
Handout #3 ECE 178
Jan 10, 2006 W2006

Guidelines for Getting Started with Matlab

 I. You should familiarize yourself with the Matlab environment by either
accessing the online documentation or the help/Matlab help menu within
Matlab. The online documentation at
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
does not require you to have Matlab on your computer (i.e. can be read at
home). Do not worry about remembering all the details because you will
learn them as the course progress. Below are some key items to which
you should give more attention.

1) Know how to define and perform computations on scalars, vectors,
and matrices (addition, multiplication, etc.).

2) Make sure you understand the difference between element-by-
element computations and matrix computations, i.e. the difference
between A.*B and A*B.

3) Understand how to use and write functions (look up functions in
help for more details).

4) Know simple plotting in 2D.

 II. You should read over the information on the Matlab Image Processing
Toolbox at http://www.ece.ucsb.edu/~manj/ece178/matlabip.htm and the
online/Matlab documentation for the Image Processing Toolbox. Here are
some key items.

1) Understand the types of images: Indexed, Intensity, Binary, RGB.
2) Understand some basic image formats: jpg, bmp, tiff, etc.
3) Know how to load/read an image onto the workspace, and how to

save/write an image from the workspace.
4) Know how the image data is represented in the workspace.
5) Know how to convert from one image type/format to another.
6) Understand image coordinates.
7) Know how to display an image.

 III. You should read and do some of the exercises from An introductory
tutorial on MATLAB in Image Processing (attached to this page). Note
the Common Pitfalls section.

An introductory tutorial on MATLAB in Image Processing
 ECE 178, W2006

I. GETTING STARTED
MATLAB is a data-analysis and visualization
tool widely used by electrical engineers and
stands for “Mathematics Laboratory.” The most
important difference between MATLAB and C
(or C++) is that functions in MATLAB are
specifically written with a focus on large array-
based operations in mind. Image processing is
heavy on the memory usage as well as the run-
time of programs.

You would need the Image Processing toolbox
installed in your MATLAB to work with the
commands that are listed later in this worksheet.
You can check if the Image Processing toolbox
is installed using the ver command. Using “help
images” one can see all the commands that are
supported in this toolbox. If you find the help
document scrolling past very fast you can switch
the ‘more’ command using >> more on or for a
more formal help use >> doc ‘command’ A
MATLAB function is a keyword that accepts
various parameters, and produces output of some
sort. At times in this course, we may need to
write our own functions (and this is very easy as
you will see). A command is a particular usage
of a function. Variables are elements used to
store values. If you are using a windowed
version of MATLAB, you may find a Workspace
item in the View menu. This lists all your
currently defined variables, their data types, sizes
etc.

Exercise 1: Explore the whos and who
commands that are used to list the variables used
in the workspace.

At this point, I would like to stress that learning/
understanding MATLAB is impossible by just
reading this handout. The exercises in this
handout are motivated primarily by this reason.
Using standard MATLAB routines “efficiently”
Could mean the difference between a program
that runs for a day and one that runs in an hour.
Use of for loops is known to increase the run-
time by a significant amount.

Exercise 2: This exercise describes how ‘slow’
the for command can be. We can measure the
time that elapses between the executions of a
command using the tic toc timer of MATLAB.
tic starts a stopwatch timer and toc stops it and
prints out the elapsed time in seconds. Execute

the following code and compare the elapsed time
differences between the two.
>> tic; for i = 1:10ˆ6, sin(i);end; toc;
>> tic; i=1:10ˆ6; sin(i); toc; Understand how the
for loop can slow down the process by quite a
bit.

II. BASIC MATRIX OPERATIONS IN
MATLAB
The standard data type of MATLAB operations
is the matrix. Images, of course, are matrices
whose elements are the gray values (or possibly
the RGB values) of its pixels. I am assuming that
most of you are aware of the basics of
MATLAB. More information on these
commands can be obtained using the help and
lookfor commands. A standard 2 × 3 matrix

is defined as >> A = [a11 a12 a13; a21 a22
a23;]; Matrix elements can be obtained using the
standard row, column indexing scheme >> a(2,3)
The reshape function produces a matrix with
elements taken column by column from the
given matrix. MATLAB also allows matrix
elements to be obtained using a single number;
this number being the position when the matrix
is written as a single column. For e.g. a matrix
with r rows and c columns, element a(i, j)
corresponds to a(i + r · (j - 1)). We would rarely
be using this notation. Addition of matrices is
done as >> c = a+b; The inv, det and ’
commands do the inverse, determinant and
transpose operations respectively.

Exercise 3: Matrices can be flipped up or down
using flipud, left or right using fliplr and rotated
by 90 degrees by rot90. Explore them.

To obtain a row of values, or a block of values,
we use the colon (:) operator. Pointwise
multiplication (Hadamard product of two
matrices) is done with >> c = a.*b; We also have
dot division and dot powers. The command >>
a.ˆ2 produces a matrix, each element of which is
the square of corresponding elements of a.

Exercise 4: Using the colon and dot operators
alone, generate the first 15 cubes.

Sometimes, we would need to generate some
special matrices and random matrices. An

identity matrix of order N is generated using the
command eye. An all zero matrix is generated
using zeros. An all-1 matrix is generated using
ones. Randn(N) generates an N × N matrix with
entries from a standard (real) normal distribution
whereas rand(N) generates a random matrix with
entries from a uniform distribution. We can
generate a complex random matrix with
Gaussian entries either using the randn function
or the wgn function. The floor operator produces
the integer part of a result.

Exercise 5: Unlike other programming languages
that require a nested loop to generate a matrix A
with A(i, j) = i + j - 1, understand this MATLAB
code that generates A.
>> rows = (1:10)’*ones(1,10);
>> cols = ones(10,1)*(1:10);
>> A = rows + cols - 1;
The construction of rows and cols can be
done automatically with the meshgrid function.
>> [cols, rows] = meshgrid(1:10,1:10);

Exercise 6: Write a function issquare that will
determine whether a given integer is a square
number. (Hint: Use the floor function.)

Exercise 7: Learn the different features of the
plot and axis commands. I am assuming that you
are familiar with the basic MATLAB operations
and this would just be a quick review of it.

III. STORING IMAGES IN MATLAB
Images are usually heavy on memory. More
pixels, (number of elements needed to store the
pictures) implies more memory. The pictures that
you usually download from the web are either in
the jpeg/jpg (Joint Photographic Experts Group),
gif (Graphics Interchange Format), tif/tiff
(Tagged Image File Format), bmp (Windows
Bitmap). Other not-so-common formats include
png, hdf, pcx, xwd, cur and ico. There are
different types of images that can be stored in
MATLAB. Binary images store an image as a 3-
D matrix with two dimensions representing the
image dimensions and the third storing values
only in 0 and 1 (thus binary). Since each pixel
needs only 1 bit for storage, this image needs
very less memory to store. You also have the
gray scale images (black and white) which is
similar to the binary image, but with more than a
bit to store the pixel value. This memory is a
byte for an image of the uint8 class and much
more for the double class. The double class
stores the pixel value in a continuum between 0
and 1, whereas the uint8 class quantizes the pixel

value between 0 and 255. 0 corresponds to a
completely black pixel and 255 (respectively 1)
corresponds to a completely white pixel. The
uint8 class occupies approximately 8 times less
memory than the double class. Also some image
processing commands work only on the double
class and some only on the uint8 class. It is very
easy to convert between these two classes. There
are also other classes like uint16 which are more
common with tiff/png/bmp images, but uint8 is
the default for the more commonly used jpg
images. An irreversible conversion from the
gray-scaled image to the binary image is possible
(check later for conversion between different
formats). Usually image files on the web are
color images. Storing color images can be done
in two ways, the RGB format or the indexed
format. The RGB format stores the red, green
and blue (primary color contents) of the
corresponding pixel. MATLAB then internally
combines these corresponding pixel values to
paint the pixel with the appropriate color when
we display the image. It is a simple exercise to
note that MATLAB can represent 2563 colors in
the RGB format. MATLAB by default stores
(check later for the ‘imread’ command) an image
in the RGB format unless you tell it otherwise.
An RGB image is also called a 24-bit image. An
image in the RGB format is a 3-D matrix (size1×
size2× 3). The red, green and blue pixel values
are stored always according to the uint8 class.
The other storage format for color images is the
indexed format. Not all the 16 million color
combinations possible with the RGB format are
needed for representing an image. Thus
sometimes it is more efficient to use a reduced
set of colors to represent the image. From this
arises the notion of “colormap.” Unlike the RGB
format, which stores the pixel value in the third
dimension, the indexed format stores a reference
number. We then use another matrix called the
colormap matrix as a lookup table to see what
color the reference number actually corresponds
to. In reality this scheme is much more memory
efficient than the RGB format. You can check if
a color image on the web is an indexed image or
an RGB image using the imfinfo command. The
pixel values are always stored in the double
class. The image read operations (check the
following section) also read the colormap.

IV. I/O OPERATIONS WITH AN IMAGE
Reading a jpg/gif image is done using the
‘imread’ command. If the file is stored as
filename.fileextension, >> I =
imread(‘filename’,‘fileextension’); reads the

image as a matrix I. Be sure to put the ‘;’ or you
will be staring at a set of numbers running
endlessly on the screen. If you store the image as
>> I = imread(‘filename.fileextension’);
you let MATLAB decide by what it sees, the file
format etc. Indexed images can be identified
using the imfinfo command. For indexed images,
one also has to read the colormap as follows.
>>[I,cmap]=imread(‘filename.fileextension’);
After you have done the necessary image
processing, storing an image back in the jpg (or
similar) formats is done with the ‘imwrite’
command. The standard procedure is to
>>imwrite(I,‘filename.fileextension’);
Check for corresponding commands with
indexed images. You may sometimes want to
save the image matrix so that you can work with
it later. This is done with the load and save
commands (which are not image processing
toolbox specific). save I saves the image matrix I
in the file ‘I.mat’ and load I loads the saved
contents to the variable ‘I’. There are three
different file formats in MATLAB, the m files,
the mat files and the mex files. Mat files are
stored files and you would not be dealing with
the mex files in this course. You can check the
variables in your workspace with the whos
command and list all the files with the ls
command. Displaying an image can be done with
the imshow or imagesc commands. We only
describe the syntax for indexed images (For rest,
check the help files.). >> imshow(I,cmap); The
images are displayed in the Figure window.

Exercise 8: Pick a gray-scale image, say
cameraman.tif or any other file that you can get
hold of, and using the imwrite function write it to
files of types JPEG, BMG and GIF. What are the
sizes of those files?

V. COMMANDS THAT YOU WILL BE
USING LATER
The following commands maybe useful later in
this course.
• pixval on/off: You can see the values of the
pixels using this command in the figure window.
• impixel(·, ·, ·): You can obtain the values of the
pixels using this command.
• brighten(·): This command brightens an image
if the parameter inside is positive. Check the help
files for syntax.
• isgray(·): Answers if the image is a gray-scaled
image.
• imcrop(·): Produces a copy of the image which
can then be cropped. Should store the image then
in a different file for post-processing.

• image(·): Displays image in a Figure window.
• imfinfo(·): Returns information about the image
file stored (in the jpg/gif/other formats).
• plot(·,·,·): Plots the vectors against each other.
Sizes should match.
• zoom on/off: Zooms into or out of the figure.
• colormap: You can get to see the colormap
associated with an indexed figure using this
command. Consult the help file for syntax.
• fft2(·): This does the 2-D Fourier transform of
the image as a matrix.
• dct2(·): The DCT-II of the input matrix is done
with this command.
• conv2(A,B): This does the 2-D convolution of
A by B. Note that the resultant convolved matrix
is of increased size. More information can be
obtained using the MATLAB help files or a
standard MATLAB book or consulting the
Image processing document pages in the
Mathworks site.

VI. COMMON PITFALLS

• Be sure to use .* instead of * when
you're multiplying two images together
point-by-point. Otherwise, Matlab will
do a matrix multiplication of the two,
which will take forever and result in
total nonsense.

• Be sure not to forget the semicolon at
the end of a command. Otherwise, you
may sit for a while watching all the
pixel values from the resulting image
scroll by on the screen!

• Do not use for loops unless absolutely
necessarily. The use of for loops will
make your programs take much longer.

	MATLAB_tutorial.pdf
	An introductory tutorial on MATLAB in Image Processing

