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Problem with Fourier...
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Fourier analysis -- breaks down a signal into constituent
sinusoids of different frequencies.

a serious drawback In transforming to the frequency
domain, time information is lost. When looking at a Fourier
transform of a signal, it 1s impossible to tell when a
particular event took place.
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Fourier — Gabor — Wavelet
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Sinusoid with a small discontinuity
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in the transform domain
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[Localization (or the lack of 1t)
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Fourier decomposition

Signal
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Constituent sinusoids of different requancias
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and the Wavelet decomposition

Fourier transform: F(w) = / f(t) exp(—jwt)dt

Similarly, the continuous wavelet transform (CWT) 1s
defined as the sum over all time of the signal multiplied by
scaled, shifted versions of the wavelet function :

c(scale, position) = / f(t)y(scale, position, t)dt

The result of the CWT are many wavelet coefficients C,
which are a function of scale and position.
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Wavelet decomposition —contd.

Multiplying each coefficient by the appropriately scaled and
shifted wavelet yields the constituent wavelets of the original

signal:
Wavelel
Transform - || i J _.+_
Signal Constituen! wavelels of diferen! scales and positions
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What do we mean by scale?

fir) = sin(i)
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The scale factor
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f(t) =v(2t); a=1/2

f(t) =v(4t); a=1/4
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Shifting
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Computing a wavelet transform

It's really a very simple process. In fact, here are the five steps of an easy recipe
for creating a CWT:

1 Take a wavelet and compare it to a section at the start of the original signal.

2 Calculate a number, C, that represents how closely correlated the wavelet is
with this section of the signal. The higher C is, the more the similarity. Note
that the results will depend on the shape of the wavelet you choose.

Signal

Wavelet

C =10.0102
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Computing the WT (2)

3 Shift the wavelet to the right and repeat steps 1 and 2 until you've covered
the whole signal.

Signal

Wavelet >

4 Scale (stretch) the wavelet and repeat steps 1 through 3.

Signal

Wavelet

C =0.2247
5 Repeat steps 1 through 4 for all scales.

02/6/03 ECE 1/8: a wavelet tour

15



Visualizing the WT coefficients
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..n 3-D

These coefficient plots resemble a bumpy surface viewed from above. If you
could look at the same surface from the side, you might see something like this:
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The discrete wavelet transtorm

Calculating wavelet coefficients at every possible scale 1s a
fair amount of work, and 1t generates an awful lot of data.
What if we choose only a subset of scales and positions at
which to make our calculations?

It turns out, rather remarkably, that if we choose scales and
positions based on powers of two — so-called dyadic scales
and positions — then our analysis will be much more
efficient and just as accurate. We obtain just such an analysis
from the discrete wavelet transform (DWT).
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Approximations and Details

The approximations are the high-scale, low-frequency
components of the signal. The details are the low-scale,
high-frequency components. The filtering process, at its
most basic level, looks like this:

‘ S | ‘ The original signal, S,

passes through two
L\ | Fitters  |LZ— complementary filters

lowpass highpass

and emerges as two
signals.
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Downsampling

Unfortunately, 1f we actually perform this operation on a
real digital signal, we wind up with twice as much data as
we started with. Suppose, for instance, that the original
signal S consists of 1000 samples of data. Then the

approximation and the detail will each have 1000 samples,
for a total of 2000.

To correct this problem, we introduce the notion of
downsampling. This simply means throwing away every
second data point. While doing this introduces aliasing
in the signal components, it turns out we can account for
this later on in the process.
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Downsampling (2)

—- LE —*|i| ~1000 samples PIE ~500 coefs

SJ 1000 samples ‘ S | 1000 samples
—bl&—hil ~1000 samples D_ ~500 coefs

The process on the right, which includes downsampling,
produces DWT coefficients.
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An example

Here is our schematic diagram with real signals inserted into it:
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cD High Frequency
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~500 DWT coefficients

cA Low Frequency

~500 DWT coefficients
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Wavelet Decomposition

Multiple-Level Decomposition

The decomposition process can be iterated, with
successive approximations being decomposed in turn, so
that one signal 1s broken down into many lower-resolution
components. This is called the wavelet decomposition
ree.

02/6/03

23



Wavelet decomposition...

Looking at a signal’s wavelet decomposition tree can yield valuable
information.




IDWT: reconstruction
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Analysis vs Synthesis

Where wavelet analysis involves filtering and
downsampling, the wavelet reconstruction process consists
of upsampling and filtering. Upsampling 1s the process of
lengthening a signal component by inserting zeros between
samples:

e 1

= =
1 2 3 4 ] 1 2 2 4 5

Signal component Upsampled signal component
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Perfect reconstruction

The filtering part of the reconstruction process also bears some discussion,
because it is the choice of filters that is crucial in achieving perfect
reconstruction of the original signal.

That perfect reconstruction is even possible is noteworthy. Recall that the
downsampling of the signal components performed during the decomposition
phase introduces a distortion called aliasing. It turns out that by carefully
choosing filters for the decomposition and reconstruction phases that are
closely related (but not identical), we can “cancel out” the effects of aliasing.
This was the breakthrough made possible by the work of Ingrid Daubechies.

A technical discussion of how to design these filters can be found in p. 347 of
the book Wavelets and Filter Banks, by Strang and Nguyen. The low- and
highpass decomposition filters (L and H), together with their associated
reconstruction filters (L' and H'), form a system of what are called quadrature
mirror filters:
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(Quadrature Mirror Filters
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Reconstructing Approximation &

Details

"
cD ‘}E
~500 coefs

s | 1000 samoles
ch — (L
~500 coefs -
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[t is also possible to reconstruct the approximations and details themselve:
from their coefficient vectors. As an example, let's consider how we would
reconstruct the first-level approximation Al from the coefficient vector cAl.

We pass the coefficient vector cAl through the same process we used to
reconstruct the original signal. However, instead of combining it with the
level-one detail cD1, we feed in a vector of zeros in place of the details:

— (O~ l
=300 zeros
e
cAl—n@—-

Ll

~500 coefs

The process yields a reconstructed approximation A1, which has the same
length as the original signal S and which is a real approximation of it.

Similarly, we can reconstruct the first-level detail D1, using the analogous
process:

H
chl 0

- m 1000 samples
0 D
~500 zeros L

The reconstructed details and approximations are true constituents of the
original signal. In fact, we find when we combine them that:

A +D, =S

30



Reconstructing As and Ds..contd..

Note that the coefficient vectors cAl and cD1 — because
they were produced by downsampling, contain aliasing
distortion, and are only half the length of the original
signal — cannot directly be combined to reproduce the

signal. It is necessary to reconstruct the approximations
and details before combining them.
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Reconstructing the signal

Reconstructed o "I: | DE | D]
Signal
Components =Ayt Dyt Dy + Dy
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Multiscale Analysis

Multistep Decomposition and Reconstruction

A multistep analysis-synthesis process can be represented as:
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Wavelet Toolbox

m See the wavelet demo
m Wavemenu — compression demo.
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