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2D Fourier Transform

Week IV
2-D DFT  & Properties
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Fourier Transform - review

1-D:

2-D:
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2D FT: Properties

Convolution: f(x,y)      g(x,y) =  F(u,v) G(u,v)

Multiplication: f(x,y) g(x,y) = F(u,v)      G(u,v)

Separable functions: Suppose f(x,y) = g(x) h(y), Then
F(u,v)=G(u)H(v)

Shifting: f(x+x0, y+y0)                exp[2π (x0u + y0v)] F(u,v)

Linearity: a f(x,y) + b g(x,y)                a F(u,v) + b G(u,v)

01/27/2003 2D Fourier Transform 4

Separability of the FT

F u v f x y e dx e dy
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Separability (contd.)

f(x,y) F(u,y) F(u,v)

Fourier Transform 
along X.

Fourier Transform
along Y.

We can implement the 2D Fourier transform as a 
sequence of 1-D Fourier transform operations.
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Eigenfunctions of LSI Systems

A function f(x,y) is an Eigenfunction of a system T if
T[ f(x,y) ] = α f(x,y) for some  constant (Possibly complex) α.

For LSI systems, complex exponentials of the form 
exp{  j2ππππ (ux+vy) }, for any (u,v), are the  
Eigenfunctions.
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Impulse Response and Eigenfunctions
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Consider a LSI system with impulse response h(x,y).
Its output to the complex exponential is
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2-D FT: Example

f(x,y)
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Example (contd.)
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Example2
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Discrete Fourier Transform

Consider a sequence {u(n), n=0,1,2,....., N-1}. The DFT of u(n) is
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Where and the inverse is given by
π
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2-D DFT

Often it is convenient 
to consider a 
symmetric transform:

In 2-D: 
consider a 
NXN image
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2D DFT -- PROPERTIES

■ Separability
■ Translation
■ Scaling
■ Periodicity and Conjugate Symmetry
■ Rotation
■ convolution
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Separability

For each �m�, v(m,l) is the 1-D DFT with frequency values 
l = 0,1,....., N-1
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Separability

The DFT of a 2-D array can be obtained by first taking 
the 1-D DFT of each row (or column) and then taking 
the 1-D DFT of each column (or row).

It does not matter if the order of operation is 
reversed.
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Translation
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Displaying the DFT: Scaling

v(k,l)=
DFT{u(m,n)} Display

C log[1+lv(k,l)l]

Constant

Large dynamic range
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In MATLAB

f = zeros(30,30);
f(5:24,13:17)=1;
imshow(f, �notruesize�);
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In Matlab(2)

F =fft2(f);
F2 = log(abs(F));
imshow(F2, [-1, 5], �notruesize�);
colormap(jet); colorbar;
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Displaying the DFT
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Displaying (again) & Shifting
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The origin of the F{u(m,n)} can be moved to the center of 
the array (N X N square) by first multiplying u(m,n) by (-1)m+n  

and  then taking the Fourier transform.
Note: Shifting does not affect the magnitude of the Fourier transform.
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Displaying DFT

|v(k,l) e -j2π[ km�+ln� ] / N |  =  |v(k,l)|

A B

C D

D C

B A

Low frequency
componentsMATLAB Example
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In Matlab(3): FFTSHIFT

F2= fftshift(F);
imshow (log(abs(F2),..)

01/27/2003 2D Fourier Transform 24

Another example

Original image Its centered DFT magnitude
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Periodicity & Conjugate Symmetry

u(m,n) 
F

v(k,l)

v(k,l) = v(k+N, l) = v(k, l+N) = v(k+N, l+N)

If u(m,n) is real, v(k,l) also exhibits conjugate symmetry
v(k,l) = v* (-k, -l)  or  | v(k,l) | = | v(-k, -l) |
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Rotation

(continuous case)

If you rotate the image u(m,n) by an angle θ, its F.T also
gets rotated by the same angle.
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Rotation
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Average Value
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Convolution (Revisited)

Consider 1-D 
continuous case

Convolution in
Space

Multiplication in
Frequency

f x g x f x g x x dx

f x F u g x G u
f x g x F u G u
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Let us now assume that we discretize f(x) and g(x) into 
vectors f(n) and g(n) of lengths A and B

f(n)        {f(0), f(1),..... f(A-1)}
g(n)       {g(0), g(1), g(2),....g(B-1)}

(a) DFT and its inverse are periodic functions
(b) Convolving two vectors of length A and B gives a 
vector of dimension A+B-1. (Linear convolution)

Discrete Convolution
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Length of the Convolution

B
A
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Discrete Convolution: an example (Fig 4.36)
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Discrete conv. (cont.)
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Range of the DFT=400500
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Zero Imbedding

In order to obtain a convolution theorem for the discrete case, and still 
be consistent with the periodicity property we need to assume that 
sequences f( ) and g( ) are periodic with some period M. From (b) it is 
clear that M> A+B-1 to avoid overlap. 

Since this period is greater than A or B, the original sequence length 
must be increased and this is done by appending zeros at the end. 
Redefine the extended sequences as
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Theorem

The DFT of the circular convolution of two sequences of 
length N is equal to the product of their DFTs.

A linear convolution of two sequences can be obtained via 
FFT by embedding it into a circular convolution.

If  then 
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2-D Convolution

These results can be similarly extended to 2-D 
signals.

Let    f(m,n) :  A x B  array
g(m,n) : C x D  array

Let    M> = A + C -1
N> =  B + D -1

For linear convolution using DFT create the extended 
periodic sequences of period MxN in the 2-D.
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Extended (periodic) Sequences
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and the 2 - D linear c onvolution  becomes

computing
convolution
is more 
efficient
in the frequency
domain.
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Linear Convolution and DFT: Summary

y(n) = f(n)  *  g(n)y(n) = f(n)  *  g(n)

1. Let  M>= A+B-1 be an integer for which the FFT algorithm 
is available.

2. Define the zero extended sequences fe(n), ge(n).

3. Let  Fe(k) =  DFT { fe(n) }M, Ge(k) = DFT { ge(n) }M. Let 
Ye(k)=Fe(k)Ge(k)

4. Take the I-DFT of Ye(k) to obtain Ye(n).  
Then Y (n) = Ye(n)  for 0 <= n <= A+B-1
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A note on convolution with images

Note: In many cases involving images, we deal 
with square arrays of size N X N. We normally 
would like to have the resulting convolved 
output also as an N X N array.
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Conv2 (.) in Matlab

CONV2 Two dimensional convolution.
C = CONV2(A, B) performs the 2-D convolution of matrices A 

and B.   If [ma,na] = size(A) and [mb,nb] = size(B), then
size(C) = [ma+mb-1,na+nb-1].

C = CONV2( ... ,'shape') returns a subsection of the 2-D 
convolution with size specified by 'shape':

■ 'full'  - (default) returns the full 2-D convolution,
■ 'same'  - returns the central part of the convolution that is the 

same size as A.
■ 'valid' - returns only those parts of the convolution that are 

computed without the zero-padded edges, 
size(C) = [ma-mb+1,na-nb+1] when size(A) > size(B).


