2D Fourier Transform

Week IV
2-D DFT & Properties
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2D FT: Properties

Linearity: a f(x,y) + b g(x,y) <= a F(u,v) + b G(u,v)

Convolution: f(x,y) % g(x,y) = F(u,v) G(u,v)
Multiplication: f(x,y) g(x,y) = F(u,v) *G(u,v)

Separable functions: Suppose f(x,y) = g(x) h(y), Then
F(u,v)=G(u)H(v)

Shifting: f(x+X,, y+Y,) € exp[2Tt(X,u + Yov)] F(u,v)
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Separability (contd.)

Fourier Transform Fourier Transform
along X. along Y.

We can implement the 2D Fourier transform as a
sequence of 1-D Fourier transform operations.
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Fourier Transform - review

F(u)= DU/ [ (e 2™ dx

1-D:
S = OHF@E [ Fe” ™ du
F(u,v) = J.J. F(x,y)e 2 dx dy
2-D:
f(X,y) - JJ F(u’v)eﬂﬂ(uxwy) du dv

Separability of the FT

F(u,v) = J. J.f(x,y)esz”““"dx e ? ™ dy

—oo[ —oc0

= JF(u,y) e P dy
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Eigenfunctions of LSI Systems

A function f(x,y) is an Eigenfunction of a system T if
T[f(x,y) ] = a f(x,y) for some constant (Possibly complex) a.

For LSI systems, complex exponentials of the form
exp{ j21(ux+vy) }, for any (u,v), are the
Eigenfunctions.
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Impulse Response and Eigenfunctions

Consider a LSI system with impulse response h(x,y).
Its output to the complex exponential is

gy = [ [hx—s.y—0)e”™ "dsdr

- J’ J H(X, 7)) g 2 D) g o
= H(u,v)e>™ ™)
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Example (contd.)
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2-D FT: Example

f(xy)

X Y

F(u,v) = f I/'(x,y)e’/”(“““”dx dy

X myY
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_ AXY|:Si“ ITuX] [sin m}Y}e’”"”"””

Example2
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Discrete Fourier Transform

Consider a sequence {u(n), n=0,1,2,....., N-1}. The DFT of u(n) is

N-1

vk =Y umyW," . k=0...,N -1
n=0

_pm
Where W, =e " ,and the inverse is given by
N-1

u(n) = in(k) w,™, n=0]1,..,N-1

Ni=
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2-D DFT

Often it is convenient

1 N-1 .
to consider a v(k) = Wit ZM(n)WNk and
symmetric transform: NS
1 N-1
u(n) = —» v(k)yw,™
'\/N n=0 N
1 ¥
In 2-D: wk,)=— u(m,n) W, W,
consider a N3 =
NXN image 1N A
u(m,n) =— z Wk, 1) WN—km—ln
NI S
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2D DFT -- PROPERTIES

= Separability

= Translation

= Scaling

= Periodicity and Conjugate Symmetry
= Rotation

= convolution
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Separability

N-1 N-1
kD=3 WS, umn) W,
N5 n=0
1 N-1 .
=ﬁz v(m,l) W,™"
m=0

For each ‘m’, v(m,l) is the 1-D DFT with frequency values

Separability

The DFT of a 2-D array can be obtained by first taking
the 1-D DFT of each row (or column) and then taking
the 1-D DFT of each column (or row).

It does not matter if the order of operation is
reversed.
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Displaying the DFT: Scaling

Display
? log[1+Iv(k,)I]
Constant
Large dynamic range
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Translation
, , i ”(km +in")
uim—-m’,;n—n")y & vik,le N
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In MATLAB

f = zeros(30,30);
(5:24,13:17)=1;
imshow(f, ‘notruesize’);
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In Matlab(2)

F =fft2(f);

= log(abs(F));
imshow(F2, [-1, 5], ‘notruesize’);
colormap(jet); colorbar;

01/27/2003 o F ey 19

Displaying the DFT

N-1
0 u

N-1 T
Low frequency components

01/27/2003 2D Fourier Transform 20

Displaying (again) & Shifting

J2n(k'm+l'n)

uimnye V& v(k—kK,[-I)and

e e

The origin of the F{u(m,n)} can be moved to the center of

the array (N X N square) by first multiplying u(m,n) by (-1)™*n
and then taking the Fourier transform.

Note: Shifting does not affect the magnitude of the Fourier transform.
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Displaying DFT

k| e]2n[km+ln]/N| = |Vk|)|

Low frequency
MATLAB Example components
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In Matlab(3): FFTSHIFT

F2= fftshift(F);
imshow (log(abs(F2),..)
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Another example
i L
.- -

Original image Its centered DFT magnitude
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Periodicity & Conjugate Symmetry

u(m,n) <—F> v(k,l)
v(k,I) = v(k+N, 1) = v(k, I+N) = v(k+N, [+N)

If u(m,n) is real, v(k,l) also exhibits conjugate symmetry
V(K1) = v (-k, ) or [v(k])|=]v(k, )|

Rotation

(continuous case)

If you rotate the image u(m,n) by an angle 6, its F.T also
gets rotated by the same angle.
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Rotation
,-"'" %
o fé‘:‘_::.

01/27/2003 2D Fourier Transform

27

Average Value

- 1
U=— u(m,n) = Average
NZZ (m,n) g
km+in

v(k,l) = %ZZu(m,n)e_n" N

v(0,0) = %ZZu(m,n) = Nu

u= ‘}(07]\}0) (Scaled Average)
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Convolution (Revisited)

Consider 1. J()gx)= if(x’ )glx =)

continuous case Let f(x) < F(u), g(x) < G(u)
Then f(x)*g(x) <> F(u)G(u)

Convolution in ﬁ Multiplication in
Space Frequency
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Discrete Convolution

Let us now assume that we discretize f(x) and g(x) into
vectors f(n) and g(n) of lengths A and B

f(n) — {f(0), f(1)...... f(A-1)}

9(n)—{9(0), g(1), 9(2).....9(B-1)}

(a) DFT and its inverse are periodic functions

(b) Convolving two vectors of length A and B gives a
vector of dimension A+B-1. (Linear convolution)
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Length of the Convolution

C —
a e
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Discrete Convolution: an example (Fig 4.36)

m

2

m

f(m)
(A
h(m)
h(-m

400
400 i
2
IL—O—O—Q—‘ m :
200 400
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Discrete conv. (cont.)

h(x-m)
2 —
_Ik .

200 400 m
Q__ "
—>

500 Range of the DFT=400

01/27/2003 2D Fourier Transform

33

Zero Imbeddin

In order to obtain a convolution theorem for the discrete case, and still
be consistent with the periodicity property we need to assume that
sequences f( ) and g( ) are periodic with some period M. From (b) it is
clear that M> A+B-1 to avoid overlap.

Since this period is greater than A or B, the original sequence length
must be increased and this is done by appending zeros at the end.
Redefine the extended sequences as

L) x, g, (=Y f.(m)g,(n—m),

m=0
where (g(n)), = g[n Modulo M]
Note: With n expressed as
n=n+n,N where 0<n <N-1

n modulo N equals n,

x mod y=x—y[%] if y#0

x mod 0=x.

[f] is the integer part of ¥,
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. f(n) 0sn<sAd-1
So(n) =
0 As<snsM-1
_ [&(n) 0<sn<B-1
g.(m=1, BsnsM-1
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Theorem

The DFT of the circular convolution of two sequences of
length N is equal to the product of their DFTs.

If y(n) = Ef(" —m).g(n) then

DFT[y(n)], = DFT[f(n)],DFT[g(n)],

A linear convolution of two sequences can be obtained via
FFT by embedding it into a circular convolution.
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2-D Convolution

These results can be similarly extended to 2-D
signals.

Let f(m,n): AxB array
g(m,n): CxD array
Let M>=A+C-1
N>= B+D -1

For linear convolution using DFT create the extended
periodic sequences of period MxN in the 2-D.
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Extended (periodic) Sequences

f(m,n) 0<m< A-1
1.0 ) 0<sn<B-1
myn) =
¢ 0 Asms M-1
computing BsnsN-1
f:onvolution g(m,n) 0Osm<C-1
is more
efficient _ 0<sns<D-1
inthe'frequency ge(m,n)= 0 C<me M1
domain.
D<sn<N-1

and the 2 - D linear ¢ onvolution becomes

M-l N-1
ymn)= 3 ¥ fom=—m' n=n"), g,(m',n")

m'=0 n'=0
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Linear Convolution and DFT: Summary

y(n) =f(n) * g(n)

1. Let M>= A+B-1 be an integer for which the FFT algorithm
is available.

2. Define the zero extended sequences f,(n), g,(n).

3. Let/ F,(k) = DFT {£,(n) Ju» Gq(k) = DFT { gy(n) },. Let
Yo(K)=F(K)Ge(K)

4. Take the I-DFT of Y,(k) to obtain Y(n).
Then Y (n) = Y,(n) for 0 <=n <= A+B-1
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A note on convolution with images

Note: In many cases involving images, we deal
with square arrays of size N X N. We normally
would like to have the resulting convolved
output also as an N X N array.
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Conv2 (.) in Matlab

CONV2 Two dimensional convolution.

C = CONV2(A, B) performs the 2-D convolution of matrices A
and B. [If [ma,na] = size(A) and [mb,nb] = size(B), then
size(C) = [ma+mb-1,na+nb-1].

C = CONV2( ... ,'shape') returns a subsection of the 2-D
convolution with size specified by 'shape':

" 'full' - (default) returns the full 2-D convolution,

. 'same' - returns the central part of the convolution that is the
same size as A.

] ‘valid' - returns only those parts of the convolution that are

computed without the zero-padded edges,
size(C) = [ma-mb+1,na-nb+1] when size(A) > size(B).
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