

Announcements (01/08/04)

- 01/09/2004: Discussion sessions on Matlab
- Note that the HW\#1 due on Jan 16.
- HW\#2 will be due on Jan 23.
- Today:
- A quick introduction to MATLAB
- Basic relationship between pixels (Section 2.5)
- Image sampling and quantization (Section 2.4, notes)
- Linear systems review (time permitting)

Jan 8
W04/Lecture 2

Light and the EM Spectrum

Wavelength

higre 2.11

Sampling and Quantization

は以
6

Spatial Resolution

[^0]W04/Lecture 2

Quantization: Gray-scale resolution

Sampling and Aliasing

Additional Reading

- Chapter 1, Introduction
- Chapter 2, Sections 2.1-2.4
- We will discuss sampling and quantization in detail later (Week 2)
- Next:
- some basic relationships between pixels (Section 2.5)
- MATLAB: an overview
- A quick tour of linear systems (note, G\&W additional reading)

Jan 8
wo4/Lecture 2

Relationship between pixels

- Neighbors of a pixel
- 4-neighbors (N,S,W,E pixels) $==N_{4}(p)$. A pixel p at coordinates (x, y) has four horizontal and four vertical neighbors:
- $(x+1, y),(x-1, y),(x, y+1),(x, y-1)$
- You can add the four diagonal neighbors to give the 8-
neighbor set. Diagonal neighbors $==N_{D}(p)$.
- 8-neighbors: include diagonal pixels $==N_{8}(p)$.

Jan 8
W04/Lecture 2

Pixel Connectivity

Connectivity -> to trace contours, define object boundaries, segmentation.
In order for two pixels to be connected, they must be "neighbors" sharing a common property-satisfy some similarity criterion. For example, in a binary image with pixel values " 0 " and " 1 ", two neighboring pixels are said to be connected if they have the same value.

Let V: Set of gray level values used to define connectivity; e.g., $\mathrm{V}=\{1\}$.

Jan 8
W04/Lecture 2

Connectivity-contd.

- 4-adjacency: Two pixels p and q with values in V are 4-adjacent if q is in the set $N_{4}(p)$.
- 8-adjacency: q is in the set $N_{8}(p)$.
- m-adjacency: Modification of 8-A to eliminate multiple connections.
$-q$ is in $N_{4}(p)$ or
$-q$ in $N_{D}(p)$ and $N_{4}(p) \cap N_{4}(q)$ is empty.
Connected components
- Let S represent a subset of pixels in an
image.
\square If p and q are in S, p is connected to q in S if
there is a path from p to q entirely in S.
- Connected component: Set of pixels in S that
are connected; There can be more than one
such set within a given S.
Jan 8

4-connected components

```
#
p=1: check r and t.
```

- both r and $t=0$; assign new label to p;
- only one of r and t is a 1 . assign that label to p;
 - both r and t are 1 .
 - same label => assign it to p;
 - different label=> assign one of them to p and
establish equivalence between labels (they are
the same.)
Second pass over the image to merge equivalent labels.
Jan 8
W04/Lecture 2

Exercise	
Develop a similar algorithm for 8- connectivity.	
Jon8 8	

Problems with 4 - and 8 -connectivity

- Neither method is satisfactory.
- Why? A simple closed curve divides a plane into two simply connected regions.
- However, neither 4-connectivity nor 8-connectivity can achieve this for discrete labelled components.
- Give some examples..

Jan 8
W04/Lecture 2
22

Related questions	
■ Can you "tile" a plane with a pentagon?	
Jan 8	

Distance Measures

- What is a Distance Metric?

For pixels p, q, and z, with coordinates $(x, y),(s, t)$, and (u, v), respectively:
$D(p, q) \geq 0 \quad(D(p, q)=0$ iff $p=q)$
$D(p, q)=D(q, p)$
$D(p, z) \leq D(p, q)+D(q, z)$

Matlab: a quick introduction

- http://varuna.ece.ucsb.edu/ece178/matlabip.htm
- A detailed document is available on-line
- More on MATLAB during the discussion session(s).

Jan 8 W04/Lecture 2

26

[^0]: abi

 $$
 \text { Jan } 8
 $$

