Sampling and Quantization

Lecture #5 January 20, 2004

Sampling and Quantization

- Spatial Resolution (Sampling)
 - Determines the smallest perceivable image detail.
 - What is the best sampling rate?
- Gray-level resolution (Quantization)
 - Smallest discernible change in the gray level value.
 - Is there an optimal quantizer?

Image sampling and quantization

In 2-D

(Continuous image)

1-D

Time domain

 $x_s(t) = x(t) s(t) = \sum x(kt) \delta(t-kT)$

2-D: Comb function

Jan 20 2004

F

Sampled Image

$$f_{s}(x,y) = f(x,y) \operatorname{comb}(x,y; \Delta x, \Delta y)$$

$$= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m\Delta x, n\Delta y) \, \delta(x - m\Delta x, y - n\Delta y)$$

$$\operatorname{comb}(x,y; \Delta x, \Delta y) \xleftarrow{\Im} \operatorname{COMB}(u,v) =$$

$$\frac{1}{\Delta x \Delta y} \operatorname{comb}(u,v; \frac{1}{\Delta x}, \frac{1}{\Delta y})$$

Jan 20, 2004 Sampling

Sampled Spectrum

$$F_{s}(u,v) = F(u,v) * \text{COMB}(u,v)$$

$$= \frac{1}{\Delta x \Delta y} \sum_{k,l=-\infty}^{\infty} \sum F(u,v) * \delta \left(u - \frac{k}{\Delta x}, v - \frac{l}{\Delta y} \right)$$

$$= \frac{1}{\Delta x \Delta v} \sum_{k,l=-\infty}^{\infty} \sum F\left(u - \frac{k}{\Delta x}, v - \frac{l}{\Delta v} \right)$$

Sampled Spectrum: Example

Bandlimited Images

A function f(x,y) is said to be band limited if the Fourier transform

$$F(u,v) = 0$$
 for $|u| > u_{0}$, $|v| > v_{0}$

 $u_0, v_0 \longrightarrow$ Band width of the image in the x- and y- directions

Foldover Frequencies

Sampling frequencies: Let u_s and v_s be the sampling frequencies

Then
$$u_s > 2u_0$$
; $v_s > 2v_0$

or
$$\Delta x < 1/2u_0$$
; $\Delta y < 1/2v_0$

Frequencies above half the sampling frequencies are called fold over frequencies.

Sampling Theorem

A band limited image f(x,y) with F(u,v) as its Fourier transform; and F(u,v) = 0 $|u| > u_0$ $|v| > v_0$; and sampled uniformly on a rectangular grid with spacing Δx and Δy , can be recovered without error from the sample values $f(m \Delta x, n \Delta y)$ provided the sampling rate is greater than the nyquist rate.

i.e
$$1/\Delta x = u_s > 2 u_{0}$$
 $1/\Delta y = v_s > 2 v_{0}$

The reconstructed image is given by the interpolation formula:

$$f(x,y) = \sum_{m,n=-\infty}^{\infty} \sum f(m \Delta x, n \Delta y) \frac{\sin(x u_s - m)\pi}{(x u_s - m)\pi} \frac{\sin(y v_s - n)\pi}{(y v_s - n)\pi}$$

Reconstruction

Reconstruction via LPF

F(u,v) can be recovered by a LPF with

$$H(u, v) = \begin{cases} \Delta x \ \Delta y & (u, v) \in R \\ 0 & \text{Other wise} \end{cases}$$

R is any region whose boundary ∂R is contained within the annular ring between the rectangles R_1 and R_2 in the figure. Reconstructed signal is

$$\widetilde{F}(u,v) = H(u,v) F_s(u,v) = F(u,v)$$
$$f(x,y) = \Im^{-1}[F(u,v)]$$

Aliasing

Note: If u_s and v_s are below the Nyquist rate, the periodic replications will overlap, resulting in a distorted spectrum.

This overlapping of successive periods of the spectrum causes the foldover frequencies in the original image to appear as frequencies below $u_s/2$, $v_s/2$ in the sampled image. This is called aliasing.

Fig. 9 (a) The sampling lattice in Experiment 1 is used to sample a picture whose Fourier transform is nonzero over a larger region than would lead to error-free reconstruction.

(b) Three of the terms in Eq. (31) are pictorially illustrated here for $F(\omega)$ shown in Fig. 93. These three terms correspond to (m,n) equal to (0,0), (1,-1), and (1,1).

Example

$$f(x,y) = 2 \cos (2\pi(3x+4y))$$

$$F(u,v) = \delta(u-3,v-4) + \delta(u+3,v+4)$$

$$\Rightarrow u_0 = 3, \quad v_0 = 4$$
Let $\Delta x = \Delta y = 0.2, \Rightarrow u_s = v_s = \frac{1}{0.2} = 5 < 2u_0, < 2v_0$

there will be aliasing.

Jan 20, 2004 Sampling 16

Example:(contd.)

$$F_{s}(u,v) = 25 \sum_{k,l=-\infty}^{\infty} \sum F(u-ku_{s}, v-lv_{s})$$

$$= 25 \sum_{k,l=-\infty}^{\infty} \sum \left[\delta(u-3-5k, v-4-5l) + \delta(u+3-5k, v+4-5l) \right]$$
Let $H(u,v) = \begin{cases} \frac{1}{25} & -2.5 \le u \le 2.5, \\ 0 & \text{Otherwise} \end{cases}$

$$F(u,v) = H(u,v) F_s(u,v)$$

$$= \delta(u+2,v+1) + \delta(u-2,v-1)$$

$$f(x,y) = 2\cos(2\pi(2x+y))$$

Jan 20, 2004 Sampling 1

Examples

Fig. f. Cos2x66-49.

Fig. P. The reconstructed picture from the acceptes of the picture in Fig. 5. Kep in obstages to Frequency and codestation.

Original and the reconstructed image from samples.

Sampling filter

sampled image

Aliasing Problems (real images!)

Fla. 106 Picture of Fig. 10a after sampling and reconstruction. (Courtesy Perkin-Elmer