Sampling and Quantization

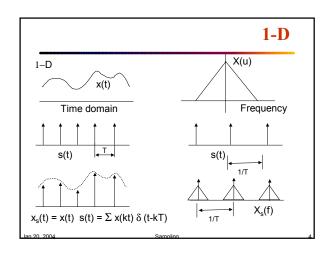
Lecture #5 January 20, 2004

Sampling and Quantization

- Spatial Resolution (Sampling)
 - Determines the smallest perceivable image detail.
 - What is the *best* sampling rate?
- Gray-level resolution (Quantization)
 - Smallest discernible change in the gray level value.
 - Is there an optimal quantizer?

n 20, 2004

Image sampling and quantization In 2-D Sampler $f_s(m,n)$ Quantizer To Computer (Continuous image)



Comb($x, y; \Delta x, \Delta y$) $\cong \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x - m\Delta x, y - n\Delta y)$ $comb(x, y; \Delta x, \Delta y) \cong \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x - m\Delta x, y - n\Delta y)$ $comb(x, y; \Delta x, \Delta y)$ Δx Δx xSampling

Sampled Image

$$f_s(x,y) = f(x,y) \operatorname{comb}(x,y; \Delta x, \Delta y)$$

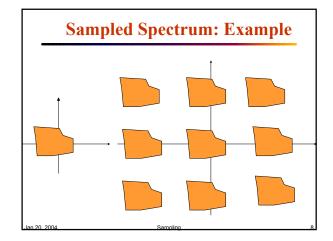
$$= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m\Delta x, n\Delta y) \, \delta(x - m\Delta x, y - n\Delta y)$$

$$\operatorname{comb}(x,y; \Delta x, \Delta y) \xleftarrow{3} \operatorname{COMB}(u,v) = \frac{1}{\Delta x \Delta y} \operatorname{comb}(u,v; \frac{1}{\Delta x}, \frac{1}{\Delta y})$$

Sampled Spectrum

$$\begin{split} F_s(u,v) &= F(u,v) * \text{COMB}(u,v) \\ &= \frac{1}{\Delta x \Delta y} \sum_{k,l=-\infty}^{\infty} \sum F(u,v) * \delta \left(u - \frac{k}{\Delta x}, v - \frac{l}{\Delta y} \right) \\ &= \frac{1}{\Delta x \Delta y} \sum_{k,l=-\infty}^{\infty} \sum F\left(u - \frac{k}{\Delta x}, v - \frac{l}{\Delta y} \right) \end{split}$$

lan 20, 2004 Sampli

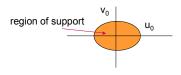


Bandlimited Images

A function f(x,y) is said to be band limited if the Fourier transform

$$F(u,v) = 0$$
 for $|u| > u_{0}$, $|v| > v_{0}$

 $u_0, v_0 \longrightarrow$ Band width of the image in the x- and y- directions



an 20, 2004 Sam

Foldover Frequencies

Sampling frequencies: Let u_s and v_s be the sampling frequencies

Then $u_s > 2u_0$; $v_s > 2v_0$

or $~\Delta~x < 1/2u_0$; $\Delta~y < 1/2v_0$

Frequencies above half the sampling frequencies are called fold over frequencies.

Jan 20, 2004 Sampling

Sampling Theorem

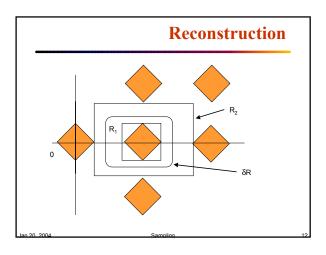
A band limited image f(x,y) with F(u,v) as its Fourier transform; and F(u,v)=0 $|u|>u_0$ $|v|>v_0$; and sampled uniformly on a rectangular grid with spacing Δx and Δy , can be recovered without error from the sample values $f(m \, \Delta x, n \, \Delta y)$ provided the sampling rate is greater than the nyquist rate.

i.e
$$1/\Delta x = u_s > 2 u_0$$
, $1/\Delta y = v_s > 2 v_0$

The reconstructed image is given by the interpolation formula:

$$f(x,y) = \sum_{m,n=-\infty}^{\infty} \sum_{m} f(m \Delta x, n \Delta y) \frac{\sin(x u_s - m)\pi}{(x u_s - m)\pi} \frac{\sin(y v_s - n)\pi}{(y v_s - n)\pi}$$

Jan 20, 2004 Sampling 11



Reconstruction via LPF

F(u,v) can be recovered by a LPF with

$$H(u,v) = \begin{cases} \Delta x \ \Delta y & (u,v) \in R \\ 0 & \text{Other wise} \end{cases}$$

R is any region whose boundary ∂R is contained within the annular ring between the rectangles R_1 and R_2 in the figure. Reconstructed signal is

$$\widetilde{F}(u,v) = H(u,v) F_s(u,v) = F(u,v)$$

$$f(x,y) = \Im^{-1}[F(u,v)]$$

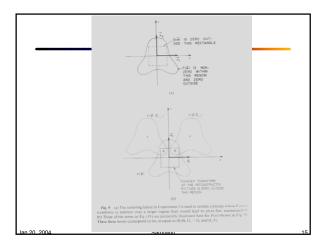
Jan 20, 2004 Sampling

Aliasing

Note: If u_s and v_s are below the Nyquist rate, the periodic replications will overlap, resulting in a distorted spectrum.

This overlapping of successive periods of the spectrum causes the foldover frequencies in the original image to appear as frequencies below $u_s/2$, $v_s/2$ in the sampled image. This is called aliasing.

Jan 20, 2004 Sampling 1



Example

$$f(x,y) = 2\cos(2\pi(3x+4y))$$

$$F(u,v) = \delta(u-3,v-4) + \delta(u+3,v+4)$$

$$\Rightarrow u_0 = 3, \quad v_0 = 4$$

Let
$$\Delta x = \Delta y = 0.2$$
, $\Rightarrow u_s = v_s = \frac{1}{0.2} = 5 < 2u_0, < 2v_0$

there will be aliasing.

Example:(contd.)

$$F_{s}(u,v) = 25 \sum_{k,l=-\infty}^{\infty} \sum F(u-ku_{s}, v-lv_{s})$$

$$= 25 \sum_{k,l=-\infty}^{\infty} \sum [\delta(u-3-5k, v-4-5l) + \delta(u+3-5k, v+4-5l)]$$
Let $H(u,v) = \begin{cases} \frac{1}{25} & -2.5 \le u \le 2.5, & -2.5 \le u \le 2.5 \\ 0 & \text{Otherwise} \end{cases}$

$$\therefore F(u,v) = H(u,v) F_{s}(u,v)$$

$$= \delta(u+2, v+1) + \delta(u-2, v-1)$$

$$\therefore \widetilde{f}(x,y) = 2 \cos(2\pi(2x+y))$$

Jan 20, 2004 Sampling 17

Examples

Fig. 7. The representational picture from the assessment of the size

Original and the reconstructed image from samples.

