Introduction to Parallel Processing

Aggorithms and Architectures

Behrooz Parhami

Part II"
 Circuit-Level Parallelism

Slide 1

About This Presentation

This presentation is intended to support the use of the textbook Introduction to Parallel Processing: Algorithms and Architectures (Plenum Press, 1999, ISBN 0-306-45970-1). It was prepared by the author in connection with teaching the graduate-level course ECE 254B: Advanced Computer Architecture: Parallel Processing, at the University of California, Santa Barbara. Instructors can use these slides in classroom teaching and for other educational purposes. Any other use is strictly prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised	Revised
First	Spring 2005	Spring 2006	Fall 2008	Fall 2010
		Winter 2013	Winter 2014	Winter 2016
		Winter 2019	Winter 2020	Winter 2021

II" Circuit-Level Parallelism

Circuit-level specs: most realistic parallel computation model

- Concrete circuit model; incorporates hardware details
- Allows realistic speed and cost comparisons
- Useful for stand-alone systems or acceleration units

Topics in This Part

Chapter 7 Sorting and Selection Networks
Chapter 8A Search Acceleration Circuits
Chapter 8B Arithmetic and Counting Circuits
Chapter 8C Fourier Transform Circuits

7 Sorting and Selection Networks

Become familiar with the circuit model of parallel processing:

- Go from algorithm to architecture, not vice versa
- Use a familiar problem to study various trade-offs

```
Topics in This Chapter
7.1 What is a Sorting Network?
7.2 Figures of Merit for Sorting Networks
7.3 Design of Sorting Networks
7.4 Batcher Sorting Networks
7.5 Other Classes of Sorting Networks
7.6 Selection Networks
```


7.1 What is a Sorting Network?

> The outputs are a permutation of the inputs satisfying $y_{0} \leq y_{1} \leq \ldots \leq$. $Y_{h}-1$ (non-descending)

Fig. 7.1 An n-input sorting network or an n-sorter.

Block Diagram

Alternate Representations

Fig. 7.2 Block diagram and four different schematic representations for a 2 -sorter.

Building Blocks for Sorting Networks

Fig. 7.3 Parallel and bit-serial hardware realizations of a 2-sorter.

Proving a Sorting Network Correct

Fig. 7.4 Block diagram and schematic representation of a 4-sorter.
Method 1: Exhaustive test - Try all n ! possible input orders
Method 2: Ad hoc proof - for the example above, note that y_{0} is smallest, y_{3} is largest, and the last comparator sorts the other two outputs

Method 3: Use the zero-one principle - A comparison-based sorting algorithm is correct iff it correctly sorts all $0-1$ sequences (2^{n} tests)

Elaboration on the Zero-One Principle

Deriving a 0-1 sequence that is not correctly sorted, given an arbitrary sequence that is not correctly sorted.

Let outputs y_{i} and y_{i+1} be out of order, that is $y_{i}>y_{i+1}$
Replace inputs that are strictly less than y_{i} with 0 s and all others with 1 s
The resulting $0-1$ sequence will not be correctly sorted either

7.2 Figures of Merit for Sorting Networks

Cost: Number of comparators

Delay: Number of levels

Cost \times Delay

In the following example, we have 5 comparators

The following 4-sorter has 3 comparator levels on its critical path

The cost-delay product for this example is 15

Fig. 7.4 Block diagram and schematic representation of a 4-sorter.

Cost as a Figure of Merit

Optimal size is known for $n=1$ to $8: \quad 0,1,3,5,9,12,16,19$

$n=6$
12 modules, 5 levels
$n=9$
25 modules
9 levels

$n=10$
29 modules 9 levels (this one is incorrect)

$$
n=12
$$

39 modules
9 levels

Fig. 7.5 Some low-cost sorting networks.
This figure has been updated from Fig. 49, p. 227, in the 1998 edition of Donald Knuth's The Art of Computer Programming, Vol. 3
$n=16$
60 modules 10 levels

$n=13$
10 levels

45 modules

Delay as a Figure of Merit

Optimal delay is known for $n=1$ to 10 :

$$
0,1,3,3,5,5,6,6,7,7
$$

These 3 comparators constitute one level

$n=9$
25 modules
78 levels
(this one is incorrect)

$n=12$
40 modules
8 levels

Fig. 7.6 Some fast sorting networks.
This figure has been updated from Fig. 51, p. 229, in the 1998 edition of Donald Knuth's The Art of Computer Programming, Vol. 3

Parallel Processing, Circuit-Level Parallelism

Best Sorting Networks Known

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Depth ${ }^{[10]}$	0	1	3	3	5	5	6	6	7	7	8	8	9	9	9	9	10
Size, upper bound ${ }^{[11]}$	0	1	3	5	9	12	16	19	25	29	35	39	45	51	56	60	71
Size, lower bound (if different) ${ }^{[11]}$											38	37	41	45	49	53	58

References:
[10] Codish, Michael, Luis Cruz-Filipe, Thorsten Ehlers, Mike Müller, and Peter Schneider-Kamp, "Sorting Networks: To the End and Back Again," 2015, arXiv:1507.01428
[11] Codish, Michael, Luis Cruz-Filipe, Michael Frank, and Peter Schneider-Kamp, "Twenty-Five Comparators is Optimal when Sorting Nine Inputs (and Twenty-Nine for Ten)," Proc. Int'l Conf. Tools with AI, pp. 186-193, 2014. arXiv:1405.5754

The problem of determining whether a given candidate network is a sorting network is co-NP-complete
[13] Parberry, Ian, On the Computational Complexity of Optimal Sorting Network Verification, Proc. PARLE '91: Parallel Architectures and Languages Europe, Volume I: Parallel Architectures and Algorithms, 1991, pp. 252-269.

Cost-Delay Product as a Figure of Merit

Low-cost 10-sorter from Fig. 7.5

Cost \times Delay $=29 \times 9=261$

Fast 10-sorter from Fig. 7.6

Cost \times Delay $=31 \times 7=217$

The most cost-effective n-sorter may be neither the fastest design, nor the lowest-cost design

7.3 Design of Sorting Networks

$$
\begin{aligned}
C(n) & =n(n-1) / 2 \\
D(n) & =n \\
\text { Cost } \times \text { Delay } & =n^{2}(n-1) / 2=\Theta\left(n^{3}\right)
\end{aligned}
$$

Fig. 7.7 Brick-wall 6-sorter based on odd-even transposition.

Insertion Sort and Selection Sort

Parallel insertion sort = Parallel selection sort = Parallel bubble sort!
$C(n)=n(n-1) / 2$
$D(n)=2 n-3$
Cost \times Delay
$=\Theta\left(n^{3}\right)$

Fig. 7.8 Sorting network based on insertion sort or selection sort.
Parallel Processing, Circuit-Level Parallelism

Theoretically Optimal Sorting Networks

AKS sorting network (Ajtai, Komlos, Szemeredi: 1983)

Note that even for these optimal networks, delay-cost product is suboptimal; but this is the best we can do

Existing sorting networks have $O\left(\log ^{2} n\right)$ latency and $\mathrm{O}\left(n \log ^{2} n\right)$ cost

Given that $\log _{2} n$ is only 20 for $n=1000000$, the latter are more practical

Unfortunately, AKS networks are not practical owing to large (4-digit) constant factors involved; improvements since 1983 not enough

7.4 Batcher Sorting Networks

Fig. 7.9 Batcher's even-odd merging network for $4+7$ inputs.

Proof of Batcher's Even-Odd Merge

Use the zero-one principle
Assume: $\quad x$ has $k 0 s$ y has $k^{\prime} 0$ s
v has $k_{\text {even }}=\lceil k / 2\rceil+\left\lceil k^{\prime} / 2\right\rceil 0 s$ w has $k_{\text {odd }}=\lfloor k / 2\rfloor+\left\lfloor k^{\prime} / 2\right\rfloor 0 s$

Case a: $k_{\text {even }}=k_{\text {odd }}$

v	0	0	0	0	0	0	1	1	1	1	1	1

Case b: $k_{\text {even }}=k_{\text {odd }}+1$
v $\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}$
 Out of order

Parallel Processing, Circuit-Level Parallelism

Batcher's Even-Odd Merge Sorting

Fig. 7.10 The recursive structure of Batcher's evenodd merge sorting network.

Batcher's (m, m) even-odd merger, for m a power of 2 :

$$
\begin{aligned}
& C(m)=2 C(m / 2)+m-1 \\
&=(m-1)+2(m / 2-1)+4(m / 4-1)+\ldots \\
&=m \log _{2} m+1 \\
& D(m)=D(m / 2)+1=\log _{2} m+1 \\
& \text { Cost } \times \text { Delay }=\Theta\left(m \log ^{2} m\right)
\end{aligned}
$$

Batcher sorting networks based on the even-odd merge technique:

$$
\begin{aligned}
C(n) & =2 C(n / 2)+(n / 2)\left(\log _{2}(n / 2)\right)+1 \\
& \cong n\left(\log _{2} n\right)^{2} / 2 \\
D(n) & =D(n / 2)+\log _{2}(n / 2)+1 \\
& =D(n / 2)+\log _{2} n \\
& =\log _{2} n\left(\log _{2} n+1\right) / 2 \\
\text { Cost } \times & \text { Delay }=\Theta\left(n \log ^{4} n\right)
\end{aligned}
$$

Example Batcher's Even-Odd 8-Sorter

Fig. 7.11 Batcher's even-odd merge sorting network for eight inputs .

Bitonic-Sequence Sorter

Bitonic sequence:
133466622100 Rises, then falls

877666546889 Falls, then rises

898776665468 The previous sequence, right-rotated by 2

Fig. 14.2 Sorting a bitonic sequence on a linear array.

Batcher's Bitonic Sorting Networks

Fig. 7.12 The recursive structure of Batcher's bitonic sorting network.

Fig. 7.13 Batcher's bitonic sorting network for eight inputs.

7.5 Other Classes of Sorting Networks

Fig. 7.14 Periodic balanced sorting network for eight inputs.

Desirable properties:
a. Regular / modular (easier VLSI layout).
b. Simpler circuits via reusing the blocks
c. With an extra block tolerates some faults (missed exchanges)
d. With 2 extra blocks provides tolerance to single faults (a missed or incorrect exchange)
e. Multiple passes through faulty network (graceful degradation)
f. Single-block design becomes fault-tolerant by using an extra stage

Shearsort-Based Sorting Networks (1)

Fig. 7.15 Design of an 8 -sorter based on shearsort on 2×4 mesh.

Shearsort-Based Sorting Networks (2)

0	1
3	2
4	5
7	6

Corresponding 2-D mesh

Some of the same advantages as periodic balanced sorting networks

Fig. 7.16 Design of an 8 -sorter based on shearsort on 2×4 mesh.

7.6 Selection Networks

Direct design may yield simpler/faster selection networks

3rd smallest element
Can remove this block if smallest three inputs needed

Can remove these four comparators

Deriving an (8, 3)-selector from Batcher's even-odd merge 8-sorter.

Parallel Processing, Circuit-Level Parallelism

Categories of Selection Networks

Unfortunately we know even less about selection networks than we do about sorting networks.

One can define three selection problems [Knut81]:
I. Select the k smallest values; present in sorted order
II. Select k th smallest value
III. Select the k smallest values; present in any order

Circuit and time complexity: (I) hardest, (III) easiest

Type-III Selection Networks

[0,7]	[0,6]	[0,4]	[0,4]	0,3]	
[0,7]	[1,7]	[1,6]	[1,5]	[1,3]	
[0,7]	$[0,6]$	$[1,6]$	[2,6]	[1,3]	>
[0,7]	[1,7]	[3,7]	[3,7]	[0,3]	
[0,7]	$[0,6]$	[0,4]	[0,4]	[4,7]	
[0,7]	[1,7]	[1,6]	[1,5]	[4,6]	
[0,7]	[0,6]	[1,6]	[2,6]	[4,6]	
[0,7]	[1,7]	[3,7]	[3,7]	[4,7]	

Figure 7.17 A type III (8, 4)-selector.
8-Classifier

Classifier Networks

Classifiers:

Selectors that separate the smaller half of values from the larger half

Use of classifiers for building sorting networks

Problem: Given $\mathrm{O}(\log n)$-time and $\mathrm{O}(n \log n)$-cost n-classifier designs, what are the delay and cost of the resulting sorting network?

8A Search Acceleration Circuits

Much of sorting is done to facilitate/accelerate searching

- Simple search can be speeded up via special circuits
- More complicated searches: range, approximate-match

Topics in This Chapter	
8A. 1	Systolic Priority Queues
8A. 2	Searching and Dictionary Operations
8A. 3	Tree-Structured Dictionary Machines
8A. 4	Associative Memories
8A. 5	Associative Processors
8A. 6	VLSI Trade-offs in Search Processors

8A. 1 Systolic Priority Queues

Problem: We want to maintain a large list of keys, so that we can add new keys into it (insert operation) and obtain the smallest key (extract operation) whenever desired.

Unsorted list: Constant-time insertion / Linear-time extraction
Sorted list: Linear-time insertion / Constant-time extraction
Can both insert and extract operations (priority-queue operations) be performed in constant time, independent of the size of the list?

First Attempt: Via a LinearArray Sorter

Insertion of new keys and read-out of the smallest key value can be done in constant time, but the "hole" created by the extracted value cannot be filled in constant time

Fig. 2.9

$$
5--2--8--6--3--7--9--1--
$$

$$
5-2-8 \text {-- } 8 \text { - } 6 \text {-- } 3 \text {-- } 7 \text {-- } 9 \text { - } 1
$$

$$
5 \text {-- } 2 \text {-- } 8 \text {-- } 6 \text {-- } 3 \text {-- } 7 \text {-- } 9 \text {-- }
$$

$$
5-2-8-8-6-3-3-7-9
$$

$$
1
$$

A Viable 5 -- 2 -- 8 -- 6 -- 3 -- 7 --

$$
19
$$

$$
5-2-8-8-6-3-1
$$

$$
\begin{align*}
& 9 \tag{tabular}\\
& 1 \\
& 1 \\
& 7
\end{align*}
$$

Systolic Priority Queue

Operating on every other clock cycle, allows holes to be filled

\square
\square

Systolic Data Structures

Parallel Processing, Circuit-Level Parallelism
Slide 34

8A. 2 Searching and Dictionary Operations

Parallel $(p+1)$-ary search on PRAM

$$
\begin{aligned}
& \log _{p+1}(n+1) \\
& \quad=\log _{2}(n+1) / \log _{2}(p+1) \\
& \quad=\Theta(\log n / \log p) \text { steps }
\end{aligned}
$$

Speedup $\cong \log p$
Optimal: no comparison-based search algorithm can be faster

A single search in a sorted list can't be significantly speeded up through parallel processing, but all hope is not lost:

Dynamic data (sorting overhead)
Batch searching (multiple lookups)

Example:
$n=26, p=2$

${ }_{2}$ Step Step Step 210

Dictionary Operations

Basic dictionary operations: record keys $x_{0}, x_{1}, \ldots, x_{n-1}$

search (y)	Find record with key y; return its associated data
insert (y, z)	Augment list with a record: key $=y$, data $=z$
delete (y)	Remove record with key y; return its associated data

Some or all of the following operations might also be of interest:
findmin
findmax
findmed
findbest(y)
findnext(y)
findprev(y)
extractmin
extractmax
extractmed

Find record with smallest key; return data
Find record with largest key; return data
Find record with median key; return data
Find record with key "nearest" to y
Find record whose key is right after y in sorted order Find record whose key is right before y in sorted order Remove record(s) with min key; return data Remove record(s) with max key; return data Remove record(s) with median key value; return data

Priority queue operations: findmin, extractmin (or findmax, extractmax)

Parallel Processing, Circuit-Level Parallelism

8A. 3 Tree-Structured Dictionary Machines

Fig. 8.1 A tree-structured dictionary machine.

Combining in the triangular nodes
search(y): Pass OR of match signals \& data from "yes" side
findmin / findmax: Pass smaller/larger of two keys \& data
findmed:
Not supported here
findbest(y): Pass the larger of two match-degree indicators along with associated record

Insertion and Deletion in the Tree Machine

Figure 8.2 Tree machine storing 5 records and containing 3 free slots.

Physical Realization of a Tree Machine

Tree machine in folded form

VLSI Layout of a Tree

H-tree layout (used, e.g., for clock distribution network in high-performance microchips)

8A. 4 Associative Memories

Associative or content-addressable memories (AMs, CAMs) Binary (BCAM) vs. ternary (TCAM)

Figure 3: Conventional SRAM storage cell, binary CAM and ternary CAM cells. The CAM cells omit the read/write access circuitry for clarity.

Image source: http://www.pagiamtzis.com/cam/camintro.html
Mismatch in cell connects the match line ($m /$) to ground If all cells in the word match the input pattern, a word match is indicated

Word Match Circuitry

The match line is precharged and then pulled down by any mismatch

Image source: http://www.pagiamtzis.com/cam/camintro.html

Note that each CAM cell is nearly twice as complex as an SRAM cell More transistors, more wires

CAM Array Operation

Figure 1: NOR-based CAM architecture (adapted from [Sch96])

Image source: http://www.pagiamtzis.com/cam/camintro.html

Parallel Processing, Circuit-Level Parallelism

Current CAM Applications

Packet forwarding

Routing tables specify the path to be taken by matching an incoming destination address with stored address prefixes
Prefixes must be stored in order of decreasing length (difficult updating)

Packet classification

Determine packet category based on information in multiple fields
Different classes of packets may be treated differently

Associative caches / TLBs

Main processor caches are usually not fully associative (too large) Smaller specialized caches and TLBs benefit from full associativity

Data compression

Frequently used substrings are identified and replaced by short codes Substring matching is accelerated by CAM

History of Associative Processing

Associative memory
Parallel masked search of all words
Bit-serial implementation with RAM
Associative processor
Add more processing logic to PEs

Comparand Mask

Memory array with comparison logic

Table 4.1 Entering the second half-century of associative processing

Decade	Events and Advances	Technology	Performance
1940s	Formulation of need \& concept	Relays	
1950s	Emergence of cell technologies	Magnetic, Cryogenic	Mega-bit-OPS
1960s	Introduction of basic architectures	Transistors	
1970s	Commercialization \& applications	ICs	Giga-bit-OPS
1980s	Focus on system/software issues	VLSI	Tera-bit-OPS
1990s	Scalable \& flexible architectures	ULSI, WSI	Peta-bit-OPS

8A. 5 Associative Processors

Associative or content-addressable memories/processors constituted early forms of SIMD parallel processing

Fig. 23.1
Functional view of an associative memory/processor.

Search Functions in Associative Devices

Exact match: Locating data based on partial knowledge of contents Inexact match: Finding numerically or logically proximate values

Membership: Identifying all members of a specified set
Relational: Determining values that are less than, less than or equal, etc.
Interval: Marking items that are between or outside given limits
Extrema: Finding the maximum, minimum, next higher, or next lower
Rank-based: Selecting kth or k largest/smallest elements
Ordered retrieval: Repeated max- or min-finding with elimination (sorting)

Parallel Processing, Circuit-Level Parallelism

Classification of Associative Devices

Handling of bits
within words

Parallel Processing, Circuit-Level Parallelism

WSBP: Word-Serial Associative Devices

Strictly speaking, this is not a parallel processor, but with superhigh-speed shift registers and deeply pipelined processing logic, it behaves like one

WPBS: Bit-Serial Associative Devices

One bit of every word is processed in one device cycle
Advantages: 1. Can be implemented with conventional memory
2. Easy to add other capabilities beyond search

One bit-slice

Example: Adding field A to field B in every word, storing the sum in field S

Loop:
Read next bit slice of A
Read next bit slice of B
(carry from previous slice is in PE flag C)
Find sum bits; store in next bit slice of S
Find new carries; store in PE flag
Endloop

Goodyear STARAN Associative Processor

First computer based on associative memory (1972)

Aimed at air traffic control applications

Aircraft conflict detection is an $\mathrm{O}\left(n^{2}\right)$ operation

AM can do it in O(n) time

Parallel Processing, Circuit-Level Parallelism

Flip Network Permutations in the Goodyear STARAN

The 256 bits in a bit-slice could be routed to 256 PEs in different arrangements (permutations)

Figs. in this slide from J. Potter, "The STARAN Architecture and Its Applications ...," 1978 NCC

Slide 52

Distributed Array Processor (DAP)

Parallel Processing, Circuit-Level Parallelism

DAP's High-Level Structure

Parallel Processing, Circuit-Level Parallelism

8A. 6 VLSI Trade-offs in Search Processors

This section has not been written yet

References:
[Parh90] B. Parhami, "Massively Parallel Search Processors: History and Modern Trends," Proc. 4th Int'l Parallel Processing Symp., pp. 91-104, 1990.
[Parh91] B. Parhami, "Scalable Architectures for VLSI-Based Associative Memories," in Parallel Architectures, ed. by N. Rishe, S. Navathe, and D. Tal, IEEE Computer Society Press, 1991, pp. 181-200.

8B Arithmetic and Counting Circuits

Many parallel processing techniques originate from, or find applications in, designing high-speed arithmetic circuits

- Counting, addition/subtraction, multiplication, division
- Limits on performance and various VLSI trade-offs

Topics in This Chapter	
8B. 1	Basic Addition and Counting
8B. 2	Circuits for Parallel Counting
8B. 3	Addition as a Prefix Computation
8B. 4	Parallel Prefix Networks
8B. 5	Multiplication and Squaring Circuits
8B. 6	Division and Square-Rooting Circuits

8B. 1 Basic Addition and Counting

Parallel Processing, Circuit-Level Parallelism

Constant-Time Counters

Any fast adder design can be specialized and optimized to yield a fast counter (carry-lookahead, carry-skip, etc.)

One can use redundant representation to build a constant-time counter, but a conversion penalty must be paid during read-out

Parallel Processing, Circuit-Level Parallelism

8B. 2 Circuits for Parallel Counting

1-bit full-adder = (3; 2)-counter

Circuit reducing 7 bits to their 3-bit sum $=(7 ; 3)$-counter

Circuit reducing n bits to their
$\left\lceil\log _{2}(n+1)\right\rceil$-bit sum
$=\left(n ;\left\lceil\log _{2}(n+1)\right\rceil\right)$-counter

Fig. 8.16 (in Computer Arithmetic) A 10-input parallel counter also known as a (10; 4)-counter.

Recursive Construction of Parallel Counters

An n-input parallel counting network (PCN) can be built from two Ln/2 2 -bit parallel counting networks and a $\left\lfloor\log _{2} n\right\rfloor$-bit adder

Parallel Processing, Circuit-Level Parallelism

Accumulative Parallel Counters

True generalization of sequential counters

Parallel Processing, Circuit-Level Parallelism

Threshold Counting Networks

At-least-l-out-of-n threshold counting network built from a multiplexer and two smaller threshold counting networks

Recursively-built 5-out-of-9 voter

Slide 62

8B. 3 Addition as a Prefix Computation

Example: Prefix sums

x_{0}	x_{1}	x_{2}	\cdots	x_{i}
x_{0}	$x_{0}+x_{1}$	$x_{0}+x_{1}+x_{2}$	\cdots	$x_{0}+x_{1}+\ldots+x_{i}$
s_{0}	s_{1}	s_{2}	\cdots.	s_{i}

Sequential time with one processor is $\mathrm{O}(n)$
Simple pipelining does not help

Fig. 8.4 Prefix computation using a latched or pipelined function unit.

Parallel Processing, Circuit-Level Parallelism

Improving the Performance with Pipelining

Ignoring pipelining overhead, it appears that we have achieved a speedup of 4 with 3 "processors." Can you explain this anomaly? (Problem 8.6a)

Fig. 8.5 High-throughput prefix computation using a pipelined function unit.

Carry Determination as a Prefix Computation

Figure from Computer Arithmetic

$$
\begin{gathered}
g_{i}=x_{i} y_{i} \\
p_{i}=x_{i} \oplus y_{i}
\end{gathered}
$$

$$
p_{-1}=0
$$

Fig. 5.15 (ripple-carry network) superimposed on Fig. 5.14 (generic adder).

8B. 4 Parallel Prefix Networks

$$
\begin{aligned}
T(n) & =T(n / 2)+2 \\
& =2 \log _{2} n-1 \\
C(n) & =C(n / 2)+n-1 \\
& =2 n-2-\log _{2} n
\end{aligned}
$$

This is the Brent-Kung Parallel prefix network (its delay is actually $2 \log _{2} n-2$)

Fig. 8.6 Prefix sum network built of one $n / 2$-input network and $n-1$ adders.

Parallel Processing, Circuit-Level Parallelism

Example of Brent-Kung Parallel Prefix Network

Fig. 8.8 Brent-Kung parallel prefix graph for $n=16$.

Another Divide-and-Conquer Design

Ladner-Fischer construction

Fig. 8.7 Prefix sum network built of two $n / 2$-input networks and $n / 2$ adders.

Example of Kogge-Stone Parallel Prefix Network

$$
\begin{aligned}
T(n) & =\log _{2} n \\
C(n) & =(n-1)+(n-2) \\
& +(n-4)+\ldots+n / 2 \\
& =n \log _{2} n-n-1
\end{aligned}
$$

Optimal in delay, but too complex in number of cells and wiring pattern

Fig. 8.9 Kogge-Stone parallel prefix graph for $n=16$.

Comparison and Hybrid Parallel Prefix Networks

Brent/Kung
6 levels 26 cells

Kogge/Stone 4 levels 49 cells

Fig. 8.10 A hybrid Brent-Kung / Kogge-Stone parallel prefix graph for $n=16$.

$$
\begin{array}{lllllllllllll}
x_{15} & x_{14} & x_{13} & x_{12} & x_{11} & x_{10} & x_{9} & x_{8} & x_{7} & x_{6} & x_{5} & x_{4} & x_{3} \\
x_{2} & x_{1} & x_{0}
\end{array}
$$

Han/Carlson 5 levels 32 cells
$\begin{array}{llllllllllll}\mathrm{S}_{15} & \mathrm{~S}_{14} & \mathrm{~s}_{13} & \mathrm{~S}_{12} & \mathrm{~s}_{11} & \mathrm{~s}_{10} \mathrm{~S}_{9} & \mathrm{~S}_{8} & \mathrm{~s}_{7} & \mathrm{~s}_{6} & \mathrm{~s}_{5} & \mathrm{~s}_{4} & \mathrm{~s}_{3} \\ \mathrm{~s}_{2} & \mathrm{~s}_{1} & \mathrm{~s}_{0}\end{array}$

Linear-Cost, Optimal Ladner-Fischer Networks

Define a type-x parallel prefix network as one that: Produces the leftmost output in optimal $\log _{2} n$ time Yields all other outputs with at most x additional delay

Note that even the Brent-Kung network produces the leftmost output in optimal time

We are interested in building a type-0 overall network, but can use type-x networks ($x>0$) as component parts

Recursive construction of the fastest possible parallel prefix network (type-0)

Parallel Processing, Circuit-Level Parallelism

Examples of Type-0, 1, 2 Parallel Prefix Networks

Brent/Kung: 16-input type-2 network

Kogge/Stone 16-input type-0 network

Fig. 8.10 A hybrid Brent-Kung / Kogge-Stone parallel prefix graph for $n=16$.

$$
\begin{array}{lllllllllll}
x_{15} & x_{14} & x_{13} & x_{12} & x_{11} & x_{10} & x_{9} & x_{8} & x_{7} & x_{6} & x_{5} \\
x_{4} & x_{3} & x_{2} & x_{1} & x_{0}
\end{array}
$$

Parallel Processing, Circuit-Level Parallelism
(0) Scren

8B. 5 Multiplication and Squaring Circuits

Notation for our discussion of multiplication algorithms:

a	Multiplicand		$a_{k-1} a_{k-2} \ldots a_{1} a_{0}$ x
	Multiplier		$x_{k-1} x_{k-2} \ldots x_{1} x_{0}$ p
Product $(a \times x)$	$p_{2 k-1} p_{2 k-2}$	\cdot	$\cdot p_{3} p_{2} p_{1} p_{0}$

Initially, we assume unsigned operands

Fig. 9.1 (in Computer Arithmetic) Multiplication of 4-bit binary numbers.

Parallel Processing, Circuit-Level Parallelism

Divide-and-Conquer (Recursive) Multipliers

Building wide multiplier from narrower ones

Fig. 12.1 (in Computer Arithmetic) Divide-and-conquer (recursive) strategy for synthesizing a $2 b \times 2 b$

$$
\begin{aligned}
& C(k)=4 C(k / 2)+O(k)=O\left(k^{2}\right) \\
& T(k)=T(k / 2)+O\left(\log ^{2}\right)=O\left(\log ^{2} k\right)
\end{aligned}
$$

(Anatoly) Karatsuba Multiplication

$2 b \times 2 b \quad$ multiplication requires four $b \times b$ multiplications:
$\left(2^{b} a_{H}+a_{L}\right) \times\left(2^{b} x_{H}+x_{L}\right)=2^{2 b} a_{H} x_{H}+2^{b}\left(a_{H} x_{L}+a_{L} x_{H}\right)+a_{L} x_{L}$

Karatsuba noted that one of the four multiplications can be removed at the expense of introducing a few additions:

$$
\begin{aligned}
& \left(2^{b} a_{H}+a_{L}\right) \times\left(2^{b} x_{H}+x_{L}\right)= \\
& 2^{2 b} a_{H} x_{H}+2^{b}\left[\left(a_{H}+a_{L}\right) \times\left(x_{H}+x_{L}\right)-a_{H} x_{H}-a_{L} x_{L}\right]+a_{L} x_{L}
\end{aligned}
$$

Mult 1

Mult 2

Benefit is quite significant for extremely wide operands

$$
\begin{aligned}
& C(k)=3 C(k / 2)+O(k)=O\left(k^{1.585}\right) \\
& T(k)=T(k / 2)+O(\log k)=O\left(\log ^{2} k\right)
\end{aligned}
$$

Divide-and-Conquer Squarers

Building wide squarers from narrower ones

Divide-and-conquer (recursive) strategy for synthesizing a $2 b \times 2 b$ squarer from $b \times b$ squarers and multiplier.

VLSI Complexity Issues and Bounds

Any VLSI circuit computing the product of two k-bit integers must satisfy the following constraints:

AT grows at least as fast as $k^{3 / 2}$
$A T^{2}$ is at least proportional to k^{2}
Array multipliers: $\mathrm{O}\left(k^{2}\right)$ gate count and area, $\mathrm{O}(k)$ time

$$
A T=\mathrm{O}\left(k^{3}\right) \quad A T^{2}=\mathrm{O}\left(k^{4}\right)
$$

Simple recursive multipliers: $\mathrm{O}\left(k^{2}\right)$ gate count, $\mathrm{O}\left(\log ^{2} k\right)$ time

$$
A T=\mathrm{O}\left(k^{2} \log ^{2} k\right) ? \quad A T^{2}=\mathrm{O}\left(k^{2} \log ^{4} k\right) ?
$$

Karatsuba multipliers: $\mathrm{O}\left(k^{1.585}\right)$ gate count, $\mathrm{O}\left(\log ^{2} k\right)$ time

$$
A T=O\left(k^{1.585} \log ^{2} k\right) ? \quad A T^{2}=O\left(k^{1.585} \log ^{4} k\right) ? ? ?
$$

Discrepancy due to the fact that interconnect area is not taken into account in our previous analyses

Theoretically Best Multipliers

Arnold Schonhage and Volker Strassen (via FFT); best until 2007
O(log k) time
$\mathrm{O}(k \log k \log \log k)$ complexity
In 2007, Martin Furer managed to replace the $\log \log k$ term with an asymptotically smaller term (for astronomically large numbers)

It is an open problem whether there exist logarithmic-delay multipliers with linear cost (it is widely believed that there are not)

In the absence of a linear cost multiplication circuit, multiplication must be viewed as a more difficult problem than addition

In 2019, David Harvey and Joris van der Hoeven developed an
$\mathrm{O}(n \log n)$ multiplication algorithm, which is believed to be the best possible theoretically (but not practical at present)

8B. 6 Division and Square-Rooting Circuits

Division via Newton's method: O(log k) multiplications
Using Schonhage and Strassen's FFT-based multiplication, leads to:
O($\left.\log ^{2} k\right)$ time
$\mathrm{O}(k \log k \log \log k)$ complexity
With the multiplication algorithm of Harvey and van der Hoeven:
O($\left.\log ^{2} k\right)$ time
$\mathrm{O}(k \log k)$ complexity
Complexity theory results: It is possible to design dividers

with	$O(\log k)$ latency	and	$O\left(k^{4}\right) \operatorname{cost}$
with	$O(\log k \log \log k)$ latency	and	$O\left(k^{2}\right) \operatorname{cost}$

These theoretical constructions have not led to practical designs

Theoretically Best Dividers

Best known bounds; cannot be achieved at the same time (yet)
O(log k) time
$\mathrm{O}(k \log k)$ complexity
In 1966, S. A. Cook established these simultaneous bounds:
O($\left.\log ^{2} k\right)$ time
$\mathrm{O}(k \log k \log \log k)$ complexity
In 1983, J. H. Reif reduced the time complexity to the current best
$\mathrm{O}\left(\log k(\log \log k)^{2}\right)$ time
In 1984, Beame/Cook/Hoover established these simultaneous bounds:
O(log k) time
$\mathrm{O}\left(k^{4}\right)$ complexity
Given our current state of knowledge, division must be viewed as a more difficult problem than multiplication

Implications for Ultrawide High-Radix Arithmetic

Arithmetic results with k-bit binary operands hold with no change when the k bits are processed as g radix -2^{h} digits ($g h=k$)

Another Circuit Model: Artificial Neural Nets

Feedforward network
Three layers: input, hidden, output No feedback

Recurrent network
Simple version due to Elman
Feedback from hidden nodes to special nodes at the input layer

Hopfield network

All connections are bidirectional

Characterized by connection topology and learning method

8C Fourier Transform Circuits

Fourier transform is quite important, and it also serves as a template for other types of arithmetic-intensive computations

- FFT; properties that allow efficient implementation
- General methods of mapping flow graphs to hardware

```
Topics in This Chapter
8C.1 The Discrete Fourier Transform
8C.2 Fast Fourier Transform (FFT)
8C.3 The Butterfly FFT Network
8C.4 Mapping of Flow Graphs to Hardware
8C. 5 The Shuffle-Exchange Network
8C.6 Other Mappings of the FFT Flow Graph
```


8C. 1 The Discrete Fourier Transform

n-point DFT
x in time domain y in frequency domain

Some operations are easier in frequency domain; hence the need for transform

Other important transforms for discrete signals:
z-transform (generalized form of Fourier transform)
Discrete cosine transform (used in JPEG image compression) Haar transform (a wavelet transform, which like DFT, has a fast version)

Defining the DFT and Inverse DFT

DFT yields output sequence y_{i} based on input sequence $x_{i}(0 \leq i<n)$

$$
y_{i}=\sum_{j=0 \text { ton-1 }} \omega_{n}^{i j} x_{j} \quad \mathrm{O}\left(n^{2}\right) \text {-time naïve algorithm }
$$

where ω_{n} is the nth primitive root of unity; $\omega_{n}{ }^{n}=1, \omega_{n}{ }^{j} \neq 1(1 \leq j<n)$
Examples: $\quad \omega_{4}=i$

$$
\begin{aligned}
& \omega_{3}=(-1+i \sqrt{ } 3) / 2 \\
& \omega_{8}=\sqrt{ } 2(1+i) / 2
\end{aligned}
$$

The inverse DFT is almost exactly the same computation:

$$
x_{i}=(1 / n) \sum_{j=0 \text { ton-1 }} \omega_{n}^{-i j} y_{j}
$$

Input seq. $x_{i}(0 \leq i<n)$ is said to be in time domain
Output seq. $y_{i}(0 \leq i<n)$ is the input's frequency-domain characterization

DFT of a Cosine Waveform

DFT of a cosine with a frequency $1 / 10$ the sampling frequency f_{s}

Slide 86

DFT of a Cosine with Varying Resolutions

DFT of a cosine with a frequency $1 / 10$ the sampling frequency f_{s}

Frequency f_{s}

DFT as Vector-Matrix Multiplication

DFT and inverse DFT computable via matrix-by-vector multiplication $y_{i}=\sum_{j=0}^{n-1} \omega_{n}{ }^{i j} x_{j}$

$$
[y]=[w]
$$

DFT matrix

DFT Basics and Visualizations

Fourier transform, Fourier series, and frequency spectrum (16-min. video) https://www.youtube.com/watch?v=r18Gi8ISkfM

Discrete Fourier transform: Introduction (11-minute video) https://www.youtube.com/watch?v=mkGsMWi_4Q

A visual introduction to Fourier transform (21-minute video) https://www.youtube.com/watch?v=spUNpyF58BY

Application of DFT to Smoothing or Filtering

DFT Application Example

Signal corrupted by 0-mean random noise

FFT shows strong frequency components of 50 and 120

The uncorrupted signal was:
$x=0.7 \sin (2 \pi 50 t)+\sin (2 \pi 120 t)$

Source of images:
http://www.mathworks.com/help/techdoc/ref/fft.html

Application of DFT to Spectral Analysis

Tone frequency assignments for touch-tone dialing

Frequency spectrum of received tone

8C. 2 Fast Fourier Transform

DFT yields output sequence y_{i} based on input sequence $x_{i}(0 \leq i<n)$

$$
y_{i}=\sum_{j=0 \text { ton }-1} \omega_{n}{ }^{i j} x_{j}
$$

Fast Fourier Transform (FFT):

The Cooley-Tukey algorithm

Image from Wikipedia
$\mathrm{O}(n \log n)$-time DFT algorithm that derives y from half-length sequences u and v that are DFTs of even- and odd-indexed inputs, respectively

$$
\left.\begin{array}{rll}
y_{i}=u_{i}+\omega_{n}{ }^{i} v_{i} \\
y_{i+n / 2}=u_{i}+\omega_{n}^{i+n / 2} v_{i}= & u_{i}-\omega_{n}{ }^{i} v_{i} & (0 \leq i<n / 2) \\
& T(n)=2 T(n / 2)+n=n \log _{2} n & \text { Butterfly } \\
\text { operation }
\end{array}\right] \text { sequentially }
$$

More General Factoring-Based Algorithm

reinterpret /d inputs:

$$
\longrightarrow=\text { contiguous }
$$

first DFT columns, size N_{2} (non-contiguous)
multiply by N "twiddle factors"

finally, DFT columns, size N_{1} (non-contiguous)

Parallel Processing, Circuit-Level Parallelism

8C. 3 The Butterfly FFT Network

u : DFT of even-indexed inputs
v : DFT of odd-indexed inputs

$y_{i}=u_{i}+\omega_{n}{ }^{i} v_{i} \quad(0 \leq i<n / 2)$
$y_{i+n / 2} \quad=u_{i}+\omega_{n}^{i+n / 2} v_{i}$

Fig. 8.11 Butterfly network for an 8-point FFT.

Butterfly Processor

Performs a pair of multiply-add operations, where the multiplication is by a constant

Design can be optimized by merging the adder and subtractor, as they receive the same inputs

Computation Scheme for 16-Point FFT

Slide 97

8C. 4 Mapping of Flow Graphs to Hardware

Given a computation flow graph, it can be mapped to hardware

Direct one-to-one mapping (possibly with pipelining)

Fig. 25.6 Parhami's textbook on computer arithmetic.

Ad-hoc Scheduling on a Given Set of Resources

Given a computation flow graph, it can be mapped to hardware

Assume:
$t_{\text {add }}=1$
$t_{\text {mult }}=3$
$t_{\text {div }}=8$
$t_{\text {sqrt }}=10$

Parallel Processing, Circuit-Level Parallelism

Mapping through Projection

Given a flow graph, it can be projected in various directions to obtain corresponding hardware realizations
Multiple nodes of a flow graph may map onto a single hardware node
That one hardware node then performs the computations associated with the flow graph nodes one by one, according to some timing arrangement (schedule)

Linear array, with each cell acting for one butterfly network row

8C. 5 The Shuffle-Exchange Network

Variants of the Butterfly Architecture

Fig. 8.12 FFT network variant and its shared-hardware realization.

8C. 6 Other Mappings of the FFT Flow Graph

This section is incomplete at this time

More Economical FFT Hardware

Fig. 8.13
Linear array of $\log _{2} n$ cells for n-point FFT computation.

Space-Time Diagram for the Feedback FFT Array

