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Fundamentals for Image Registration A Qualitative Definition

A Qualitative Definition

Image registration:
establish a mapping between two or more images possibly taken:

at different times,
from different viewpoints,
under different lighting conditions,
and/or by different sensors

align the images with respect to a common coordinate system
coherently with the three dimensional structure of the scene

Image mosaicking: images are combined to provide a
representation of the scene that is both geometrically and
photometrically consistent.
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Fundamentals for Image Registration Conventions

The Image Lattice
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Fundamentals for Image Registration Image Derivatives

Finite Differences Derivatives

On a continuous domain: df
dx (x)

def
= limh→0

f (x+h)−f (x)
h

On a discrete lattice: Ix(x i,j)
def
=

I(x i+1,j )−I(x i−1,j )
2h
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Fundamentals for Image Registration Image Derivatives

Smoothing Before Deriving

Prewitt operator:

Px1 =




−1
0
1





︸ ︷︷ ︸
first central difference

[ 1
3

1
3

1
3

]
︸ ︷︷ ︸

average smoothing

=
1
3




−1 −1 −1
0 0 0
1 1 1





Sobel operator: changing the smoothing kernel to
[ 1

4
1
2

1
4

]
:

Sx1 =
1
4




−1 −2 −1
0 0 0
1 2 1





Transpose the kernels to derive along x2
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Fundamentals for Image Registration Image Derivatives

How Much Smoothing? The Issue of Scale.

As noted by Lindeberg:
[...] objects in the world may appear in different ways
depending upon the scale of observation.

Thus we need different tools to describe them:
quantum mechanics
particle physics
thermodynamics
classical mechanics
general relativity

Similarly with images:
construct derivative operators that depend continuously on a
smoothing parameter
must be capable of capturing signal variations at different scales
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Fundamentals for Image Registration Image Derivatives

Scale Space Signal Representation

From image I to its scale space representation L = {Lσ(x)}σ

Recipe: convolve the original image with a Gaussian kernel:

Lσ(x)
def
= (I ∗Gσ)(x)

Gσ(x) = 1
2πσ2 e−

1
2
‖x‖2

σ2

Physical intuition: solution to the heat diffusion equation:

∂L√t
∂t

(x) =
1
2
∇2

xL√t(x)

L0(x) = I(x)

for t = σ2.
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Fundamentals for Image Registration Image Derivatives

The Scale Space Representation of a Cameraman

σ = 0 σ = 1 σ = 1.9 σ = 2.8

σ = 3.7 σ = 4.6 σ = 5.5 σ = 6.4

σ = 7.3 σ = 8.2 σ = 9.1 σ = 10
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Fundamentals for Image Registration Image Derivatives

Why Gaussian Kernels?

Let’s define:
Shift: T∆I(x)

def
= I(x −∆)

Rotation: RθI(x)
def
= I(R(θ)x), where R(θ) is the 2× 2 matrix that

rotates a vector of an angle θ.
Scaling: SαI(x)

def
= I(αx).

and the functional:

Tσ2 : I × R2 → R
(I, x) &→ Tσ2 [I](x)
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Fundamentals for Image Registration Image Derivatives

Because They Satisfy the Scale Space Axioms!

Linearity: Tσ2 [α1I1 + α1I2](x) = α1Tσ2 [I1](x) + α2Tσ2 [I2](x)

Shift invariance: T∆Tσ2 [I] = Tσ2 [T∆I]
Scale invariance: There must exist a a strictly increasing
continuous function ψ such that ψ(0) = 0 and lims→∞ ψ(s) = ∞
so that SαTσ2 [I] = Tψ(σ2)[SαI]
Rotation invariance: RθTσ2 [I] = Tσ2 [RθI].
Semi-group structure: Tσ2

1
[Tσ2

2
[I]] = Tσ2

1+σ2
2
[I]

Causality constraints: The causality constraints can be divided in:
Weak Causality Constraint: Any scale space isophote Lσ(x) = λ is
connected to a point L0(x) = I(x) = λ.
Strong Causality Constraint: For every choice of σ2 > σ1 ≥ 0 the
intersection of an isophote within the domain{
(x , σ) ∈ R2 × R+ : x ∈ R2, σ ∈ (σ1, σ2]

}
with the plane σ = σ1

should not be empty.
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Fundamentals for Image Registration Image Derivatives

The Scale Space Representation of a 1D Signal

50 100 150 200 250

50

100

150

200

250

x

f

x

σ

I sophote at λ = 60

σ1

σ2

50 100 150 200 250
0.25

1.25

2.25

3.25

4.25

5.25

6.25

7.25

8.25

9.25

50

100

150

200

250

M. Zuliani (Vision Research Lab) Image Registration October 30, 2007 13 / 54

http://vision.ece.ucsb.edu/~zuliani


Fundamentals for Image Registration Image Derivatives

Scale Space Differentiation Filters

Fact:
∂Lσ

∂xi
(x) =

∂

∂xi
(I ∗Gσ)(x) =

(
I ∗ ∂Gσ

∂xi

)
(x)

Image gradient:
∇Lσ =

[
∂Lσ
∂x1

∂Lσ
∂x2

]

Magnitude of the gradient:

‖∇Lσ‖ =

√(
∂Lσ

∂x1

)2
+

(
∂Lσ

∂x2

)2
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Fundamentals for Image Registration Image Derivatives

Scale Space Gradient Magnitude of a Cameraman

σ = 0 σ = 1 σ = 1.9 σ = 2.8

σ = 3.7 σ = 4.6 σ = 5.5 σ = 6.4

σ = 7.3 σ = 8.2 σ = 9.1 σ = 10

M. Zuliani (Vision Research Lab) Image Registration October 30, 2007 15 / 54

http://vision.ece.ucsb.edu/~zuliani


Fundamentals for Image Registration Image Interpolation

Why do we Need Interpolation?

Because we may want to recover the intensity value at non integer
pixel locations.
Interpolation methods:

Nearest neighbour
Bilinear
Cubic
Lanczos
. . .
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Fundamentals for Image Registration Image Interpolation

Nearest Neighbor Interpolation

What is the value of f at
[

p q
]T ?

f̂ (p, q) = f (round(p), round(q))
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Fundamentals for Image Registration Image Interpolation

Bilinear Interpolation: Notation

What is the value of f at
[

p q
]T ?

F0,0
def
= f (x , y)

F1,0
def
= f (x + 1, y)

F0,1
def
= f (x , y + 1)

F1,1
def
= f (x + 1, y + 1)

∆x def
= p − x and ∆y def

= q − y
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Fundamentals for Image Registration Image Interpolation

Bilinear Interpolation

What is the value of f at
[

p q
]T ?

Linear interpolation in the x direction:

fy (∆x) = (1−∆x)F0,0 + ∆xF1,0

fy+1(∆x) = (1−∆x)F0,1 + ∆xF1,1

Linear interpolation in the y direction:

f̂ (p, q) = (1−∆y)fy + ∆yfy+1

f̂ (p, q) = (1−∆y)(1−∆x)F0,0 + (1−∆y)∆xF1,0 + ∆y(1−∆x)F0,1 + ∆y∆xF1,1
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Fundamentals for Image Registration Formal Definition

Some Definitions

Definition
Two points x and x ′ correspond between the reference and the sensed
image: x ↔ x ′ if they are the projection of the same point in the scene
onto the camera image plane.

Definition
A mapping T θ is a function:

T θ(x) : R2 → R2

(x ;θ) &→ T θ(x)

where θ is the vector of parameters of the transformation and x is the
point to be mapped.
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Fundamentals for Image Registration Formal Definition

More Definitions

Definition
The overlapping area O in the reference image, according to the
transformation T θ, is the set of points:

O def
= {x ∈ D : T θ(x) ∈ D′}

Definition
The overlapping area O′ in the sensed image, according to the
transformation T θ, is the set of points:

O′ def
= {x ′ ∈ D′ : ∃x ∈ D such that x ′ = T θ(x)}
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Fundamentals for Image Registration Formal Definition

Image Registration: a Formal Definition

Definition (Registered Image Pair)

An image pair (I , I ′) is registered if there exists a parameter vector θ̂
such that ∀x ∈ O the points x and x ′ = T θ̂(x) correspond,
i.e. x ↔ T θ̂(x).
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Fundamentals for Image Registration Formal Definition

Image Registration: Overlapping

Overlapping area is displayed in green (image courtesy: prof. Chuck
Stewart, RPI registration dataset).
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Fundamentals for Image Registration Formal Definition

Image Registration: Alignment
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Image Registration Systems
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Image Registration Systems Building Blocks

A Feature Based Registration System

!e#t%re'()tr#*ti,-
.h#0ter'123

!e#t%re'4e5*ri0ti,-
.h#0ter'6

!e#t%re'7#t*hi-8
.h#0ter'9

7,:e;'(5ti<#ti,-
.h#0ter'=29

><#8e'!%5i,-
.h#0ter'9

>-0%t ?%t0%t

Overview of the registration system modules (image courtesy of J. Nieuwenhuijse, copyright by

New House Internet Services BV).
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Image Registration Systems Global Mappings

Translation

Every point in the image is translated of the same amount

T θ(y) = y + θ

θ =
[

θ1 θ2
]T ∈ R2

The parameter vector contains the displacements in the y1 and y2
directions.
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Image Registration Systems Global Mappings

Rotation, Scale and Translation (RST)

Every point in the image is is subject to a rotation, to a scaling and
to a translation
The anchor point x specifies the point about which the coordinate
system rotates and translates

T θ,x(y) = x +

[
θ3 −θ4
θ4 θ3

]

︸ ︷︷ ︸
sR

(y − x) +

[
θ1
θ2

]

︸ ︷︷ ︸
t

θ =
[

θ1 θ2 θ3 θ4
]T ∈ R4

The components θ3, θ4 describe the rotation and the scaling and
θ1 and θ2 encode the translation
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Image Registration Systems Global Mappings

Affine

Every point in the image undergoes an affine transformation
x is the anchor point

T θ,x(y) = x +

[
θ3 θ5
θ4 θ6

]

︸ ︷︷ ︸
A

(y − x) +

[
θ1
θ2

]

︸ ︷︷ ︸
t

θ =
[

θ1 . . . θ6
]T ∈ R6
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Image Registration Systems Global Mappings

Homography - I

Describes how a planar surface transforms when imaged through
pin-hole cameras that have a different position and orientation in
space.
An homography is a linear transformation in the projective space
P2.
From Euclidean space to projective space:

[
x1
x2

]
∈ R2 &→




λx1
λx2
λ



 ∈ P2

From projective space to Euclidean space



p1
p2
p3



 ∈ P2 &→
[

p1
p3p2
p3

]
∈ R2
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Image Registration Systems Global Mappings

Homography - II

Two points p and p′ in the projective space are related according
to a (planar) homography if:

p′ ∼




θ1 θ4 θ7
θ2 θ5 θ8
θ3 θ6 θ9





︸ ︷︷ ︸
H

p

In the Euclidean space an homography is represented via the non
linear relation:

T θ(y) =

[
θ1y1+θ4y2+θ7
θ3y1+θ6y2+θ9
θ2y1+θ5y2+θ8
θ3y1+θ6y2+θ9

]

To fix the 9th degree of freedom of the parameter vector θ ∈ R9 set
its norm to 1: ‖θ‖ = 1.
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Image Registration Systems Digression: Mutual Information Registration

Preliminaries - I

An example of an area based method
Intuition: register in order to maximize the statistical knowledge
regarding image I given image I’

Definition (Mutual Information)
The mutual information I(x ; y) for the random variables x and y is :

I(x ; y)
def
= H(x)−H(x |y) = H(y)−H(y |x)
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Image Registration Systems Digression: Mutual Information Registration

Preliminaries - II

Definition
The entropy H of a (discrete) random variable x that takes values over
the alphabet X is:

H(x)
def
= −

∑

x∈X
p(x) log2 p(x)

Definition
The conditional entropy H(x |y) is:

H(x |y)
def
= −

∑

x∈X

∑

y∈Y
p(x , y) log2 p(x |y)
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Image Registration Systems Digression: Mutual Information Registration

Formalization

T θ(x) is the transformation that establishes the mapping between
the two images
Goal: to determine the parameter θ̂ such that I(x) = I′(T θ(x)) for
every x
Solution: maximize the mutual information:

θ̂ = argmax
θ∈Rp

I(I; I′)

Simpler to say than to realize. . .
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Point Feature Detection The Gradient Normal Matrix

Preliminaries

I(x) is the intensity of a single channel image at point
x =

[
x1 x2

]T

Ω is a neighborhood about the point of interest x
The gradient matrix is defined as:

A(Ω(x))
def
=




Ix1(y1) Ix2(y1)

...
...

Ix1(yN) Ix2(yN)



 =




∇x I(y1)

...
∇x I(yN)





The gradient normal matrix is defined as:

AT A def
=

[ ∑N
i=1 Ix1(y i)

2 ∑N
i=1 Ix1(y i)Ix2(y i)∑N

i=1 Ix1(y i)Ix2(y i)
∑N

i=1 Ix2(y i)
2

]
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Point Feature Detection Condition Theory Primer

Shaking Things

Consider: A =

[
1.0000 2.0000
2.0000 4.0001

]
and b =

[
10 + ε

20

]
.

Solve Ax = b. Easy? Not really:

x = A−1b = 10000
[

4.0001 −2.0000
−2.0000 1.0000

] [
10 + ε

20

]
=

10000
[

0.0010 + 4.0001ε
−2.0000ε

]

If ε = 0 then x =

[
10
0

]

If ε = 0.01 then x =

[
410.0100
−200.0000

]
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Point Feature Detection Condition Theory Primer

Differential Condition Number

The solution of a system of equations is a mapping from the input
data b ∈ Rn to the solution or output x = x(b) ∈ Rm

If a small change in b produces a large change in x(b) then x is
ill-conditioned at b

Definition
The local or differential condition number is:

K = K (x , b)
def
= lim

δ→0
sup

‖∆b‖≤δ

‖x(b + ∆b)− x(b)‖
‖∆b‖

Theorem
For a linear system of equations Ax = b we have K = K (x , b) = ‖A†‖
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Point Feature Detection Condition Theory Primer

Differential Condition Number Measuring Shaking

In the previous example A =

[
1.0000 2.0000
2.0000 4.0001

]

The Frobenius norm of A−1 is:
√∑

i,j

|A−1
ij |2 =

√∑
σ(A−1)2 ≈ 5 · 104

Big if compared to the entries and to the size of A
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Point Feature Detection Two Ways to Look at the Problem

Short Baseline Correspondences, a.k.a. Optical Flow

I = I(·, t) is a single channel image sequence parameterized in
the time variable t
A point of interest has time dependent coordinates x = x(t)
The optical flow problem is to discover the time evolution of x
Assumption: constant intensity: I(x(t), t) = I(x(t)+ dx , t + dt) = c
Taylor expansions (neglecting higher order terms) yields:

Ix1(x , t) dx1 + Ix2(x , t) dx2 + It(x , t) dt = 0

In matrix form:
[

Ix1(x , t) Ix2(x , t)
]

dx = −It(x , t) dt
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Point Feature Detection Two Ways to Look at the Problem

Optical Flow: Solving for the Displacement

Goal: estimate dx =
[

dx1 dx2
]T , i.e. the optical flow vector

Problem:
[

Ix1(x , t) Ix2(x , t)
]

dx = −It(x , t) dt is one equation in
two unknowns
Solution: assume that dx1 and dx2 are constant in a region Ω
about x .
Hence (letting dt = 1):




Ix1(y1, t) Ix2(y1, t)

...
...

Ix1(yN , t) Ix2(yN , t)



 dx = −




It(y1, t)

...
It(yN , t)





Guess what? An overdetermined linear system of equations!
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Point Feature Detection Two Ways to Look at the Problem

Optical Flow: Least Square Solution

More compactly:
A(Ω(x))dx = η

where η = −
[

It(y1, t) . . . It(yN , t)
]T .

Least squares solution recipe:
multiply both sides by AT to obtain a square system
multiply both members by (AT A)−1 to get:

dxcomputed = (AT A)−1AT η = A†η

A major problem: some points give better estimates of the true
optical flow than others.
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Point Feature Detection Two Ways to Look at the Problem

Optical Flow: A Thought Experiment

Ansatz: the scene is static therefore the true optical flow is zero:
dxexact = 0
Suppose the images vary only by additive noise. Then η
represents the noise itself

Error in the optical flow estimate: e def
= dxexact − dxcomputed

Then:

‖e‖ = ‖dxexact − dxcomputed‖ = ‖0− A†η‖ = ‖A†η‖ ≤ ‖A†‖ ‖η‖

‖A†‖ controls the error multiplication factor
But we also saw that: K = K (x ,η) = ‖A†‖
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Point Feature Detection Two Ways to Look at the Problem

Wide Baseline Correspondences: Estimating Local
Transformations

Consider two corresponding neighborhoods: Ω(x) and Ω′(x ′)
Define the cost function:

CT (θ)
def
=

1
2

∑

y∈Ω(x)

w(y − x)‖I(y)− I ′(T θ,x(y))‖2

Goal: estimate the parameter vector that minimizes CT (θ), i.e. :

θ̂ = argmin
θ∈Rp

CT (θ)
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Point Feature Detection Two Ways to Look at the Problem

The Right Question (and Hopefully the Right Answer)

Which points allow to estimate θ reliably?
Those points such that small amounts of noise will not cause the
estimate θ̂ to be inaccurate
Modeling the effect of noise:

I ′(T θ+∆θ,x(y)) = I(y) + η

Small amounts of η should not produce large perturbations ∆θ

Definition (Differential Condition Number for Point Neighborhoods)
The condition number associated with the point neighborhood Ω(x)
with respect to T θ,x is:

KT θ,x (Ω(x))
def
= lim

δ→0
sup
‖η‖≤δ

‖∆θ‖
‖η‖
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Point Feature Detection Two Ways to Look at the Problem

The Quantitative Answer

Theorem (Estimate of the Differential Condition Number for Point Neighborhoods)
The expression for the estimate of the condition number for the point neighborhood
Ω(x) is:

K̂T θ,x (Ω(x)) = ‖A† (Ω(x)) ‖

where the matrix A(Ω(x)):

A (Ω(x))
def
=




A(y1)

...
A(yN)



 ∈ RmN×p

is formed by the N sub-matrices:

A(y i)
def
= w(y i − x)JI ′(y i) JθT θ,x(y i)

obtained from a set of N points that sample the neighborhood Ω(x)

M. Zuliani (Vision Research Lab) Image Registration October 30, 2007 46 / 54

http://vision.ece.ucsb.edu/~zuliani


Point Feature Detection Two Ways to Look at the Problem

Standpoint Summary

”Good points”, a.k.a. corners, are related to the (spectral)
properties of the generalized gradient matrix:

A (Ω(x))
def
=




A(y1)

...
A(yN)



 ∈ RmN×p

where:

A(y i) = w(y i − x)JθI(T θ,x(y i)) = w(y i − x)JI(y i) JθT θ,x(y i)
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Point Feature Detection Corner Detectors

Spectral Corner Detectors

Definition (Spectral Corner Detector)
A spectral corner detector is a functional that depends solely on the
singular values of the generalized gradient matrix:

f : I × R2 → R
(I , x) &→ f (σ(A(Ω(x))))

Common Corner Detectors:

Harris-Stephens:
fHS = λ1λ2 − α(λ1 + λ2)

2 = det(AT A)− α trace(AT A)2

Rohr: fR =
√

λ1λ2

Noble-Förstner: fNF = λ1 λ2
λ1+λ2

= det(AT A)
trace(AT A)

Shi-Tomasi: fST = λmin
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Point Feature Detection Corner Detectors

Condition Number Corner Detectors

Definition (Condition Number Corner Detector)
A condition number corner detector is a spectral corner detector such that:

f : I × R2 → R

(I , x) &→ 1
‖A†(Ω(x))‖2

S,2q

Definition (Schatten Matrix q-norm)
The Schatten matrix q-norm is defined as:

‖A‖S,q
def
=

(
∑

i

σi(A)q

) 1
q

where σi(A) is the i th singular value of the matrix A.
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Point Feature Detection Corner Detectors

Putting Everything Together

Theorem (Corner Detectors Equivalence Relations)
The following interesting relations hold among the spectral corner
detectors when the transformation T θ,x models a simple translation:

Generalized Rohr equivalence: limq→0 q
√

pfK ,q = fR
Generalized Noble-Förstner equivalence: fK ,1 = fNF

Generalized Shi-Tomasi equivalence: fK ,∞ = fST

Theorem (Analytical Bounds)

f Translation
K ,q ≥ f RST

K ,q ≥ f Affine
K ,q
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Point Feature Detection Corner Detectors

Noble-Förstner Reponse for Different T θ,x
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Point Feature Detection Corner Detectors

Noble-Förstner Reponse for Different T θ,x
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Point Feature Detection Corner Detectors

Homework

Write a Matlab function to detect the corners in an arbitrary gray level
image using the Noble-Förstner detector. The syntax of the function
should be [x y f] = compute_corners(I, sigma, r), where:

I is the single channel input image.
sigma is the standard deviation of the Gaussian differentiation
filter in pixels
r is the radius of the circular neighborhood Ω(x)

x, y is the position of the interest points
f is the detector map, i.e. the reponse of the detector at each
location of the image

M. Zuliani (Vision Research Lab) Image Registration October 30, 2007 53 / 54

http://vision.ece.ucsb.edu/~zuliani


Point Feature Detection Corner Detectors

Protecting Luca’s Mental Health
A necessary (but not sufficient) condition to complete the assignment is
that your function will satisfy the following testing protocol:

The workspace will contain the image I and the variables of sigma, r
The command [x y f] = compute_corners(I, sigma, r);
will be issued
The results will be evaluated superimposing the detected point on the
original image and displaying the detector map:
figure
imshow(I);
hold on;
plot(y, x, ’r+’);
figure
imagesc(f); axis equal tight; colormap gray;
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