - review 

1-D: 

2-D: 

F u( ) ≡ ℑ f (x){ } = f (x)e− j2π u x
−∞

∞

∫ dx

f (x) ≡ ℑ−1 F(u){ } = F(u)e j2π u x
−∞

∞

∫ du

F(u,v) = f (x, y)∫∫ e− j2π ux+vy( ) dxdy

f (x, y) = F(u,v)e j2π ux+vy( ) dudv∫∫
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2D FT: Properties 

Convolution: f(x,y)      g(x,y) =  F(u,v) G(u,v) 

Multiplication: f(x,y) g(x,y) = F(u,v)      G(u,v) 

Separable functions: Suppose f(x,y) = g(x) h(y), Then 
                                                 F(u,v)=G(u)H(v) 

Shifting: f(x+x0, y+y0)                exp[2π j (+ x0u + y0v)] F(u,v) 

Linearity: a f(x,y) + b g(x,y)                a F(u,v) + b G(u,v) 
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Separability of the FT 

F(u,v) = f (x, y)e− j2π uxdx
−∞

∞

∫










−∞

∞

∫ e− j2π vydy

= F(u, y)
−∞

∞

∫ e− j2π vydy
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Separability (contd.) 

f(x,y) F(u,y) F(u,v) 

Fourier Transform  
along X. 

Fourier Transform 
along Y. 

We can implement the 2D Fourier transform as a 
sequence of 1-D Fourier transform operations. 
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Eigenfunctions of LSI Systems 

A function f(x,y) is an Eigenfunction of a system T if 
T[ f(x,y) ] = α f(x,y) for some  constant (Possibly complex) α. 

For LSI systems, complex exponentials of the form  
exp{  j2π (ux+vy) }, for any (u,v), are the  
Eigenfunctions. 
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Impulse Response and Eigenfunctions 

g(x, y) = h(x − s, y − t)e j2π (us+vt )ds
−∞

∞

∫∫ dt

= h(x , y )∫∫ e j2π (ux+vy)e− j2π (ux +vy )dx dy

= H (u,v)e j2π (ux+vy)

Consider a LSI system with impulse response h(x,y). 
Its output to the complex exponential is 

2D Fourier Transform 8 

2-D FT: Example 

f(x,y) 

x 

y 
Y X 

A 

F(u,v) = f (x, y)e− j2π (ux+vy)dxdy
−∞

∞

∫∫

= A e− j2π ux
0

X

∫ dx e− j2π vy
0

Y

∫ dy

= AXY
sinπuX
πuX







sinπvY
πvY







e− jπ (uX+vY )
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Example (contd.) 
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Example2 
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Discrete Fourier Transform 

Consider a sequence {u(n), n=0,1,2,....., N-1}. The DFT of u(n) is 
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Where and the inverse is given by
π
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2-D DFT 

Often it is convenient 
to consider a 
symmetric transform: 

In 2-D: 
consider a 
NXN image 

v(k) = 1
N

u(n)WN
kn

n=0

N −1

∑ and

u(n) = 1
N

v(k)WN
−kn

n=0

N −1

∑

v(k,l) = 1
N

u
n=0

N −1

∑ (m,n)WN
kmWN

ln
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N −1

∑ ,

u(m,n) = 1
N
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−km− l n
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∑
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2D DFT -- PROPERTIES 

  Separability 
  Translation 
  Scaling 
  Periodicity and Conjugate Symmetry 
  Rotation 
  convolution 
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Separability 

For each ‘m’, v(m,l) is the 1-D DFT with frequency values  
l = 0,1,....., N-1 

v(k,l) = 1
N

WN
km

m=0

N −1

∑ u(m,n)WN
ln

n=0

N −1

∑

=
1
N
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km
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Separability 

The DFT of a 2-D array can be obtained by first taking 
the 1-D DFT of each row (or column) and then taking 
the 1-D DFT of each column (or row). 

It does not matter if the order of operation is 
reversed. 
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Translation 

u(m − ′m ,n − ′n )↔ v(k,l)e
− j2π

(km '+ l n ')
N
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Displaying the DFT: Scaling 

v(k,l)= 
DFT{u(m,n)}  Display 

C log[1+lv(k,l)l] 

 Constant 

Large dynamic range 
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In MATLAB 

f = zeros(30,30); 
f(5:24,13:17)=1; 
imshow(f, ‘notruesize’); 
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In Matlab(2) 

F =fft2(f); 
F2 = log(abs(F)); 
imshow(F2, [-1, 5], ‘notruesize’); 
colormap(jet); colorbar; 
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Displaying the DFT 

N-1 

v 

0   N-1 
u 

Low frequency components 
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Displaying (again) & Shifting 

u(m,n)e
j2π (k 'm+ l 'n)

N ↔ v(k − k ',l − l ') and

u(m,n)(−1)m+n ↔ v k −
N
2
, l − N

2






The origin of the F{u(m,n)} can be moved to the center of  
the array (N X N square) by first multiplying u(m,n) by (-1)m+n  

and  then taking the Fourier transform. 
Note: Shifting does not affect the magnitude of the Fourier transform. 
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Displaying DFT 

|v(k,l) e -j2π[ km’+ln’ ] / N |  =  |v(k,l)| 

A B 

C D 

D C 

B A 

Low frequency 
components MATLAB Example 
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In Matlab(3): FFTSHIFT 

F2= fftshift(F); 
imshow (log(abs(F2),..) 

2D Fourier Transform 24 

Another example 

Original image Its centered DFT magnitude 
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Periodicity & Conjugate Symmetry 

u(m,n)  
F 

v(k,l) 

v(k,l) = v(k+N, l) = v(k, l+N) = v(k+N, l+N) 

If u(m,n) is real, v(k,l) also exhibits conjugate symmetry 
v(k,l) = v* (-k, -l)  or  | v(k,l) | = | v(-k, -l) | 
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Rotation 

(continuous case) 

      If you rotate the image u(m,n) by an angle θ, its F.T also 
gets rotated by the same angle. 
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Rotation 
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Average Value 

u =
1
N

u(m,n) = Average
n
∑

m
∑

v(k,l) = 1
N

u(m,n)e
− j2π

km+ l n
N

n
∑

m
∑

v(0,0) = 1
N

u(m,n) = Nu
n
∑

m
∑

  or u = v(0,0)
N

 (Scaled Average)
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Convolution (Revisited) 

Consider 1-D 
continuous case 

Convolution in 
Space 

Multiplication in 
Frequency 

f (x)∗ g(x) = f (x ')g(x − x ')dx '
−∞

∞

∫
Let  f (x)↔ F(u), g(x)↔ G(u)
Then  f (x)∗ g(x)↔ F(u)G(u)
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Let us now assume that we discretize f(x) and g(x) into 
vectors f(n) and g(n) of lengths A and B 

f(n)        {f(0), f(1),..... f(A-1)} 
g(n)       {g(0), g(1), g(2),....g(B-1)} 

(a) DFT and its inverse are periodic functions 
(b) Convolving two vectors of length A and B gives a 
vector of dimension A+B-1. (Linear convolution) 

Discrete Convolution  
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Length of the Convolution 

B 
 A 
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Discrete Convolution: an example (Fig 4.36) 

3 

200 400 

f(m) 

m 

3 

200 400 

f(m) 

m 

2 

200 400 

h(m) 

m 

2 

200 400 

h(m) 

m 

2 

200 400 

h(-m) 

m 

2 

200 400 

h(-m) 

m 
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Discrete conv. (cont.) 

2 

200 400 

h(x-m) 

m x 
2 

200 400 

h(x-m) 

m x 

Range of the DFT=400 500 
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Zero Imbedding 

In order to obtain a convolution theorem for the discrete case, and still 
be consistent with the periodicity property we need to assume that 
sequences f( ) and g( ) are periodic with some period M. From (b) it is 
clear that M> A+B-1 to avoid overlap.  

Since this period is greater than A or B, the original sequence length 
must be increased and this is done by appending zeros at the end. 
Redefine the extended sequences as 

fe(n) =
f (n) 0 ≤ n ≤ A −1
0 A ≤ n ≤ M −1




ge(n) =
g(n) 0 ≤ n ≤ B −1
0 B ≤ n ≤ M −1
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fe(n) ∗c ge(n) = fe(m)ge(n − m)c
m=0

M −1

∑
where   g(n)( )c = g n Modulo M[ ]
Note: With n expressed as
n=n1 + n2N        where   0 ≤ n1 ≤ N −1
n modulo N  equals n1

x   mod   y = x − y x
y







   if y ≠ 0

x   mod   0 = x.   
x
y   is the integer part of x

y
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Theorem 

The DFT of the circular convolution of two sequences of 
length N is equal to the product of their DFTs. 

A linear convolution of two sequences can be obtained via 
FFT by embedding it into a circular convolution. 

If  y(n) = f (n − m)c
m=0

N −1

∑ g(n) then 

 DFT y(n)[ ]N =  DFT f (n)[ ]N DFT g(n)[ ]N
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2-D Convolution 

These results can be similarly extended to 2-D 
signals. 

Let    f(m,n) :  A x B  array 
         g(m,n) : C x D  array 
Let    M> = A + C -1 
         N> =  B + D -1 

For linear convolution using DFT create the extended 
periodic sequences of period MxN in the 2-D. 
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Extended (periodic) Sequences 

f m n
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and the 2 - D linear convolution becomes

computing 
convolution 
is more  
efficient 
in the frequency 
domain. 
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Linear Convolution and DFT: Summary 
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A note on convolution with images 

Note: In many cases involving images, we deal 
with square arrays of size N X N. We normally 
would like to have the resulting convolved 
output also as an N X N array. 
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Conv2 (.) in Matlab 

CONV2 Two dimensional convolution. 
C = CONV2(A, B) performs the 2-D convolution of matrices A 

and B.   If [ma,na] = size(A) and [mb,nb] = size(B), then 
  size(C) = [ma+mb-1,na+nb-1]. 

C = CONV2( ... ,'shape') returns a subsection of the 2-D 
convolution with size specified by 'shape': 

        'full'  - (default) returns the full 2-D convolution, 
        'same'  - returns the central part of the convolution that is the 

same size as A. 
        'valid' - returns only those parts of the convolution that are 

computed without the zero-padded edges,  
     size(C) = [ma-mb+1,na-nb+1] when size(A) > size(B). 


