ECE 178 Hwk \#3 Solutions

1)

(a) $y[n]=T[x[n]]=x[n]+2 x[n+1]+3$

Test Linearity: check if $T\left[\mathrm{ax}_{1}[\mathrm{n}]+\mathrm{bx}_{2}[\mathrm{n}]\right]=\mathrm{ay}_{1}[\mathrm{n}]+\mathrm{by}_{2}[\mathrm{n}]$
$T\left[\mathrm{ax}_{1}[\mathrm{n}]+\mathrm{bx}_{2}[\mathrm{n}]\right]=\mathrm{ax}_{1}[\mathrm{n}]+\mathrm{bx}_{2}[\mathrm{n}]+2 \mathrm{ax}_{1}[\mathrm{n}+1]+2 \mathrm{bx}_{2}[\mathrm{n}+1]+3$ Eq. 1 $\mathrm{ay}_{1}[\mathrm{n}]+\mathrm{by}_{2}[\mathrm{n}]=\mathrm{ax} \mathrm{x}_{1}[\mathrm{n}]+2 \mathrm{ax}_{1}[\mathrm{n}+1]+3 \mathrm{a}+\mathrm{bx}_{2}[\mathrm{n}]+2 \mathrm{bx}_{2}[\mathrm{n}]+3 \mathrm{~b} \quad$ Eq. 2

Since Eq. $\mathbf{1}$ does not equal Eq. 2 the system is not linear.
Test Shift Invariance: check if $T\left[x\left[n-n_{0}\right]\right]=y\left[n-n_{0}\right]$
$T\left[\mathrm{x}\left[\mathrm{n}-\mathrm{n}_{0}\right]\right]=\mathrm{x}\left[\mathrm{n}-\mathrm{n}_{0}\right]+2 \mathrm{x}\left[\mathrm{n}-\mathrm{n}_{0}+1\right]+3$ Eq. 3
$\mathrm{y}\left[\mathrm{n}-\mathrm{n}_{0}\right]=\mathrm{x}\left[\mathrm{n}-\mathrm{n}_{0}\right]+2 \mathrm{x}\left[\mathrm{n}-\mathrm{n}_{0}+1\right]+3 \quad$ Eq. 4
Since Eq. 3 equals Eq. 4 then the system is shift invariant.
(b) $y[m, n]=\exp (-x[m, n])$

Test Linearity: check if $T\left[\mathrm{ax}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{bx}_{2}[\mathrm{~m}, \mathrm{n}]\right]=\mathrm{ay}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{by}_{2}[\mathrm{~m}, \mathrm{n}]$
$T\left[\mathrm{ax}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{bx}_{2}[\mathrm{~m}, \mathrm{n}]\right]=\exp \left(-\mathrm{ax}_{1}[\mathrm{~m}, \mathrm{n}]-\mathrm{bx}_{2}[\mathrm{~m}, \mathrm{n}]\right)$ Eq. 5
$\mathrm{ay}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{by}_{2}[\mathrm{~m}, \mathrm{n}]=\mathrm{a}^{*} \exp \left(-\mathrm{x}_{1}[\mathrm{~m}, \mathrm{n}]\right)+\mathrm{b}^{*} \exp \left(-\mathrm{x}_{2}[\mathrm{~m}, \mathrm{n}]\right)$ Eq. 6
Since Eq. 5 does not equal Eq. 6 the system is not linear.
Test Shift Invariance: check if $T\left[x\left[m-m_{0}, n-n_{0}\right]\right]=y\left[m-m_{0}, n-n_{0}\right]$
$\mathrm{T}\left[\mathrm{x}\left[\mathrm{m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]\right]=\exp \left(-\mathrm{x}\left[\mathrm{m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]\right)$ Eq. 7
$\mathrm{y}\left[\mathrm{m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]=\exp \left(-\mathrm{x}\left[\mathrm{m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]\right) \quad$ Eq. 8
Since Eq. 7 equals Eq. 8 the system is shift invariant.
(c) $\mathrm{y}[\mathrm{m}, \mathrm{n}]=\mathrm{m} * \mathrm{n} * \mathrm{x}[\mathrm{m}, \mathrm{n}]$

Test Linearity: check if $T\left[\mathrm{ax}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{bx}_{2}[\mathrm{~m}, \mathrm{n}]\right]=\mathrm{ay}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{by}_{2}[\mathrm{~m}, \mathrm{n}]$
$T\left[\mathrm{ax}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{bx}_{2}[\mathrm{~m}, \mathrm{n}]\right]=\mathrm{a}^{*} \mathrm{~m}^{*} \mathrm{n}^{*} \mathrm{x}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{b}^{*} \mathrm{~m}^{*} \mathrm{n}^{2} \mathrm{x}_{2}[\mathrm{~m}, \mathrm{n}]$ Eq. 9 $\mathrm{ay}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{by}_{2}[\mathrm{~m}, \mathrm{n}]=\mathrm{a} * \mathrm{~m}^{*} \mathrm{n}^{*} \mathrm{x}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{b} * \mathrm{~m}^{*} \mathrm{n}^{*} \mathrm{x}_{2}[\mathrm{~m}, \mathrm{n}] \quad$ Eq. 10

Since Eq. 9 equals Eq. 10 the system is linear.

Test Shift Invariance: check if $T\left[x\left[m-m_{0, n} n-n_{0}\right]\right]=y\left[m-m_{0}, n-n_{0}\right]$
$\mathrm{T}\left[\mathrm{x}\left[\mathrm{m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]\right]=\mathrm{m} * \mathrm{n}^{*} \mathrm{x}\left[\mathrm{m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right] \quad$ Eq. 11
$\mathrm{y}\left[\mathrm{m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]=\left(\mathrm{m}-\mathrm{m}_{0}\right) *\left(\mathrm{n}-\mathrm{n}_{0}\right) * \mathrm{x}\left[\mathrm{m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]$ Eq. 12
Since Eq. 11 does not equal Eq. 12 the system is shift variant, not invariant.
(d) $y[m, n]=x\left[m-m_{0, n} n-n_{0}\right]$

Test Linearity: check if $T\left[\mathrm{ax}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{bx}_{2}[\mathrm{~m}, \mathrm{n}]\right]=\mathrm{ay}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{by}_{2}[\mathrm{~m}, \mathrm{n}]$
$\mathrm{T}\left[\mathrm{ax}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{bx}_{2}[\mathrm{~m}, \mathrm{n}]\right]=\mathrm{ax}_{1}\left[\mathrm{~m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]+\mathrm{bx}_{2}\left[\mathrm{~m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]$ Eq. 13
$\mathrm{ay}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{by}_{2}[\mathrm{~m}, \mathrm{n}]=\mathrm{ax}_{1}\left[\mathrm{~m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]+\mathrm{bx}_{2}\left[\mathrm{~m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right] \quad$ Eq. 14
Since Eq. 13 equals Eq. 14 the system is linear
Test Shift Invariance: check if $T\left[x\left[m-m_{0}, n-n_{0}\right]\right]=y\left[m-m_{0}, n-n_{0}\right]$
$\mathrm{T}\left[\mathrm{x}\left[\mathrm{m}-\mathrm{m}_{1}, \mathrm{n}-\mathrm{n}_{1}\right]\right]=\mathrm{x}\left[\mathrm{m}-\mathrm{m}_{0}-\mathrm{m}_{1}, \mathrm{n}-\mathrm{n}_{0}-\mathrm{n}_{1}\right]$ Eq. 15
$\mathrm{y}\left[\mathrm{m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]=\mathrm{x}\left[\mathrm{m}-\mathrm{m}_{0}-\mathrm{m}_{1}, \mathrm{n}-\mathrm{n}_{0}-\mathrm{n}_{1}\right] \quad$ Eq. 16
Since Eq. 15 equals Eq. 16 the system is shift invariant
(e) $y[m, n]=\sum_{m^{\prime}=-1}^{1} \sum_{n^{\prime}=-1}^{1} x\left[m^{\prime}, n^{\prime}\right]$

Test Linearity: check if $T\left[\mathrm{ax}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{bx}_{2}[\mathrm{~m}, \mathrm{n}]\right]=\mathrm{ay}_{1}[\mathrm{~m}, \mathrm{n}]+\mathrm{by}_{2}[\mathrm{~m}, \mathrm{n}]$
$T\left[a x_{1}[m, n]+b x_{2}[m, n]\right]=\sum_{m^{\prime}=-1}^{1} \sum_{n^{\prime}=-1}^{1} a x_{1}\left[m^{\prime}, n^{\prime}\right]+b x_{2}\left[m^{\prime}, n^{\prime}\right]=a \sum_{m^{\prime}=-1}^{1} \sum_{n^{\prime}=-1}^{1} x_{1}\left[m^{\prime}, n^{\prime}\right]+b \sum_{m^{\prime}=-1}^{1} \sum_{n^{\prime}=-1}^{1} x_{2}\left[m^{\prime}, n^{\prime}\right]$
Eq. 17 above
$a y_{1}[m, n]+b y_{2}[m, n]=a \sum_{m^{\prime}=-1}^{1} \sum_{n=-1}^{1} x_{1}\left[m^{\prime}, n^{\prime}\right]+b \sum_{m^{\prime}=-1}^{1} \sum_{n=-1}^{1} x_{2}\left[m^{\prime}, n^{\prime}\right]$ Eq. 18
Since Eq. 17 equals Eq. 18 the system is linear
Test Shift Invariance: check if $\mathrm{T}\left[\mathrm{x}\left[\mathrm{m}-\mathrm{m}_{0, \mathrm{n}} \mathrm{n} \mathrm{n}_{0}\right]\right]=\mathrm{y}\left[\mathrm{m}-\mathrm{m}_{0}, \mathrm{n}-\mathrm{n}_{0}\right]$
$T\left[x\left[m-m_{0}, n-n_{0}\right]\right]=\sum_{m^{\prime}=-1}^{1} \sum_{n^{\prime}=-1}^{1} x\left[m^{\prime}-m_{0}, n^{\prime}-n_{0}\right]$ Eq. 19
$y\left[m-m_{0}, n-n_{0}\right]=\sum_{m^{\prime}=-1}^{1} \sum_{n^{\prime}=-1}^{1} x\left[m^{\prime}, n^{\prime}\right]$
Eq. 20
Since Eq. 19 equals Eq. 20 the system is shift variant, not invariant.
2) Sketch $\delta(x-y-1)$

The function only has value when $x-y-1=0$ so the graph is

3) The image $f(x, y)=4 \cos (4 \pi x) \cos (4 \pi y)$ is to be sampled such that one can reconstruct the signal from its samples without any errors. Suggest a sampling scheme. How do you propose to reconstruct from the samples? Is your Sampling scheme optimal?

Use trigonometric identity $\cos (a) \cos (\mathrm{b})=[\cos (\mathrm{a}+\mathrm{b})+\cos (\mathrm{a}-\mathrm{b})] / 2$
$f(x, y)=4^{*} 1 / 2 *[\cos (2 \pi(2 x+3 y))+\cos (2 \pi(2 x-3 y))]$
$\mathrm{F}(\mathrm{u} . \mathrm{v})=2 * 2 *[\delta(\mathrm{u}+2, \mathrm{u}+3)+\delta(\mathrm{u}-2, \mathrm{u}-3)+\delta(\mathrm{u}+2, \mathrm{u}-3)+\delta(\mathrm{u}-2, \mathrm{u}+3)]$
Now pick a sampling spacing such that the sampling frequency is twice the highest frequency component in that given direction.
$u_{s}=1 / \Delta x$, and $u_{s}>2 * 2$ therefore $\Delta x<1 / 4$
$v_{s}=1 / \Delta y$, and $v_{s}>2 * 3$ therefore $\Delta y<1 / 6$
To satisfy the nyquist sampling rate we can pick our sampling grid as $\Delta x=1 / 4$ and $\Delta y=1 / 6$. Plugging back into the above equations we get $u_{s}=4$ and $v_{s}=6$. Plugging these into the sampling equation derived in class we get:

$$
\begin{array}{r}
F(u, v)=96 \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(u+2-4 k, v+3-6 k)+\delta(u-2-4 k, v-3-6 k) \ldots \\
+\delta(u+2-4 k, v-3-6 k)+\delta(u-2-4 k, v+3-6 k)
\end{array}
$$

With this sampling scheme pick a lowpass filter that will perfectly reconstruct the signal. This is done by using an ideal lowpass filter based on the sampling grid picked. The frequency response of the reconstruction filter H_{r} is shown below.
$H_{r}(u, v)=\left\{\begin{array}{cc}\frac{1}{24} & -2 \leq u \leq 2 \\ 0 & -3 \leq v \leq 3 \\ \text { otherwise }\end{array}\right\}$
4)

> -MMSE quantizer:

$$
\begin{aligned}
& r_{k}=\frac{\int_{t_{k}}^{t_{k+1}} u p_{U}(u) d u}{\int_{t_{k}}^{t_{k+1}} p_{U}(u) d u}, t_{k}=\frac{r_{k-1}+r_{k}}{2} \\
& -\int_{u} p_{U}(u) d u=1 \Rightarrow I=\frac{1}{4}
\end{aligned}
$$

-pdf symmetry: $t_{1}=0, t_{3}=2.5, t_{5}=5, t_{5}-t_{4}=t_{2}-t_{1} \Rightarrow t_{4}=5-t_{2}(1)$
$-r_{1}=\frac{\int_{0}^{t_{2}} u \frac{1}{4} d u}{0 \int_{t_{k}}^{t 2} \frac{1}{4} d u}=\frac{t_{2}}{2} \Rightarrow r_{1}=\frac{t_{2}}{2}, t_{2}=\frac{r_{1}+r_{2}}{2}(2) \quad-r_{2}=\frac{\int_{t_{2}}^{t_{3}} u p_{U}(u) d u}{\int_{t_{2}}^{t_{3}} p_{U}(u) d u}=\frac{\int_{t_{2}}^{2} u \frac{1}{4} d u}{\int_{t_{2}}^{t_{2}} \frac{1}{4} d u}=\frac{2+t_{2}}{2}(3)$

- (2) \& (3) $\Rightarrow t_{2}=\frac{r_{1}+r_{2}}{2} \Rightarrow t_{2}=\frac{1}{2}\left(\frac{t_{2}}{2}+\frac{2+t_{2}}{2}\right) \Rightarrow t_{2}=1 \quad$ (1) $\Rightarrow t_{4}=t_{5}-t_{2} \Rightarrow t_{4}=4$
- (2) $r_{1}=\frac{t_{2}}{2} \Rightarrow r_{1}=\frac{1}{2} \quad$ - (3) $r_{2}=\frac{2+t_{2}}{2} \Rightarrow r_{2}=\frac{3}{2}$
- pdf symmetry: $r_{3}=5-r_{2} \Rightarrow r_{3}=\frac{7}{2}, r_{4}=5-r_{1} \Rightarrow r_{3}=\frac{9}{2}$
- This 4-level MMSE quantizer combines two uniform 2-level quantizers ([0,2]\&[3,5]), and $\Delta=1$

$$
\Rightarrow \varepsilon=\frac{\Delta^{2}}{12} \Rightarrow \varepsilon=\frac{1}{12}
$$

Note that the t_{1}, t_{3} and t_{5} are chosen because the $\operatorname{pdf} p_{u}(u)$ is symmetric about the point 2.5.

