Fundamentals of Image Registration and Mosaicking

M. Zuliani ${ }^{1}$

${ }^{1}$ zuliani@ece.ucsb.edu Vision Research Lab
Department of Electrical and Computer Engineering
University of California, Santa Barbara
October 30, 2007

Outline

(1) Fundamentals for Image Registration

- A Qualitative Definition
- Conventions
- Image Derivatives
- Image Interpolation
- Formal Definition

2 Image Registration Systems

- Building Blocks
- Global Mappings
- Digression: Mutual Information Registration

3 Point Feature Detection

- Introduction
- The Gradient Normal Matrix
- Condition Theory Primer
- Two Ways to Look at the Problem
- Corner Detectors

Outline

(1) Fundamentals for Image Registration

- A Qualitative Definition
- Conventions
- Image Derivatives
- Image Interpolation
- Formal Definition
(2) Image Registration Systems
- Building Blocks
- Global Mappings
- Digression: Mutual Information Registration
(3) Point Feature Detection
- Introduction
- The Gradient Normal Matrix
- Condition Theory Primer
- Two Ways to Look at the Problem
- Corner Detectors

A Qualitative Definition

- Image registration:
- establish a mapping between two or more images possibly taken:
- at different times,
- from different viewpoints,
- under different lighting conditions,
- and/or by different sensors
- align the images with respect to a common coordinate system coherently with the three dimensional structure of the scene
- Image mosaicking: images are combined to provide a representation of the scene that is both geometrically and photometrically consistent.

The Image Lattice

Finite Differences Derivatives

- On a continuous domain: $\frac{d f}{d x}(x) \stackrel{\text { def }}{=} \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- On a discrete lattice: $I_{x}\left(\boldsymbol{x}_{i, j}\right) \stackrel{\text { def } l\left(\boldsymbol{x}_{i+1, j}\right)-I\left(\boldsymbol{x}_{i-1, j}\right)}{2 h}$

Smoothing Before Deriving

- Prewitt operator:

$$
P_{X_{1}}=\underbrace{\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]}_{\text {first central difference }} \underbrace{\left[\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right]}_{\text {average smoothing }}=\frac{1}{3}\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

- Sobel operator: changing the smoothing kernel to $\left[\begin{array}{lll}\frac{1}{4} & \frac{1}{2} & \frac{1}{4}\end{array}\right]$:

$$
S_{X_{1}}=\frac{1}{4}\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

- Transpose the kernels to derive along x_{2}

VRL $\stackrel{\text { ucse }}{\text { en }}$

How Much Smoothing? The Issue of Scale.

- As noted by Lindeberg:
[...] objects in the world may appear in different ways depending upon the scale of observation.
- Thus we need different tools to describe them:
- quantum mechanics
- particle physics
- thermodynamics
- classical mechanics
- general relativity
- Similarly with images:
- construct derivative operators that depend continuously on a smoothing parameter
- must be capable of capturing signal variations at different scales

Scale Space Signal Representation

- From image $/$ to its scale space representation $\mathcal{L}=\left\{L_{\sigma}(\boldsymbol{x})\right\}_{\sigma}$
- Recipe: convolve the original image with a Gaussian kernel:

$$
L_{\sigma}(\boldsymbol{x}) \stackrel{\text { def }}{=}\left(I * G_{\sigma}\right)(\boldsymbol{x})
$$

- $\boldsymbol{G}_{\sigma}(\boldsymbol{x})=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{1}{2} \frac{\|\boldsymbol{x}\|^{2}}{\sigma^{2}}}$
- Physical intuition: solution to the heat diffusion equation:

$$
\begin{aligned}
\frac{\partial L_{\sqrt{t}}}{\partial t}(\boldsymbol{x}) & =\frac{1}{2} \nabla_{\boldsymbol{x}}^{2} L_{\sqrt{t}}(\boldsymbol{x}) \\
L_{0}(\boldsymbol{x}) & =I(\boldsymbol{x})
\end{aligned}
$$

for $t=\sigma^{2}$.

The Scale Space Representation of a Cameraman

$\sigma=1$

$\sigma=4.6$

$\sigma=8.2$

$\sigma=1.9$

$\sigma=5.5$

$\sigma=9.1$

$\sigma=2.8$

$$
\sigma=6.4
$$

Why Gaussian Kernels?

- Let's define:
- Shift: $T_{\Delta} I(\boldsymbol{x}) \stackrel{\text { def }}{=} I(\boldsymbol{x}-\Delta)$
- Rotation: $R_{\theta} I(\boldsymbol{x}) \stackrel{\text { def }}{=} I(R(\theta) \boldsymbol{x})$, where $R(\theta)$ is the 2×2 matrix that rotates a vector of an angle θ.
- Scaling: $S_{\alpha} I(\boldsymbol{x}) \stackrel{\text { def }}{=} I(\alpha \boldsymbol{x})$.
- and the functional:

$$
\begin{aligned}
\mathcal{T}_{\sigma^{2}}: \mathcal{I} \times \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
(I, \boldsymbol{x}) & \mapsto \mathcal{T}_{\sigma^{2}}[I](\boldsymbol{x})
\end{aligned}
$$

Because They Satisfy the Scale Space Axioms!

- Linearity: $\mathcal{I}_{\sigma^{2}}\left[\alpha_{1} I_{1}+\alpha_{1} I_{2}\right](\boldsymbol{x})=\alpha_{1} \mathcal{I}_{\sigma^{2}}\left[I_{1}\right](\boldsymbol{x})+\alpha_{2} \mathcal{I}_{\sigma^{2}}\left[I_{2}\right](\boldsymbol{x})$
- Shift invariance: $T_{\Delta} \mathcal{T}_{\sigma^{2}}[I]=\mathcal{T}_{\sigma^{2}}\left[T_{\Delta} I\right]$
- Scale invariance: There must exist a a strictly increasing continuous function ψ such that $\psi(0)=0$ and $\lim _{s \rightarrow \infty} \psi(s)=\infty$ so that $S_{\alpha} \mathcal{T}_{\sigma^{2}}[I]=\mathcal{T}_{\psi\left(\sigma^{2}\right)}\left[S_{\alpha} I\right]$
- Rotation invariance: $R_{\theta} \mathcal{T}_{\sigma^{2}}[I]=\mathcal{T}_{\sigma^{2}}\left[R_{\theta} I\right]$.
- Semi-group structure: $\mathcal{T}_{\sigma_{1}^{2}}\left[\mathcal{T}_{\sigma_{2}^{2}}[I]\right]=\mathcal{T}_{\sigma_{1}^{2}+\sigma_{2}^{2}}[/]$
- Causality constraints: The causality constraints can be divided in:
- Weak Causality Constraint: Any scale space isophote $L_{\sigma}(\boldsymbol{x})=\lambda$ is connected to a point $L_{0}(\boldsymbol{x})=I(\boldsymbol{x})=\lambda$.
- Strong Causality Constraint: For every choice of $\sigma_{2}>\sigma_{1} \geq 0$ the intersection of an isophote within the domain
$\left\{(\boldsymbol{x}, \sigma) \in \mathbb{R}^{2} \times \mathbb{R}_{+}: \boldsymbol{x} \in \mathbb{R}^{2}, \sigma \in\left(\sigma_{1}, \sigma_{2}\right]\right\}$ with the plane $\sigma=\sigma_{1}$ should not be empty.

The Scale Space Representation of a 1D Signal

Scale Space Differentiation Filters

- Fact:

$$
\frac{\partial L_{\sigma}}{\partial x_{i}}(\boldsymbol{x})=\frac{\partial}{\partial x_{i}}\left(I * G_{\sigma}\right)(\boldsymbol{x})=\left(I * \frac{\partial G_{\sigma}}{\partial x_{i}}\right)(\boldsymbol{x})
$$

- Image gradient:

$$
\nabla L_{\sigma}=\left[\begin{array}{ll}
\frac{\partial L_{\sigma}}{\partial x_{1}} & \frac{\partial L_{\sigma}}{\partial x_{2}}
\end{array}\right]
$$

- Magnitude of the gradient:

$$
\left\|\nabla L_{\sigma}\right\|=\sqrt{\left(\frac{\partial L_{\sigma}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial L_{\sigma}}{\partial x_{2}}\right)^{2}}
$$

Scale Space Gradient Magnitude of a Cameraman

$\sigma=9.1$

$$
\sigma=10
$$

Why do we Need Interpolation?

- Because we may want to recover the intensity value at non integer pixel locations.
- Interpolation methods:
- Nearest neighbour
- Bilinear
- Cubic
- Lanczos
- ...

Nearest Neighbor Interpolation

What is the value of f at $\left[\begin{array}{ll}p & q\end{array}\right]^{T}$?
$\hat{f}(p, q)=f(\operatorname{round}(p), \operatorname{round}(q))$

Bilinear Interpolation: Notation

What is the value of f at $\left[\begin{array}{ll}p & q\end{array}\right]^{\top}$?

- $F_{0,0} \stackrel{\text { def }}{=} f(x, y)$
- $F_{1,0} \stackrel{\text { def }}{=} f(x+1, y)$
- $F_{0,1} \stackrel{\text { def }}{=} f(x, y+1)$
- $F_{1,1} \stackrel{\text { def }}{=} f(x+1, y+1)$
- $\Delta x \stackrel{\text { def }}{=} p-x$ and $\Delta y \stackrel{\text { def }}{=} q-y$

Bilinear Interpolation

What is the value of f at $\left[\begin{array}{ll}p & q\end{array}\right]^{\top}$?

- Linear interpolation in the x direction:

$$
\begin{aligned}
f_{y}(\Delta x) & =(1-\Delta x) F_{0,0}+\Delta x F_{1,0} \\
f_{y+1}(\Delta x) & =(1-\Delta x) F_{0,1}+\Delta x F_{1,1}
\end{aligned}
$$

- Linear interpolation in the y direction:

$$
\hat{f}(p, q)=(1-\Delta y) f_{y}+\Delta y f_{y+1}
$$

$$
\hat{f}(p, q)=(1-\Delta y)(1-\Delta x) F_{0,0}+(1-\Delta y) \Delta x F_{1,0}+\Delta y(1-\Delta x) F_{0,1}+\Delta y \Delta x F_{1,1}
$$

Some Definitions

Definition

Two points \boldsymbol{x} and \boldsymbol{x}^{\prime} correspond between the reference and the sensed image: $\boldsymbol{x} \leftrightarrow \boldsymbol{x}^{\prime}$ if they are the projection of the same point in the scene onto the camera image plane.

Definition

A mapping $\boldsymbol{T}_{\boldsymbol{\theta}}$ is a function:

$$
\begin{aligned}
\boldsymbol{T}_{\boldsymbol{\theta}}(\boldsymbol{x}): \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(\boldsymbol{x} ; \boldsymbol{\theta}) & \mapsto \boldsymbol{T}_{\boldsymbol{\theta}}(\boldsymbol{x})
\end{aligned}
$$

where $\boldsymbol{\theta}$ is the vector of parameters of the transformation and \boldsymbol{x} is the point to be mapped.

More Definitions

Definition

The overlapping area \mathcal{O} in the reference image, according to the transformation $\boldsymbol{T}_{\boldsymbol{\theta}}$, is the set of points:

$$
\mathcal{O} \stackrel{\text { def }}{=}\left\{\boldsymbol{x} \in \mathcal{D}: \boldsymbol{T}_{\boldsymbol{\theta}}(\boldsymbol{x}) \in \mathcal{D}^{\prime}\right\}
$$

Definition

The overlapping area \mathcal{O}^{\prime} in the sensed image, according to the transformation $\boldsymbol{T}_{\boldsymbol{\theta}}$, is the set of points:

$$
\mathcal{O}^{\prime} \stackrel{\text { def }}{=}\left\{\boldsymbol{x}^{\prime} \in \mathcal{D}^{\prime}: \exists \boldsymbol{x} \in \mathcal{D} \text { such that } \boldsymbol{x}^{\prime}=\boldsymbol{T}_{\boldsymbol{\theta}}(\boldsymbol{x})\right\}
$$

Image Registration: a Formal Definition

Definition (Registered Image Pair)

An image pair $\left(\boldsymbol{I}, \boldsymbol{I}^{\prime}\right)$ is registered if there exists a parameter vector $\hat{\boldsymbol{\theta}}$ such that $\forall \boldsymbol{x} \in \mathcal{O}$ the points \boldsymbol{x} and $\boldsymbol{x}^{\prime}=\boldsymbol{T}_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})$ correspond, i.e. $\boldsymbol{x} \leftrightarrow \boldsymbol{T}_{\hat{\boldsymbol{\theta}}}(\boldsymbol{x})$.

VRL Ucse

Image Registration: Overlapping

Overlapping area is displayed in green (image courtesy: prof. Chuck Stewart, RPI registration dataset).

VRL ${ }^{\text {ucse }}$

Image Registration: Alignment

VRL $\stackrel{\text { Ucss }}{ }$

Outline

(1) Fundamentals for Image Registration

- A Qualitative Definition
- Conventions
- Image Derivatives
- Image Interpolation
- Formal Definition
(2) Image Registration Systems
- Building Blocks
- Global Mappings
- Digression: Mutual Information Registration
(3) Point Feature Detection
- Introduction
- The Gradient Normal Matrix
- Condition Theory Primer
- Two Ways to Look at the Problem
- Corner Detectors

A Feature Based Registration System

Overview of the registration system modules (image courtesy of J . Nieuwenhuijse, copyright by New House Internet Services BV).

Translation

- Every point in the image is translated of the same amount

$$
\boldsymbol{T}_{\boldsymbol{\theta}}(\boldsymbol{y})=\boldsymbol{y}+\boldsymbol{\theta}
$$

- $\boldsymbol{\theta}=\left[\begin{array}{ll}\theta_{1} & \theta_{2}\end{array}\right]^{T} \in \mathbb{R}^{2}$
- The parameter vector contains the displacements in the y_{1} and y_{2} directions.

Rotation, Scale and Translation (RST)

- Every point in the image is is subject to a rotation, to a scaling and to a translation
- The anchor point \boldsymbol{x} specifies the point about which the coordinate system rotates and translates

$$
\boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}(\boldsymbol{y})=\boldsymbol{x}+\underbrace{\left[\begin{array}{cc}
\theta_{3} & -\theta_{4} \\
\theta_{4} & \theta_{3}
\end{array}\right]}_{s R}(\boldsymbol{y}-\boldsymbol{x})+\underbrace{\left[\begin{array}{c}
\theta_{1} \\
\theta_{2}
\end{array}\right]}_{\boldsymbol{t}}
$$

- $\boldsymbol{\theta}=\left[\begin{array}{llll}\theta_{1} & \theta_{2} & \theta_{3} & \theta_{4}\end{array}\right]^{T} \in \mathbb{R}^{4}$
- The components θ_{3}, θ_{4} describe the rotation and the scaling and θ_{1} and θ_{2} encode the translation

Affine

- Every point in the image undergoes an affine transformation
- \boldsymbol{x} is the anchor point

$$
\boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}(\boldsymbol{y})=\boldsymbol{x}+\underbrace{\left[\begin{array}{ll}
\theta_{3} & \theta_{5} \\
\theta_{4} & \theta_{6}
\end{array}\right]}_{A}(\boldsymbol{y}-\boldsymbol{x})+\underbrace{\left[\begin{array}{c}
\theta_{1} \\
\theta_{2}
\end{array}\right]}_{\boldsymbol{t}}
$$

- $\boldsymbol{\theta}=\left[\begin{array}{lll}\theta_{1} & \ldots & \theta_{6}\end{array}\right]^{T} \in \mathbb{R}^{6}$

VRL Ucse

Homography - I

- Describes how a planar surface transforms when imaged through pin-hole cameras that have a different position and orientation in space.
- An homography is a linear transformation in the projective space \mathbb{P}^{2}.
- From Euclidean space to projective space:

$$
\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right] \in \mathbb{R}^{2} \mapsto\left[\begin{array}{c}
\lambda x_{1} \\
\lambda x_{2} \\
\lambda
\end{array}\right] \in \mathbb{P}^{2}
$$

- From projective space to Euclidean space

$$
\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right] \in \mathbb{P}^{2} \mapsto\left[\begin{array}{c}
\frac{p_{1}}{p_{3}} \\
\frac{p_{2}}{p_{3}}
\end{array}\right] \in \mathbb{R}^{2}
$$

Homography - II

- Two points \boldsymbol{p} and \boldsymbol{p}^{\prime} in the projective space are related according to a (planar) homography if:

$$
\boldsymbol{p}^{\prime} \sim \underbrace{\left[\begin{array}{lll}
\theta_{1} & \theta_{4} & \theta_{7} \\
\theta_{2} & \theta_{5} & \theta_{8} \\
\theta_{3} & \theta_{6} & \theta_{9}
\end{array}\right]}_{H} \boldsymbol{p}
$$

- In the Euclidean space an homography is represented via the non linear relation:

$$
\boldsymbol{T}_{\boldsymbol{\theta}}(\boldsymbol{y})=\left[\begin{array}{c}
\frac{\theta_{1} y_{1}+\theta_{4} y_{2}+\theta_{7}}{\theta_{3} y_{1}+\theta_{6} y_{2}+\theta_{9}} \\
\frac{\theta_{2} y_{1}+\theta_{5}+\theta_{9}+\theta_{8}}{\theta_{3} y_{1}+\theta_{6} y_{2}+\theta_{9}}
\end{array}\right]
$$

- To fix the $9^{\text {th }}$ degree of freedom of the parameter vector $\theta \in \mathbb{R}^{9}$ set its norm to 1: $\|\boldsymbol{\theta}\|=1$.

Preliminaries - I

- An example of an area based method
- Intuition: register in order to maximize the statistical knowledge regarding image I given image l'

Definition (Mutual Information)

The mutual information $\mathcal{I}(x ; y)$ for the random variables x and y is :

$$
\mathcal{I}(x ; y) \stackrel{\text { def }}{=} \mathcal{H}(x)-\mathcal{H}(x \mid y)=\mathcal{H}(y)-\mathcal{H}(y \mid x)
$$

Preliminaries - II

Definition

The entropy \mathcal{H} of a (discrete) random variable x that takes values over the alphabet \mathcal{X} is:

$$
\mathcal{H}(x) \stackrel{\text { def }}{=}-\sum_{x \in \mathcal{X}} p(x) \log _{2} p(x)
$$

Definition

The conditional entropy $\mathcal{H}(x \mid y)$ is:

$$
\mathcal{H}(x \mid y) \stackrel{\text { def }}{=}-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log _{2} p(x \mid y)
$$

Formalization

- $\boldsymbol{T}_{\theta}(\boldsymbol{x})$ is the transformation that establishes the mapping between the two images
- Goal: to determine the parameter $\widehat{\boldsymbol{\theta}}$ such that $I(\boldsymbol{x})=I^{\prime}\left(\boldsymbol{T}_{\boldsymbol{\theta}}(\boldsymbol{x})\right)$ for every \boldsymbol{x}
- Solution: maximize the mutual information:

$$
\widehat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta} \in \mathbb{R}^{p}}{\operatorname{argmax}} \mathcal{I}\left(I ; I^{\prime}\right)
$$

- Simpler to say than to realize...

Outline

(1) Fundamentals for Image Registration

- A Qualitative Definition
- Conventions
- Image Derivatives
- Image Interpolation
- Formal Definition
(2) Image Registration Systems
- Building Blocks
- Global Mappings
- Digression: Mutual Information Registration

3) Point Feature Detection

- Introduction
- The Gradient Normal Matrix
- Condition Theory Primer
- Two Ways to Look at the Problem
- Corner Detectors

Preliminaries

- $I(\boldsymbol{x})$ is the intensity of a single channel image at point $\boldsymbol{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$
- Ω is a neighborhood about the point of interest x
- The gradient matrix is defined as:

- The gradient normal matrix is defined as:

Preliminaries

- $I(\boldsymbol{x})$ is the intensity of a single channel image at point $\boldsymbol{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$
- Ω is a neighborhood about the point of interest \boldsymbol{x}
- The gradient matrix is defined as:

- The gradient normal matrix is defined as:

VRL ${ }_{\text {UCSB }}$

Preliminaries

- $I(\boldsymbol{x})$ is the intensity of a single channel image at point $\boldsymbol{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{\top}$
- Ω is a neighborhood about the point of interest \boldsymbol{x}
- The gradient matrix is defined as:

$$
A(\Omega(\boldsymbol{x})) \stackrel{\text { def }}{=}\left[\begin{array}{cc}
I_{x_{1}}\left(\boldsymbol{y}_{1}\right) & I_{x_{2}}\left(\boldsymbol{y}_{1}\right) \\
\vdots & \vdots \\
I_{x_{1}}\left(\boldsymbol{y}_{N}\right) & I_{x_{2}}\left(\boldsymbol{y}_{N}\right)
\end{array}\right]=\left[\begin{array}{c}
\nabla_{\boldsymbol{x}} I\left(\boldsymbol{y}_{1}\right) \\
\vdots \\
\nabla_{\boldsymbol{x}} I\left(\boldsymbol{y}_{N}\right)
\end{array}\right]
$$

- The gradient normal matrix is defined as:

$V R L^{\text {UcsB }}$

Preliminaries

- $I(\boldsymbol{x})$ is the intensity of a single channel image at point $\boldsymbol{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$
- Ω is a neighborhood about the point of interest \boldsymbol{x}
- The gradient matrix is defined as:

$$
A(\Omega(\boldsymbol{x})) \stackrel{\text { def }}{=}\left[\begin{array}{cc}
I_{x_{1}}\left(\boldsymbol{y}_{1}\right) & I_{x_{2}}\left(\boldsymbol{y}_{1}\right) \\
\vdots & \vdots \\
I_{x_{1}}\left(\boldsymbol{y}_{N}\right) & I_{x_{2}}\left(\boldsymbol{y}_{N}\right)
\end{array}\right]=\left[\begin{array}{c}
\nabla_{\boldsymbol{x}} I\left(\boldsymbol{y}_{1}\right) \\
\vdots \\
\nabla_{\boldsymbol{x}} I\left(\boldsymbol{y}_{N}\right)
\end{array}\right]
$$

- The gradient normal matrix is defined as:

$$
A^{T} A \stackrel{\text { def }}{=}\left[\begin{array}{cc}
\sum_{i=1}^{N} I_{x_{1}}\left(\boldsymbol{y}_{i}\right)^{2} & \sum_{i=1}^{N} I_{x_{1}}\left(\boldsymbol{y}_{i}\right) I_{x_{2}}\left(\boldsymbol{y}_{i}\right) \\
\sum_{i=1}^{N} I_{x_{1}}\left(\boldsymbol{y}_{i}\right) x_{x_{2}}\left(\boldsymbol{y}_{i}\right) & \sum_{i=1}^{N} I_{x_{2}}\left(\boldsymbol{y}_{i}\right)^{2}
\end{array}\right]
$$

Shaking Things

- Consider: $\boldsymbol{A}=\left[\begin{array}{ll}1.0000 & 2.0000 \\ 2.0000 & 4.0001\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{c}10+\varepsilon \\ 20\end{array}\right]$. - Solve $A x=b$. Easy? Not really: $\begin{aligned} & \boldsymbol{x}=A^{-1} \boldsymbol{b}=10000\left[\begin{array}{cc}4.0001 & -2.0000 \\ -2.0000 & 1.0000\end{array}\right]\left[\begin{array}{c}10+\varepsilon \\ 20\end{array}\right]= \\ & 10000\left[\begin{array}{c}0.0010+4.0001 \varepsilon \\ -2.0000 \varepsilon\end{array}\right]\end{aligned}$

Shaking Things

- Consider: $\boldsymbol{A}=\left[\begin{array}{ll}1.0000 & 2.0000 \\ 2.0000 & 4.0001\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{c}10+\varepsilon \\ 20\end{array}\right]$.
- Solve $A \boldsymbol{x}=\boldsymbol{b}$. Easy? Not really:

$$
\begin{aligned}
& \boldsymbol{x}=A^{-1} \boldsymbol{b}=10000\left[\begin{array}{cc}
4.0001 & -2.0000 \\
-2.0000 & 1.0000
\end{array}\right]\left[\begin{array}{c}
10+\varepsilon \\
20
\end{array}\right]= \\
& 10000\left[\begin{array}{c}
0.0010+4.0001 \varepsilon \\
-2.0000 \varepsilon
\end{array}\right]
\end{aligned}
$$

Shaking Things

- Consider: $\boldsymbol{A}=\left[\begin{array}{ll}1.0000 & 2.0000 \\ 2.0000 & 4.0001\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{c}10+\varepsilon \\ 20\end{array}\right]$.
- Solve $A \boldsymbol{x}=\boldsymbol{b}$. Easy? Not really:

$$
\begin{aligned}
& \boldsymbol{x}=A^{-1} \boldsymbol{b}=10000\left[\begin{array}{cc}
4.0001 & -2.0000 \\
-2.0000 & 1.0000
\end{array}\right]\left[\begin{array}{c}
10+\varepsilon \\
20
\end{array}\right]= \\
& 10000\left[\begin{array}{c}
0.0010+4.0001 \varepsilon \\
-2.0000 \varepsilon
\end{array}\right]
\end{aligned}
$$

- If $\varepsilon=0$ then $\boldsymbol{x}=\left[\begin{array}{c}10 \\ 0\end{array}\right]$

Shaking Things

- Consider: $\boldsymbol{A}=\left[\begin{array}{ll}1.0000 & 2.0000 \\ 2.0000 & 4.0001\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{c}10+\varepsilon \\ 20\end{array}\right]$.
- Solve $A \boldsymbol{x}=\boldsymbol{b}$. Easy? Not really:

$$
\begin{aligned}
& \boldsymbol{x}=A^{-1} \boldsymbol{b}=10000\left[\begin{array}{cc}
4.0001 & -2.0000 \\
-2.0000 & 1.0000
\end{array}\right]\left[\begin{array}{c}
10+\varepsilon \\
20
\end{array}\right]= \\
& 10000\left[\begin{array}{c}
0.0010+4.0001 \varepsilon \\
-2.0000 \varepsilon
\end{array}\right]
\end{aligned}
$$

- If $\varepsilon=0$ then $\boldsymbol{x}=\left[\begin{array}{c}10 \\ 0\end{array}\right]$
- If $\varepsilon=0.01$ then $\boldsymbol{x}=\left[\begin{array}{c}410.0100 \\ -200.0000\end{array}\right]$

Differential Condition Number

- The solution of a system of equations is a mapping from the input data $\boldsymbol{b} \in \mathbb{R}^{n}$ to the solution or output $\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{b}) \in \mathbb{R}^{m}$
- If a small change in \boldsymbol{b} produces a large change in $\boldsymbol{x}(\boldsymbol{b})$ then \boldsymbol{x} is ill-conditioned at b

Definition

The local or differential condition number is:

$$
K=K(\boldsymbol{x}, \boldsymbol{b}) \stackrel{\text { def }}{=} \lim _{\delta \rightarrow 0} \sup _{\|\Delta \boldsymbol{b}\| \leq \delta} \frac{\|\boldsymbol{x}(\boldsymbol{b}+\Delta \boldsymbol{b})-\boldsymbol{x}(\boldsymbol{b})\|}{\|\Delta \boldsymbol{b}\|}
$$

Theorem

For a linear system of equations $A \boldsymbol{x}=\boldsymbol{b}$ we have $K=K(\boldsymbol{x}, \boldsymbol{b})=\left\|A^{\dagger}\right\|$

Differential Condition Number Measuring Shaking

- In the previous example $A=\left[\begin{array}{ll}1.0000 & 2.0000 \\ 2.0000 & 4.0001\end{array}\right]$
- The Frobenius norm of A^{-1} is:

$$
\sqrt{\sum_{i, j}\left|A_{i j}^{-1}\right|^{2}}=\sqrt{\sum \sigma\left(A^{-1}\right)^{2}} \approx 5 \cdot 10^{4}
$$

- Big if compared to the entries and to the size of A

Short Baseline Correspondences, a.k.a. Optical Flow

- $I=I(\cdot, t)$ is a single channel image sequence parameterized in the time variable t
- A point of interest has time dependent coordinates $\boldsymbol{x}=\boldsymbol{x}(t)$
- The optical flow problem is to discover the time evolution of \boldsymbol{x}
- Taylor expansions (neglecting higher order terms) yields:

$$
I_{x_{1}}(\boldsymbol{x}, t) d x_{1}+I_{x_{2}}(\boldsymbol{x}, t) d x_{2}+I_{t}(\boldsymbol{x}, t) d t=0
$$

- In matrix form:

VRL Lese

Short Baseline Correspondences, a.k.a. Optical Flow

- $I=I(\cdot, t)$ is a single channel image sequence parameterized in the time variable t
- A point of interest has time dependent coordinates $\boldsymbol{x}=\boldsymbol{x}(t)$
- The optical flow problem is to discover the time evolution of \boldsymbol{x}
- Assumption: constant intensity: $I(\boldsymbol{x}(t), t)=I(\boldsymbol{x}(t)+d \boldsymbol{x}, t+d t)=c$
- Taylor expansions (neglecting higher order terms) yields:

$$
I_{x_{1}}(\boldsymbol{x}, t) d x_{1}+I_{x_{2}}(\boldsymbol{x}, t) d x_{2}+I_{t}(\boldsymbol{x}, t) d t=0
$$

- In matrix form:

VRL Lase

Short Baseline Correspondences, a.k.a. Optical Flow

- $I=I(\cdot, t)$ is a single channel image sequence parameterized in the time variable t
- A point of interest has time dependent coordinates $\boldsymbol{x}=\boldsymbol{x}(t)$
- The optical flow problem is to discover the time evolution of \boldsymbol{x}
- Assumption: constant intensity: $I(\boldsymbol{x}(t), t)=I(\boldsymbol{x}(t)+d \boldsymbol{x}, t+d t)=c$
- Taylor expansions (neglecting higher order terms) yields:

$$
I_{x_{1}}(\boldsymbol{x}, t) d x_{1}+I_{x_{2}}(\boldsymbol{x}, t) d x_{2}+I_{t}(\boldsymbol{x}, t) d t=0
$$

- In matrix form:

Short Baseline Correspondences, a.k.a. Optical Flow

- $I=I(\cdot, t)$ is a single channel image sequence parameterized in the time variable t
- A point of interest has time dependent coordinates $\boldsymbol{x}=\boldsymbol{x}(t)$
- The optical flow problem is to discover the time evolution of \boldsymbol{x}
- Assumption: constant intensity: $I(\boldsymbol{x}(t), t)=I(\boldsymbol{x}(t)+d \boldsymbol{x}, t+d t)=c$
- Taylor expansions (neglecting higher order terms) yields:

$$
I_{x_{1}}(\boldsymbol{x}, t) d x_{1}+I_{x_{2}}(\boldsymbol{x}, t) d x_{2}+I_{t}(\boldsymbol{x}, t) d t=0
$$

- In matrix form:

$$
\left[\begin{array}{ll}
I_{x_{1}}(\boldsymbol{x}, t) & I_{x_{2}}(\boldsymbol{x}, t)
\end{array}\right] d \boldsymbol{x}=-I_{t}(\boldsymbol{x}, t) d t
$$

Optical Flow: Solving for the Displacement

- Goal: estimate $d \boldsymbol{x}=\left[\begin{array}{ll}d x_{1} & d x_{2}\end{array}\right]^{\top}$, i.e. the optical flow vector
- Problem: $\left[\begin{array}{ll}I_{x_{1}} & (\boldsymbol{x}, t) \\ I_{x_{2}} & (\boldsymbol{x}, t)] d \boldsymbol{x}=-I_{t}(\boldsymbol{x}, t) d t \text { is one equation in }\end{array}\right.$ two unknowns
- Solution: assume that $d x_{1}$ and $d x_{2}$ are constant in a region Ω - Hence (letting dt = 1):

- Guess what? An overdetermined linear system of equations!

VRL vese

Optical Flow: Solving for the Displacement

- Goal: estimate $d \boldsymbol{x}=\left[\begin{array}{ll}d x_{1} & d x_{2}\end{array}\right]^{\top}$, i.e. the optical flow vector
- Problem: $\left[\begin{array}{ll}I_{x_{1}} & (\boldsymbol{x}, t) \\ I_{x_{2}} & (\boldsymbol{x}, t)] d \boldsymbol{x}=-I_{t}(\boldsymbol{x}, t) d t \text { is one equation in }\end{array}\right.$ two unknowns
- Solution: assume that $d x_{1}$ and $d x_{2}$ are constant in a region Ω about \boldsymbol{x}.
- Hence (letting $d t=1$):

- Guess what? An overdetermined linear system of equations!

VRL wase

Optical Flow: Solving for the Displacement

- Goal: estimate $d \boldsymbol{x}=\left[\begin{array}{ll}d x_{1} & d x_{2}\end{array}\right]^{\top}$, i.e. the optical flow vector
- Problem: $\left[\begin{array}{ll}I_{x_{1}} & (\boldsymbol{x}, t) \\ I_{x_{2}} & (\boldsymbol{x}, t)] d \boldsymbol{x}=-I_{t}(\boldsymbol{x}, t) d t \text { is one equation in }\end{array}\right.$ two unknowns
- Solution: assume that $d x_{1}$ and $d x_{2}$ are constant in a region Ω about \boldsymbol{x}.
- Hence (letting $d t=1$):

$$
\left[\begin{array}{cc}
I_{x_{1}}\left(\boldsymbol{y}_{1}, t\right) & I_{x_{2}}\left(\boldsymbol{y}_{1}, t\right) \\
\vdots & \vdots \\
I_{x_{1}}\left(\boldsymbol{y}_{N}, t\right) & I_{x_{2}}\left(\boldsymbol{y}_{N}, t\right)
\end{array}\right] d \boldsymbol{x}=-\left[\begin{array}{c}
I_{t}\left(\boldsymbol{y}_{1}, t\right) \\
\vdots \\
I_{t}\left(\boldsymbol{y}_{N}, t\right)
\end{array}\right]
$$

- Guess what? An overdetermined linear system of equations:

VRL Lese

Optical Flow: Solving for the Displacement

- Goal: estimate $d \boldsymbol{x}=\left[\begin{array}{ll}d x_{1} & d x_{2}\end{array}\right]^{\top}$, i.e. the optical flow vector
- Problem: $\left[\begin{array}{ll}I_{x_{1}} & (\boldsymbol{x}, t) \\ I_{x_{2}} & (\boldsymbol{x}, t)] d \boldsymbol{x}=-I_{t}(\boldsymbol{x}, t) d t \text { is one equation in }\end{array}\right.$ two unknowns
- Solution: assume that $d x_{1}$ and $d x_{2}$ are constant in a region Ω about \boldsymbol{x}.
- Hence (letting $d t=1$):

$$
\left[\begin{array}{cc}
I_{x_{1}}\left(\boldsymbol{y}_{1}, t\right) & I_{x_{2}}\left(\boldsymbol{y}_{1}, t\right) \\
\vdots & \vdots \\
I_{x_{1}}\left(\boldsymbol{y}_{N}, t\right) & I_{x_{2}}\left(\boldsymbol{y}_{N}, t\right)
\end{array}\right] d \boldsymbol{x}=-\left[\begin{array}{c}
I_{t}\left(\boldsymbol{y}_{1}, t\right) \\
\vdots \\
I_{t}\left(\boldsymbol{y}_{N}, t\right)
\end{array}\right]
$$

- Guess what? An overdetermined linear system of equations!

Optical Flow: Least Square Solution

- More compactly:

$$
A(\Omega(\boldsymbol{x})) d \boldsymbol{x}=\boldsymbol{\eta}
$$

where $\boldsymbol{\eta}=-\left[\begin{array}{lll}I_{t}\left(\boldsymbol{y}_{1}, t\right) & \ldots & I_{t}\left(\boldsymbol{y}_{N}, t\right)\end{array}\right]^{T}$.

- multiply both sides by A^{\top} to obtain a square system
- multiply both members by $\left(A^{\top} A\right)^{-1}$ to get:

$$
d \boldsymbol{x}_{\text {computed }}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{\eta}=A^{\dagger} \boldsymbol{\eta}
$$

- A major problem: some points give better estimates of the true optical flow than others.

Optical Flow: Least Square Solution

- More compactly:

$$
A(\Omega(\boldsymbol{x})) d \boldsymbol{x}=\boldsymbol{\eta}
$$

where $\boldsymbol{\eta}=-\left[\begin{array}{lll}I_{t}\left(\boldsymbol{y}_{1}, t\right) & \ldots & I_{t}\left(\boldsymbol{y}_{N}, t\right)\end{array}\right]^{T}$.

- Least squares solution recipe:
- multiply both sides by A^{T} to obtain a square system
- multiply both members by $\left(A^{\prime} A\right)^{-1}$ to get:

$$
d \boldsymbol{x}_{\text {computed }}=\left(A^{T} A\right)^{-1} A^{T} \eta=A^{\dagger} \eta
$$

- A major problem: some points give better estimates of the true optical flow than others.

Optical Flow: Least Square Solution

- More compactly:

$$
A(\Omega(\boldsymbol{x})) d \boldsymbol{x}=\boldsymbol{\eta}
$$

where $\boldsymbol{\eta}=-\left[\begin{array}{lll}I_{t}\left(\boldsymbol{y}_{1}, t\right) & \ldots & I_{t}\left(\boldsymbol{y}_{N}, t\right)\end{array}\right]^{T}$.

- Least squares solution recipe:
- multiply both sides by A^{T} to obtain a square system
- multiply both members by $\left(A^{T} A\right)^{-1}$ to get:

$$
d \boldsymbol{x}_{\text {computed }}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{\eta}=A^{\dagger} \boldsymbol{\eta}
$$

optical flow than others.

VRL $\stackrel{\text { ucse }}{ }$

Optical Flow: Least Square Solution

- More compactly:

$$
A(\Omega(\boldsymbol{x})) d \boldsymbol{x}=\boldsymbol{\eta}
$$

where $\boldsymbol{\eta}=-\left[\begin{array}{lll}I_{t}\left(\boldsymbol{y}_{1}, t\right) & \ldots & I_{t}\left(\boldsymbol{y}_{N}, t\right)\end{array}\right]^{T}$.

- Least squares solution recipe:
- multiply both sides by A^{T} to obtain a square system
- multiply both members by $\left(A^{T} A\right)^{-1}$ to get:

$$
d \boldsymbol{x}_{\text {computed }}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{\eta}=A^{\dagger} \boldsymbol{\eta}
$$

- A major problem: some points give better estimates of the true optical flow than others.

Optical Flow: A Thought Experiment

- Ansatz: the scene is static therefore the true optical flow is zero: $d \boldsymbol{x}_{\text {exact }}=0$
- Suppose the images vary only by additive noise. Then η represents the noise itself
- Error in the optical flow estimate: $e \stackrel{\text { det }}{=} d x_{\text {exact }}-d x_{\text {computed }}$
- Then:

Optical Flow: A Thought Experiment

- Ansatz: the scene is static therefore the true optical flow is zero: $d \boldsymbol{x}_{\text {exact }}=0$
- Suppose the images vary only by additive noise. Then η represents the noise itself
- Error in the optical flow estimate: $e \stackrel{\text { del }}{=} x_{\text {exact }}-d x_{\text {computed }}$
- Then:

- $\left\|A^{\dagger}\right\|$ controls the error multiplication factor

VRL Ucse

Optical Flow: A Thought Experiment

- Ansatz: the scene is static therefore the true optical flow is zero: $d \boldsymbol{x}_{\text {exact }}=0$
- Suppose the images vary only by additive noise. Then η represents the noise itself
- Error in the optical flow estimate: $\boldsymbol{e} \xlongequal{\text { def }} d \boldsymbol{x}_{\text {exact }}-d \boldsymbol{x}_{\text {computed }}$
- Then:

Optical Flow: A Thought Experiment

- Ansatz: the scene is static therefore the true optical flow is zero: $d \boldsymbol{x}_{\text {exact }}=0$
- Suppose the images vary only by additive noise. Then η represents the noise itself
- Error in the optical flow estimate: $\boldsymbol{e} \stackrel{\text { def }}{=} d \boldsymbol{x}_{\text {exact }}-d \boldsymbol{x}_{\text {computed }}$
- Then:

$$
\|\boldsymbol{e}\|=\left\|d \boldsymbol{x}_{\text {exact }}-d \boldsymbol{x}_{\text {computed }}\right\|=\left\|0-\boldsymbol{A}^{\dagger} \boldsymbol{\eta}\right\|=\left\|\boldsymbol{A}^{\dagger} \boldsymbol{\eta}\right\| \leq\left\|\boldsymbol{A}^{\dagger}\right\|\|\boldsymbol{\eta}\|
$$

- But we also saw that: $K=K(x, \eta)=\left\|A^{\dagger}\right\|$

VRL $\stackrel{\text { ucse }}{ }$

Optical Flow: A Thought Experiment

- Ansatz: the scene is static therefore the true optical flow is zero: $d \boldsymbol{x}_{\text {exact }}=0$
- Suppose the images vary only by additive noise. Then η represents the noise itself
- Error in the optical flow estimate: $\boldsymbol{e} \stackrel{\text { def }}{=} d \boldsymbol{x}_{\text {exact }}-d \boldsymbol{x}_{\text {computed }}$
- Then:

$$
\|\boldsymbol{e}\|=\left\|d \boldsymbol{x}_{\text {exact }}-d \boldsymbol{x}_{\text {computed }}\right\|=\left\|0-\boldsymbol{A}^{\dagger} \boldsymbol{\eta}\right\|=\left\|\boldsymbol{A}^{\dagger} \boldsymbol{\eta}\right\| \leq\left\|\boldsymbol{A}^{\dagger}\right\|\|\boldsymbol{\eta}\|
$$

- $\left\|A^{\dagger}\right\|$ controls the error multiplication factor
- But we also saw that: $K=K(x, \eta)=\left\|A^{\dagger}\right\|$

VRL $\stackrel{\text { ucse }}{ }$

Optical Flow: A Thought Experiment

- Ansatz: the scene is static therefore the true optical flow is zero: $d \boldsymbol{x}_{\text {exact }}=0$
- Suppose the images vary only by additive noise. Then $\boldsymbol{\eta}$ represents the noise itself
- Error in the optical flow estimate: $\boldsymbol{e} \stackrel{\text { def }}{=} d \boldsymbol{x}_{\text {exact }}-d \boldsymbol{x}_{\text {computed }}$
- Then:

$$
\|\boldsymbol{e}\|=\left\|d \boldsymbol{x}_{\text {exact }}-d \boldsymbol{x}_{\text {computed }}\right\|=\left\|0-\boldsymbol{A}^{\dagger} \boldsymbol{\eta}\right\|=\left\|\boldsymbol{A}^{\dagger} \boldsymbol{\eta}\right\| \leq\left\|\boldsymbol{A}^{\dagger}\right\|\|\boldsymbol{\eta}\|
$$

- $\left\|A^{\dagger}\right\|$ controls the error multiplication factor
- But we also saw that: $K=K(\boldsymbol{x}, \boldsymbol{\eta})=\left\|A^{\dagger}\right\|$

Wide Baseline Correspondences: Estimating Local Transformations

- Consider two corresponding neighborhoods: $\Omega(\boldsymbol{x})$ and $\Omega^{\prime}\left(\boldsymbol{x}^{\prime}\right)$
- Define the cost function:

$$
C_{\boldsymbol{T}}(\boldsymbol{\theta}) \stackrel{\text { def }}{=} \frac{1}{2} \sum_{\boldsymbol{y} \in \Omega(\boldsymbol{x})} w(\boldsymbol{y}-\boldsymbol{x})\left\|\boldsymbol{I}(\boldsymbol{y})-\boldsymbol{I}^{\prime}\left(\boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}(\boldsymbol{y})\right)\right\|^{2}
$$

VRL $\stackrel{\text { ucse }}{ }$

Wide Baseline Correspondences: Estimating Local Transformations

- Consider two corresponding neighborhoods: $\Omega(\boldsymbol{x})$ and $\Omega^{\prime}\left(\boldsymbol{x}^{\prime}\right)$
- Define the cost function:

$$
C_{\boldsymbol{T}}(\boldsymbol{\theta}) \stackrel{\text { def }}{=} \frac{1}{2} \sum_{\boldsymbol{y} \in \Omega(\boldsymbol{x})} w(\boldsymbol{y}-\boldsymbol{x})\left\|\boldsymbol{I}(\boldsymbol{y})-\boldsymbol{I}^{\prime}\left(\boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}(\boldsymbol{y})\right)\right\|^{2}
$$

- Goal: estimate the parameter vector that minimizes $C_{\boldsymbol{T}}(\boldsymbol{\theta})$, i.e. :

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta} \in \mathbb{R}^{p}}{\operatorname{argmin}} C_{\boldsymbol{T}}(\boldsymbol{\theta})
$$

The Right Question (and Hopefully the Right Answer)

- Which points allow to estimate θ reliably?
- Those points such
- Modeling the effect of noise:

$$
\boldsymbol{I}^{\prime}\left(\boldsymbol{T}_{\theta+\Delta \theta, \boldsymbol{x}}(\boldsymbol{y})\right)=\boldsymbol{I}(\boldsymbol{y})+\boldsymbol{\eta}
$$

- Small amounts of η should not produce large perturbations $\Delta \theta$

The Right Question (and Hopefully the Right Answer)

- Which points allow to estimate θ reliably?
- Those points such that small amounts of noise will not cause the estimate $\hat{\theta}$ to be inaccurate
- Modeling the effect of noise:

- Small amounts of η should not produce large perturbations $\Delta \theta$

The Right Question (and Hopefully the Right Answer)

- Which points allow to estimate θ reliably?
- Those points such that small amounts of noise will not cause the estimate $\hat{\theta}$ to be inaccurate
- Modeling the effect of noise:

$$
\boldsymbol{I}^{\prime}\left(\boldsymbol{T}_{\theta+\Delta \theta, \boldsymbol{x}}(\boldsymbol{y})\right)=\boldsymbol{I}(\boldsymbol{y})+\boldsymbol{\eta}
$$

- Small amounts of $\boldsymbol{\eta}$ should not produce large perturbations $\Delta \boldsymbol{\theta}$

The condition number associated with the point neighborhood $\Omega(\boldsymbol{x})$ with respect to $T_{\theta, x}$ is:

The Right Question (and Hopefully the Right Answer)

- Which points allow to estimate θ reliably?
- Those points such that small amounts of noise will not cause the estimate $\hat{\theta}$ to be inaccurate
- Modeling the effect of noise:

$$
\boldsymbol{I}^{\prime}\left(\boldsymbol{T}_{\theta+\Delta \theta, x}(\boldsymbol{y})\right)=\boldsymbol{I}(\boldsymbol{y})+\boldsymbol{\eta}
$$

- Small amounts of η should not produce large perturbations $\Delta \boldsymbol{\theta}$

Definition (Differential Condition Number for Point Neighborhoods)

The condition number associated with the point neighborhood $\Omega(\boldsymbol{x})$ with respect to $\boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}$ is:

$$
K_{\boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}}(\Omega(\boldsymbol{x})) \stackrel{\text { def }}{=} \lim _{\delta \rightarrow 0} \sup _{\|\boldsymbol{\eta}\| \leq \delta} \frac{\|\Delta \boldsymbol{\theta}\|}{\|\boldsymbol{\eta}\|}
$$

The Quantitative Answer

Theorem (Estimate of the Differential Condition Number for Point Neighborhoods)

The expression for the estimate of the condition number for the point neighborhood $\Omega(\boldsymbol{x})$ is:

$$
\hat{K}_{\boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}}(\Omega(\boldsymbol{x}))=\left\|\boldsymbol{A}^{\dagger}(\Omega(\boldsymbol{x}))\right\|
$$

where the matrix $A(\Omega(\boldsymbol{x}))$:

$$
A(\Omega(\boldsymbol{x})) \stackrel{\text { def }}{=}\left[\begin{array}{c}
A\left(\boldsymbol{y}_{1}\right) \\
\vdots \\
A\left(\boldsymbol{y}_{N}\right)
\end{array}\right] \in \mathbb{R}^{m N \times p}
$$

is formed by the N sub-matrices:

$$
A\left(\boldsymbol{y}_{i}\right) \stackrel{\text { def }}{=} w\left(\boldsymbol{y}_{i}-\boldsymbol{x}\right) J I^{\prime}\left(\boldsymbol{y}_{i}\right) J_{\theta} \boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}\left(\boldsymbol{y}_{i}\right)
$$

obtained from a set of N points that sample the neighborhood $\Omega(\boldsymbol{x})$

Standpoint Summary

- "Good points", a.k.a. corners, are related to the (spectral) properties of the generalized gradient matrix:

$$
A(\Omega(\boldsymbol{x})) \stackrel{\text { def }}{=}\left[\begin{array}{c}
A\left(\boldsymbol{y}_{1}\right) \\
\vdots \\
A\left(\boldsymbol{y}_{N}\right)
\end{array}\right] \in \mathbb{R}^{m N \times p}
$$

where:

$$
A\left(\boldsymbol{y}_{i}\right)=w\left(\boldsymbol{y}_{i}-\boldsymbol{x}\right) J_{\theta} I\left(\boldsymbol{T}_{\overline{\boldsymbol{\theta}}, \boldsymbol{x}}\left(\boldsymbol{y}_{i}\right)\right)=w\left(\boldsymbol{y}_{i}-\boldsymbol{x}\right) J I\left(\boldsymbol{y}_{i}\right) J_{\theta} \boldsymbol{T}_{\overline{\boldsymbol{\theta}}, \boldsymbol{x}}\left(\boldsymbol{y}_{i}\right)
$$

Spectral Corner Detectors

Definition (Spectral Corner Detector)

A spectral corner detector is a functional that depends solely on the singular values of the generalized gradient matrix:

$$
\begin{aligned}
f: \mathcal{I} \times \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
(\boldsymbol{I}, \boldsymbol{x}) & \mapsto f(\sigma(A(\Omega(\boldsymbol{x}))))
\end{aligned}
$$

Common Corner Detectors:
\square

Spectral Corner Detectors

Definition (Spectral Corner Detector)

A spectral corner detector is a functional that depends solely on the singular values of the generalized gradient matrix:

$$
\begin{aligned}
f: \mathcal{I} \times \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
(\boldsymbol{I}, \boldsymbol{x}) & \mapsto f(\sigma(A(\Omega(\boldsymbol{x}))))
\end{aligned}
$$

Common Corner Detectors:

- Harris-Stephens:

$$
f_{H S}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}=\operatorname{det}\left(A^{T} A\right)-\alpha \operatorname{trace}\left(A^{T} A\right)^{2}
$$

- Rohr: $f_{R}=\sqrt{\lambda_{1} \lambda_{2}}$
- Noble-Förstner: $f_{N F}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}=\frac{\operatorname{det}\left(A^{T} A\right)}{\operatorname{trace}\left(A^{T} A\right)}$
- Shi-Tomasi: $f_{S T}=\lambda_{\text {min }}$

Condition Number Corner Detectors

Definition (Condition Number Corner Detector)

A condition number corner detector is a spectral corner detector such that:

$$
\begin{aligned}
f: \mathcal{I} \times \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
(\boldsymbol{I}, \boldsymbol{x}) & \mapsto \frac{1}{\left\|\boldsymbol{A}^{\dagger}(\Omega(\boldsymbol{x}))\right\|_{S, 2 q}^{2}}
\end{aligned}
$$

VRL

Condition Number Corner Detectors

Definition (Condition Number Corner Detector)

A condition number corner detector is a spectral corner detector such that:

$$
\begin{aligned}
f: \mathcal{I} \times \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
(\boldsymbol{I}, \boldsymbol{x}) & \mapsto \frac{1}{\left\|\boldsymbol{A}^{\dagger}(\Omega(\boldsymbol{x}))\right\|_{S, 2 q}^{2}}
\end{aligned}
$$

Definition (Schatten Matrix q-norm)

The Schatten matrix q-norm is defined as:

$$
\|A\|_{s, q} \stackrel{\text { def }}{=}\left(\sum_{i} \sigma_{i}(A)^{q}\right)^{\frac{1}{q}}
$$

where $\sigma_{i}(A)$ is the $i^{\text {th }}$ singular value of the matrix A.

Putting Everything Together

Theorem (Corner Detectors Equivalence Relations)

The following interesting relations hold among the spectral corner detectors when the transformation $\boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}$ models a simple translation:

- Generalized Rohr equivalence: $\lim _{q \rightarrow 0} \sqrt[q]{p} f_{K, q}=f_{R}$
- Generalized Noble-Förstner equivalence: $f_{K, 1}=f_{N F}$
- Generalized Shi-Tomasi equivalence: $f_{K, \infty}=f_{S T}$

Theorem (Analytical Bounds)

$$
f_{K, q}^{\text {Translation }} \geq f_{K, q}^{R S T} \geq f_{K, q}^{\text {Affine }}
$$

Noble-Förstner Reponse for Different $\boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}$

$V R L$ UCSB

Noble-Förstner Reponse for Different $\boldsymbol{T}_{\boldsymbol{\theta}, \boldsymbol{x}}$

Homework

Write a Matlab function to detect the corners in an arbitrary gray level image using the Noble-Förstner detector. The syntax of the function should be $[\mathrm{x} y \mathrm{f}]=$ compute_corners(I, sigma, r), where:

- I is the single channel input image.
- sigma is the standard deviation of the Gaussian differentiation filter in pixels
- r is the radius of the circular neighborhood $\Omega(\boldsymbol{x})$
- x, y is the position of the interest points
- f is the detector map, i.e. the reponse of the detector at each location of the image

Protecting Luca's Mental Health

A necessary (but not sufficient) condition to complete the assignment is that your function will satisfy the following testing protocol:

- The workspace will contain the image I and the variables of sigma, r
- The command [x y f] = compute_corners(I, sigma, r); will be issued
- The results will be evaluated superimposing the detected point on the original image and displaying the detector map:
- figure
- imshow(I);
- hold on;
- plot (y, x, \quad r+') ;
- figure
- imagesc(f); axis equal tight; colormap gray;

