ECE 178 Digital Image Processing Discussion Session \#1
 Mehmet Emre Sargin
 msargin@ece.ucsb.edu
 January 12, 2007

Exercise: 1

Suppose

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \tag{1}\\
4 & 5 & 6
\end{array}\right]
$$

In order to initialize A as stated above type
$\gg A=\left[\begin{array}{llllll}1 & 2 & 3 ; & 4 & 5 & 6\end{array}\right]$
$\mathrm{A}=$

132

The semicolon is used for suppressing the output. If you do not want to suppress the output, just ignore the semicolon at the end (Be careful when dealing with large arrays i.e. images).

Warning!

Remember, in Matlab you can not start a variable or a function or even a script name with a number.
1.m \rightarrow invalid
question1.m \rightarrow valid

Exercise: 2

First indices are for accessing rows and the second indices are for accessing columns. In order to access whole row or column, colon is used.

```
>>A (2,3)
ans =
    6
>>A(:, 1)
ans =
    1
    4
>>A(1,:)
ans =
12
3
```

You can access the elements of an array also by specifying a single index $A(i, j) \equiv A(i+r(j-1))$. Where r is the number of rows in A.

$$
A=\left[\begin{array}{lll}
A(1,1) & A(1,2) & A(1,3) \tag{2}\\
A(2,1) & A(2,2) & A(2,3)
\end{array}\right] \equiv\left[\begin{array}{lll}
A(1) & A(3) & A(5) \\
A(2) & A(4) & A(6)
\end{array}\right]
$$

Size of an array can be accessed by:

```
>>size(A)
ans =
    2
3
```


Exercise: 3

Suppose we are trying to create two matrices (X, Y) where each element in X / Y contain it's column/row index.

$$
X=\left[\begin{array}{lll}
1 & 2 & 3 \tag{3}\\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right], \quad Y=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right]
$$

```
X=[1;1;1]*[1,2,3]
X =
    1 2 3
    1 2 3
    1 2 3
Y=[1;2;3]*[1,1,1]
Y =
\begin{tabular}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{tabular}
```

 Note that \(X=Y^{T}\).
 The same result can be obtained by
 $[\mathrm{X}, \mathrm{Y}]=$ meshgrid(1:3,1:3)
$\mathrm{X}=$

1	2	3
1	2	3
1	2	3

Y =

1	1	1
2	2	2
3	3	3

Suppose, we want to create an array such that each element depends on it's indexes (i.e. image is a function of spatial coordinates). Then it is useful to use X and Y to evaluate the function at each coordinate since X and Y contains spatial coordinates.

Exercise: 4
Drawing a line on L with equation $y=x / 2$ such that

$$
L(y, x)= \begin{cases}1 & y=x / 2 \tag{4}\\ 0 & y \neq x / 2\end{cases}
$$

$L=\operatorname{zeros}(3,3)$
$\mathrm{L}=$

0	0	0
0	0	0
0	0	0

$L(Y==\operatorname{round}(X / 2))=1$
L =

1	1	0
0	0	1
0	0	0

You can try this exercise with a larger L.

Exercise: 5

To read and write and display images:

I = imread('filename');

Warning!

Do not forget to put semicolon. Otherwise Matlab will print whole array on the screen.
imshow(I);
imwrite(I, 'another_name','fmt');
It writes the image I to the file specified by another_name in the format specified by fmt.
Some common formats:

- 'bmp'
- 'gif'
- 'jpg'
- 'tif'
- ...

