2D Fourier Transform

Week IV
2-D DFT & Properties

01/27/2003 2D Fourier Transform 1

2D FT: Properties

Linearity: a f(x,y) + b g(x,y) <= a F(u,v) + b G(u,v)

Convolution: f(x,y) % g(x,y) = F(u,v) G(u,v)
Multiplication: f(x,y) g(x,y) = F(u,v) *G(u,v)

Separable functions: Suppose f(x,y) = g(x) h(y), Then
F(u,v)=G(u)H(v)

Shifting: f(x+X,, y+Y,) € exp[2Tt(X,u + Yov)] F(u,v)

01/27/2003 2D Fourier Transform 3

Separability (contd.)

Fourier Transform Fourier Transform
along X. along Y.

We can implement the 2D Fourier transform as a
sequence of 1-D Fourier transform operations.

01/27/2003 2D Fourier Transform 5

Fourier Transform - review

F(u)= DU/ [(e 2™ dx

1-D:
S = OHF@E [Fe” ™ du
F(u,v) = J.J. F(x,y)e 2 dx dy
2-D:
f(X,y) - JJ F(u’v)eﬂﬂ(uxwy) du dv

Separability of the FT

F(u,v) = J. J.f(x,y)esz”““"dx e ? ™ dy

—oo[—oc0

= JF(u,y) e P dy

01/27/2003 2D Fourier Transform

Eigenfunctions of LSI Systems

A function f(x,y) is an Eigenfunction of a system T if
T[f(x,y)] = a f(x,y) for some constant (Possibly complex) a.

For LSI systems, complex exponentials of the form
exp{ j21(ux+vy) }, for any (u,v), are the
Eigenfunctions.

01/27/2003 2D Fourier Transform

Impulse Response and Eigenfunctions

Consider a LSI system with impulse response h(x,y).
Its output to the complex exponential is

gy = [[hx—s.y—0)e”™ "dsdr

- J’ J H(X, 7)) g 2 D) g o
= H(u,v)e>™ ™)

01/27/2003 2D Fourier Transform

Example (contd.)

01/27/2003

2D Fourier Transform 9

2-D FT: Example

f(xy)

X Y

F(u,v) = f I/'(x,y)e’/”(“““”dx dy

X myY

01/27/2003 2D Fourier Transform

_ AXY|:Si“ ITuX] [sin m}Y}e’”"”"””

Example2

01/27/2003 2D Fourier Transform

Discrete Fourier Transform

Consider a sequence {u(n), n=0,1,2,....., N-1}. The DFT of u(n) is

N-1

vk =Y umyW," . k=0...,N -1
n=0

_pm
Where W, =e " ,and the inverse is given by
N-1

u(n) = in(k) w,™, n=0]1,..,N-1

Ni=

01/27/2003 2D Fourier Transform

2-D DFT

Often it is convenient

1 N-1 .
to consider a v(k) = Wit ZM(n)WNk and
symmetric transform: NS
1 N-1
u(n) = —» v(k)yw,™
'\/N n=0 N
1 ¥
In 2-D: wk,)=— u(m,n) W, W,
consider a N3 =
NXN image 1N A
u(m,n) =— z Wk, 1) WN—km—ln
NI S
01/27/2003

2D Fourier Transform

2D DFT -- PROPERTIES

= Separability

= Translation

= Scaling

= Periodicity and Conjugate Symmetry
= Rotation

= convolution

01/27/2003 2D Fourier Transform 13

Separability

N-1 N-1
kD=3 WS, umn) W,
N5 n=0
1 N-1 .
=ﬁz v(m,l) W,™"
m=0

For each ‘m’, v(m,l) is the 1-D DFT with frequency values

Separability

The DFT of a 2-D array can be obtained by first taking
the 1-D DFT of each row (or column) and then taking
the 1-D DFT of each column (or row).

It does not matter if the order of operation is
reversed.

01/27/2003 2D Fourier Transform 15

Displaying the DFT: Scaling

Display
? log[1+Iv(k,)I]
Constant
Large dynamic range
01/27/2003 2D Fourier Transform 17

01/27/2003 2D Fourier Transform 14
Translation
, , i ”(km +in")
uim—-m’,;n—n")y & vik,le N
01/27/2003 2D Fourier Transform 16
In MATLAB

f = zeros(30,30);
(5:24,13:17)=1;
imshow(f, ‘notruesize’);

01/27/2003 2D Fourier Transform

In Matlab(2)

F =fft2(f);

= log(abs(F));
imshow(F2, [-1, 5], ‘notruesize’);
colormap(jet); colorbar;

01/27/2003 o F ey 19

Displaying the DFT

N-1
0 u

N-1 T
Low frequency components

01/27/2003 2D Fourier Transform 20

Displaying (again) & Shifting

J2n(k'm+l'n)

uimnye V& v(k—kK,[-I)and

e e

The origin of the F{u(m,n)} can be moved to the center of

the array (N X N square) by first multiplying u(m,n) by (-1)™*n
and then taking the Fourier transform.

Note: Shifting does not affect the magnitude of the Fourier transform.

01/27/2003 2D Fourier Transform 21

Displaying DFT

k| e]2n[km+ln]/N| = |Vk|)|

Low frequency
MATLAB Example components

01/27/2003 2D Fourier Transform 22

In Matlab(3): FFTSHIFT

F2= fftshift(F);
imshow (log(abs(F2),..)

01/27/2003 2D Fourier Transform 23

Another example
i L
.- -

Original image Its centered DFT magnitude

01/27/2003 2D Fourier Transform 24

Periodicity & Conjugate Symmetry

u(m,n) <—F> v(k,l)
v(k,I) = v(k+N, 1) = v(k, I+N) = v(k+N, [+N)

If u(m,n) is real, v(k,l) also exhibits conjugate symmetry
V(K1) = v (-k,) or [v(k])|=]v(k,)|

Rotation

(continuous case)

If you rotate the image u(m,n) by an angle 6, its F.T also
gets rotated by the same angle.

01/27/2003 2D Fourier Transform 26

01/27/2003 2D Fourier Transform 25
Rotation
,-"'" %
o fé‘:‘_::.

01/27/2003 2D Fourier Transform

27

Average Value

- 1
U=— u(m,n) = Average
NZZ (m,n) g
km+in

v(k,l) = %ZZu(m,n)e_n" N

v(0,0) = %ZZu(m,n) = Nu

u= ‘}(07]\}0) (Scaled Average)

01/27/2003 2D Fourier Transform 28

Convolution (Revisited)

Consider 1. J()gx)= if(x’)glx =)

continuous case Let f(x) < F(u), g(x) < G(u)
Then f(x)*g(x) <> F(u)G(u)

Convolution in ﬁ Multiplication in
Space Frequency

01/27/2003 2D Fourier Transform

29

Discrete Convolution

Let us now assume that we discretize f(x) and g(x) into
vectors f(n) and g(n) of lengths A and B

f(n) — {f(0), f(1)...... f(A-1)}

9(n)—{9(0), g(1), 9(2).....9(B-1)}

(a) DFT and its inverse are periodic functions

(b) Convolving two vectors of length A and B gives a
vector of dimension A+B-1. (Linear convolution)

01/27/2003 2D Fourier Transform 30

Length of the Convolution

C —
a e

01/27/2003 2D Fourier Transform

31

Discrete Convolution: an example (Fig 4.36)

m

2

m

f(m)
(A
h(m)
h(-m

400
400 i
2
IL—O—O—Q—‘ m :
200 400

01/27/2003 2D Fourier Transform 32

Discrete conv. (cont.)

h(x-m)
2 —
_Ik .

200 400 m
Q__ "
—>

500 Range of the DFT=400

01/27/2003 2D Fourier Transform

33

Zero Imbeddin

In order to obtain a convolution theorem for the discrete case, and still
be consistent with the periodicity property we need to assume that
sequences f() and g() are periodic with some period M. From (b) it is
clear that M> A+B-1 to avoid overlap.

Since this period is greater than A or B, the original sequence length
must be increased and this is done by appending zeros at the end.
Redefine the extended sequences as

L) x, g, (=Y f.(m)g,(n—m),

m=0
where (g(n)), = g[n Modulo M]
Note: With n expressed as
n=n+n,N where 0<n <N-1

n modulo N equals n,

x mod y=x—y[%] if y#0

x mod 0=x.

[f] is the integer part of ¥,

01/27/2003 2D Fourier Transform

35

. f(n) 0sn<sAd-1
So(n) =
0 As<snsM-1
_ [&(n) 0<sn<B-1
g.(m=1, BsnsM-1
01/27/2003 2D Fourier Transform 34
Theorem

The DFT of the circular convolution of two sequences of
length N is equal to the product of their DFTs.

If y(n) = Ef(" —m).g(n) then

DFT[y(n)], = DFT[f(n)],DFT[g(n)],

A linear convolution of two sequences can be obtained via
FFT by embedding it into a circular convolution.

01/27/2003 2D Fourier Transform 36

2-D Convolution

These results can be similarly extended to 2-D
signals.

Let f(m,n): AxB array
g(m,n): CxD array
Let M>=A+C-1
N>= B+D -1

For linear convolution using DFT create the extended
periodic sequences of period MxN in the 2-D.

01/27/2003 2D Fourier Transform 37

Extended (periodic) Sequences

f(m,n) 0<m< A-1
1.0) 0<sn<B-1
myn) =
¢ 0 Asms M-1
computing BsnsN-1
f:onvolution g(m,n) 0Osm<C-1
is more
efficient _ 0<sns<D-1
inthe'frequency ge(m,n)= 0 C<me M1
domain.
D<sn<N-1

and the 2 - D linear ¢ onvolution becomes

M-l N-1
ymn)= 3 ¥ fom=—m' n=n"), g,(m',n")

m'=0 n'=0

01/27/2003 cu i vune o

Linear Convolution and DFT: Summary

y(n) =f(n) * g(n)

1. Let M>= A+B-1 be an integer for which the FFT algorithm
is available.

2. Define the zero extended sequences f,(n), g,(n).

3. Let/ F,(k) = DFT {£,(n) Ju» Gq(k) = DFT { gy(n) },. Let
Yo(K)=F(K)Ge(K)

4. Take the I-DFT of Y,(k) to obtain Y(n).
Then Y (n) = Y,(n) for 0 <=n <= A+B-1

01/27/2003 2D Fourier Transform 39

A note on convolution with images

Note: In many cases involving images, we deal
with square arrays of size N X N. We normally
would like to have the resulting convolved
output also as an N X N array.

01/27/2003 2D Fourier Transform

40

Conv2 (.) in Matlab

CONV2 Two dimensional convolution.

C = CONV2(A, B) performs the 2-D convolution of matrices A
and B. [If [ma,na] = size(A) and [mb,nb] = size(B), then
size(C) = [ma+mb-1,na+nb-1].

C = CONV2(... ,'shape') returns a subsection of the 2-D
convolution with size specified by 'shape':

" 'full' - (default) returns the full 2-D convolution,

. 'same' - returns the central part of the convolution that is the
same size as A.

] ‘valid' - returns only those parts of the convolution that are

computed without the zero-padded edges,
size(C) = [ma-mb+1,na-nb+1] when size(A) > size(B).

01/27/2003 2D Fourier Transform 41

