
01/27/2003 2D Fourier Transform 1

2D Fourier Transform

Week IV
2-D DFT & Properties

01/27/2003 2D Fourier Transform 2

Fourier Transform - review

1-D:

2-D:

F u f x f x e dx

f x F u F u e du

F u v f x y e dx dy

f x y F u v e du dv

j u x

j u x

j ux vy

j ux vy

a f k p

k p
a f

a f

≡ ℑ =

≡ ℑ =

=

=

−

−∞

∞

−

−∞

∞

− +

+

z
z

zz
zz

() ()

() () ()

(,) (,)

(,) (,)

2

1 2

2

2

π

π

π

π

01/27/2003 2D Fourier Transform 3

2D FT: Properties

Convolution: f(x,y) g(x,y) = F(u,v) G(u,v)

Multiplication: f(x,y) g(x,y) = F(u,v) G(u,v)

Separable functions: Suppose f(x,y) = g(x) h(y), Then
F(u,v)=G(u)H(v)

Shifting: f(x+x0, y+y0) exp[2π (x0u + y0v)] F(u,v)

Linearity: a f(x,y) + b g(x,y) a F(u,v) + b G(u,v)

01/27/2003 2D Fourier Transform 4

Separability of the FT

F u v f x y e dx e dy

F u y e dy

j ux j vy

j vy

(,) (,)

(,)

=
L
NM

O
QP

=

−

−∞

∞

−∞

∞
−

−∞

∞
−

zz
z

2 2

2

π π

π

01/27/2003 2D Fourier Transform 5

Separability (contd.)

f(x,y) F(u,y) F(u,v)

Fourier Transform
along X.

Fourier Transform
along Y.

We can implement the 2D Fourier transform as a
sequence of 1-D Fourier transform operations.

01/27/2003 2D Fourier Transform 6

Eigenfunctions of LSI Systems

A function f(x,y) is an Eigenfunction of a system T if
T[f(x,y)] = α f(x,y) for some constant (Possibly complex) α.

For LSI systems, complex exponentials of the form
exp{ j2ππππ (ux+vy) }, for any (u,v), are the
Eigenfunctions.

01/27/2003 2D Fourier Transform 7

Impulse Response and Eigenfunctions

g x y h x s y t e dsdt

h x y e e dx dy

H u v e

j us vt

j ux vy j ux vy

j ux vy

(,) (,)

(,)

(,)

()

() ()

()

= - -

=

=

+

-•

•

+ - +

+

zz
zz

2

2 2

2

π

π π

π

Consider a LSI system with impulse response h(x,y).
Its output to the complex exponential is

01/27/2003 2D Fourier Transform 8

2-D FT: Example

f(x,y)

x

y
YX

A

F u v f x y e d x d y

A e d x e d y

A X Y u X
u X

vY
vY

e

j u x vy

j u x
X

j v y
Y

j u X vY

(,) (,)

s in s in

()

()

=

=

= L
NM

O
QP
L
NM

O
QP

- +

-•

•

- -

- +

zz
z z

2

2

0

2

0

π

π π

ππ
π

π
π

01/27/2003 2D Fourier Transform 9

Example (contd.)

01/27/2003 2D Fourier Transform 10

Example2

01/27/2003 2D Fourier Transform 11

Discrete Fourier Transform

Consider a sequence {u(n), n=0,1,2,....., N-1}. The DFT of u(n) is

v k u n W k N

W e

u n
N

v k W n N

n

N

N
kn

N

j
N

k

N

N
kn

() () , , ,.....,

,

() () , , ,...,

= = −

=

= = −

=

−

−

=

−
−

∑

∑

0

1

2

0

1

0 1 1

1 0 1 1

Where and the inverse is given by
π

01/27/2003 2D Fourier Transform 12

2-D DFT

Often it is convenient
to consider a
symmetric transform:

In 2-D:
consider a
NXN image

v k
N

u n W

u n
N

v k W

N
kn

n

N

N
kn

n

N

() ()

() ()

=

=

=

-

-

=

-

Â

Â

1

1
0

1

0

1

and

v k l
N

u m n W W

u m n
N

v k l W

n

N

N
km

N
ln

m

N

l

N

N
km ln

k

N

(,) (,) ,

(,) (,)

=

=

=

-

=

-

=

-
- -

=

-

ÂÂ

ÂÂ

1

1
0

1

0

1

0

1

0

1

01/27/2003 2D Fourier Transform 13

2D DFT -- PROPERTIES

■ Separability
■ Translation
■ Scaling
■ Periodicity and Conjugate Symmetry
■ Rotation
■ convolution

01/27/2003 2D Fourier Transform 14

Separability

For each �m�, v(m,l) is the 1-D DFT with frequency values
l = 0,1,....., N-1

v k l
N

W u m n W

N
v m l W

N
km

m

N

N
ln

n

N

N
km

m

N

(,) (,)

(,)

=

=

=

-

=

-

=

-

Â Â

Â

1

1
0

1

0

1

0

1

01/27/2003 2D Fourier Transform 15

Separability

The DFT of a 2-D array can be obtained by first taking
the 1-D DFT of each row (or column) and then taking
the 1-D DFT of each column (or row).

It does not matter if the order of operation is
reversed.

01/27/2003 2D Fourier Transform 16

Translation

u m m n n v k l e
j

km ln
N(,) (,)

(' ')

- ¢ - ¢ ´
-

+
2π

01/27/2003 2D Fourier Transform 17

Displaying the DFT: Scaling

v(k,l)=
DFT{u(m,n)} Display

C log[1+lv(k,l)l]

Constant

Large dynamic range

01/27/2003 2D Fourier Transform 18

In MATLAB

f = zeros(30,30);
f(5:24,13:17)=1;
imshow(f, �notruesize�);

01/27/2003 2D Fourier Transform 19

In Matlab(2)

F =fft2(f);
F2 = log(abs(F));
imshow(F2, [-1, 5], �notruesize�);
colormap(jet); colorbar;

01/27/2003 2D Fourier Transform 20

Displaying the DFT

N-1

v

0 N-1
u

Low frequency components

01/27/2003 2D Fourier Transform 21

Displaying (again) & Shifting

u m n e v k k l l

u m n v k N l N

j k m l n
N

m n

(,) (' , ')

(,)() ,

(' ')2

1
2 2

π +

+

´ - -

- ´ - -F
H

I
K

and

The origin of the F{u(m,n)} can be moved to the center of
the array (N X N square) by first multiplying u(m,n) by (-1)m+n

and then taking the Fourier transform.
Note: Shifting does not affect the magnitude of the Fourier transform.

01/27/2003 2D Fourier Transform 22

Displaying DFT

|v(k,l) e -j2π[km�+ln�] / N | = |v(k,l)|

A B

C D

D C

B A

Low frequency
componentsMATLAB Example

01/27/2003 2D Fourier Transform 23

In Matlab(3): FFTSHIFT

F2= fftshift(F);
imshow (log(abs(F2),..)

01/27/2003 2D Fourier Transform 24

Another example

Original image Its centered DFT magnitude

01/27/2003 2D Fourier Transform 25

Periodicity & Conjugate Symmetry

u(m,n)
F

v(k,l)

v(k,l) = v(k+N, l) = v(k, l+N) = v(k+N, l+N)

If u(m,n) is real, v(k,l) also exhibits conjugate symmetry
v(k,l) = v* (-k, -l) or | v(k,l) | = | v(-k, -l) |

01/27/2003 2D Fourier Transform 26

Rotation

(continuous case)

If you rotate the image u(m,n) by an angle θ, its F.T also
gets rotated by the same angle.

01/27/2003 2D Fourier Transform 27

Rotation

01/27/2003 2D Fourier Transform 28

Average Value

u
N

u m n

v k l
N

u m n e

v
N

u m n Nu

u v
N

nm

j km ln
N

nm

nm

= =

=

= =

=

ÂÂ

ÂÂ

ÂÂ

- +

1

1

0 0 1

0 0

2

(,)

(,) (,)

(,) (,)

(,)

Average

 or (Scaled Average)

π

01/27/2003 2D Fourier Transform 29

Convolution (Revisited)

Consider 1-D
continuous case

Convolution in
Space

Multiplication in
Frequency

f x g x f x g x x dx

f x F u g x G u
f x g x F u G u

() () (') (') '

() (), () ()
() () () ()

* = -

´ ´
* ´

-•

•z
Let
Then

01/27/2003 2D Fourier Transform 30

Let us now assume that we discretize f(x) and g(x) into
vectors f(n) and g(n) of lengths A and B

f(n) {f(0), f(1),..... f(A-1)}
g(n) {g(0), g(1), g(2),....g(B-1)}

(a) DFT and its inverse are periodic functions
(b) Convolving two vectors of length A and B gives a
vector of dimension A+B-1. (Linear convolution)

Discrete Convolution

01/27/2003 2D Fourier Transform 31

Length of the Convolution

B
A

01/27/2003 2D Fourier Transform 32

Discrete Convolution: an example (Fig 4.36)

3

200 400

f(m)

m

3

200 400

f(m)

m

2

200 400

h(m)

m

2

200 400

h(m)

m

2

200 400

h(-m)

m

2

200 400

h(-m)

m

01/27/2003 2D Fourier Transform 33

Discrete conv. (cont.)

2

200 400

h(x-m)

mx
2

200 400

h(x-m)

mx

Range of the DFT=400500

01/27/2003 2D Fourier Transform 34

Zero Imbedding

In order to obtain a convolution theorem for the discrete case, and still
be consistent with the periodicity property we need to assume that
sequences f() and g() are periodic with some period M. From (b) it is
clear that M> A+B-1 to avoid overlap.

Since this period is greater than A or B, the original sequence length
must be increased and this is done by appending zeros at the end.
Redefine the extended sequences as

f n
f n n A

A n M

g n
g n n B

B n M

e

e

()
()

()
()

=
≤ ≤ −
≤ ≤ −

RST
=

≤ ≤ −
≤ ≤ −

RST

0 1
0 1

0 1
0 1

01/27/2003 2D Fourier Transform 35

f n g n f m g n m

g n g n M

n n n N n N
n N n

x y x y x y y

x x

e c e e e c
m

M

c

x
y

x
y

() () () ()

()

.

* = -

=

+ £ £ -

= - π

=

=

-

Â
0

1

1 2 1

1

0 1

0

where Modulo
Note: With n expressed as

= where
 modulo equals

 mod if

 mod 0

 is the integer part of

a f

01/27/2003 2D Fourier Transform 36

Theorem

The DFT of the circular convolution of two sequences of
length N is equal to the product of their DFTs.

A linear convolution of two sequences can be obtained via
FFT by embedding it into a circular convolution.

If then

 DFT DFT DFT

y n f n m g n

y n f n g n

c
m

N

N N N

() () ()

() () ()

= -

=
=

-

Â
0

1

01/27/2003 2D Fourier Transform 37

2-D Convolution

These results can be similarly extended to 2-D
signals.

Let f(m,n) : A x B array
g(m,n) : C x D array

Let M> = A + C -1
N> = B + D -1

For linear convolution using DFT create the extended
periodic sequences of period MxN in the 2-D.

01/27/2003 2D Fourier Transform 38

Extended (periodic) Sequences

f m n

f m n m A
n B

A m M
B n N

g m n

g m n m C
n D

C m M
D n N

y m n f m m n n g m n

e

e

e c
n

N

m

M

e

(,)

(,)

(,)

(,)

(,) (,) (,)

=

≤ ≤ −
≤ ≤ −
≤ ≤ −
≤ ≤ −










=

≤ ≤ −
≤ ≤ −
≤ ≤ −
≤ ≤ −










= − ′ − ′ ′ ′
′=

−

′=

−
∑∑

0 1
0 1

0 1
1

0 1
0 1

0 1
1

0

1

0

1

and the 2 - D linear c onvolution becomes

computing
convolution
is more
efficient
in the frequency
domain.

01/27/2003 2D Fourier Transform 39

Linear Convolution and DFT: Summary

y(n) = f(n) * g(n)y(n) = f(n) * g(n)

1. Let M>= A+B-1 be an integer for which the FFT algorithm
is available.

2. Define the zero extended sequences fe(n), ge(n).

3. Let Fe(k) = DFT { fe(n) }M, Ge(k) = DFT { ge(n) }M. Let
Ye(k)=Fe(k)Ge(k)

4. Take the I-DFT of Ye(k) to obtain Ye(n).
Then Y (n) = Ye(n) for 0 <= n <= A+B-1

01/27/2003 2D Fourier Transform 40

A note on convolution with images

Note: In many cases involving images, we deal
with square arrays of size N X N. We normally
would like to have the resulting convolved
output also as an N X N array.

01/27/2003 2D Fourier Transform 41

Conv2 (.) in Matlab

CONV2 Two dimensional convolution.
C = CONV2(A, B) performs the 2-D convolution of matrices A

and B. If [ma,na] = size(A) and [mb,nb] = size(B), then
size(C) = [ma+mb-1,na+nb-1].

C = CONV2(... ,'shape') returns a subsection of the 2-D
convolution with size specified by 'shape':

■ 'full' - (default) returns the full 2-D convolution,
■ 'same' - returns the central part of the convolution that is the

same size as A.
■ 'valid' - returns only those parts of the convolution that are

computed without the zero-padded edges,
size(C) = [ma-mb+1,na-nb+1] when size(A) > size(B).

