
Oct. 2007 Background and Motivation Slide 1

Fault-Tolerant Computing
Basic Concepts
and Tools

Oct. 2007 Background and Motivation Slide 2

About This Presentation

Edition Released Revised Revised

First Sep. 2006 Oct. 2007

This presentation has been prepared for the graduate
course ECE 257A (Fault-Tolerant Computing) by
Behrooz Parhami, Professor of Electrical and Computer
Engineering at University of California, Santa Barbara.
The material contained herein can be used freely in
classroom teaching or any other educational setting.
Unauthorized uses are prohibited. © Behrooz Parhami

Oct. 2007 Background and Motivation Slide 3

“I should get this remote
control looked at.”

Oct. 2007 Background and Motivation Slide 4

Background and Motivation for
Dependable Computing

Oct. 2007 Background and Motivation Slide 5

The Curse of Complexity
Computer engineering is the art and science of
translating user requirements we do not fully understand;
into hardware and software we cannot precisely analyze;
to operate in environments we cannot accurately predict;
all in such a way that the society at large is given
no reason to suspect the extent of our ignorance.1

1Adapted from definition of structural engineering: Ralph Kaplan, By Design: Why There Are No Locks
on the Bathroom Doors in the Hotel Louis XIV and Other Object Lessons, Fairchild Books, 2004, p. 229

Microsoft Windows NT (1992): ≈4M lines of code
Microsoft Windows XP (2002): ≈40M lines of code

Intel Pentium processor (1993): ≈4M transistors
Intel Pentium 4 processor (2001): ≈40M transistors
Intel Itanium 2 processor (2002): ≈500M transistors

Oct. 2007 Background and Motivation Slide 6

Defining Failure
Failure is an unacceptable difference between expected
and observed performance.1

1 Definition used by the Tech. Council on Forensic Engineering of the Amer. Society of Civil Engineers

A structure (building or bridge) need not collapse
catastrophically to be deemed a failure

Reasons of typical Web site failures
Hardware problems: 15%
Software problems: 34%
Operator error: 51%

ImplementationSpecification ≈?

Oct. 2007 Background and Motivation Slide 7

Design Flaws: “To Engineer is Human”1

Complex systems almost certainly
contain multiple design flaws

1 Title of book by Henry Petroski

Example of a more subtle flaw:
Disney Concert Hall in Los Angeles
reflected light into nearby building,
causing discomfort for tenants due to
blinding light and high temperature

Redundancy in the form of
safety factor is routinely used
in buildings and bridges

Oct. 2007 Background and Motivation Slide 8

Concern for Computer System Dependability
The reliability argument
λ = 10–9 per transistor per hour
Reliability formula R(t) = e–nλt

The on-board computer of a 10-year
unmanned space mission can contain
only O(103) transistors if the mission
is to have a 90% success probability

The safety argument
Airline’s risk: O(103) planes × O(102) flights × 10–2 computer failures / 10 hr

× 0.1 crash / failure × O(102) deaths × O($107) / death = $ billions / yr

The availability argument
A central phone facility’s down time should not exceed a few minutes / yr
Availability formula A = 1/(nλ)
Components n = O(104), if we need 20-30 min for diagnosis and repair

1.0

0.8

0.6

0.4

0.2

0.0

e–n tλ

.9999 .9990 .9900

.9048

.3679

1010 810 610 410
nt

Oct. 2007 Background and Motivation Slide 9

Design Flaws in Computer Systems
Hardware example: Intel Pentium processor, 1994
For certain operands, the FDIV instruction yielded a wrong quotient
Amply documented and reasons well-known (overzealous optimization)

Software example: Patriot missile guidance, 1991
Missed intercepting a scud missile in 1st Gulf War, causing 28 deaths
Clock reading multiplied by 24-bit representation of 1/10 s (unit of time)
caused an error of about 0.0001%; normally, this would cancel out in
relative time calculations, but owing to ad hoc updates to some (not all)
calls to a routine, calculated time was off by 0.34 s (over ≈100 hours),
during which time a scud missile travels more than ½ km

User interface example: Therac 25 machine, mid 1980s1

Serious burns and some deaths due to overdose in radiation therapy
Operator entered “x” (for x-ray), realized error, corrected by entering “e”
(for low-power electron beam) before activating the machine; activation
was so quick that software had not yet processed the override

1 Accounts of the reasons vary

Oct. 2007 Background and Motivation Slide 10

Learning Curve: “Normal Accidents”1

Example: Risk of piloting a plane
1903 First powered flight
1908 First fatal accident
1910 Fatalities = 32 (≈2000 pilots worldwide)

Today Commercial airline
pilots pay normal
life insurance rates

1918 US Air Mail Service founded
Pilot life expectancy = 4 years
31 of the first 40 pilots died in service

1922 One forced landing for
every 20 hours of flight

1 Title of book by
Charles Perrow
(Ex. p. 125)

Unfortunately, the learning curve for computers
and computer-based systems is not as impressive

Oct. 2007 Background and Motivation Slide 11

Mishaps, Accidents, and Catastrophes
Mishap: misfortune; unfortunate accident

At one time (following the initial years of highly unreliable hardware),
computer mishaps were predominantly the results of human error

Accident: unexpected (no-fault) happening causing loss or injury

Now, most mishaps are due to complexity (unanticipated interactions)

Catastrophe: final, momentous event of drastic action; utter failure

Rube Goldberg contraptions

The butterfly effect

Oct. 2007 Background and Motivation Slide 12

A Problem to Think About: Perils of Modeling
In a passenger plane, the failure rate of the cabin pressurizing system
is 10–5/ hr (loss of cabin pressure occurs once per 105 hours of flight)

Assuming failure independence, both systems fail at a rate of 10–10/ hr

Alternate reasoning
Probability of cabin pressure system failure in 10-hour flight is 10–4

Probability of oxygen masks failing to deploy in 10-hour flight is 10–4

Probability of both systems failing in 10-hour flight is 10–8

Why is this result different from that of our earlier analysis (10–9)?
Which one is correct?

Failure rate of the oxygen-mask deployment system is also 10–5/ hr

Fatality probability for a 10-hour flight is about 10–10 × 10 = 10–9

(10–9 or less is generally deemed acceptable)

Probability of death in a car accident is ≈1/6000 per year (>10–7/ hr)

Oct. 2007 Background and Motivation Slide 13

Cabin Pressure and Oxygen Masks

When we multiply the two per-hour failure rates and then take the
flight duration into account, we are assuming that only the failure of
the two systems within the same hour is catastrophic

This produces an optimistic reliability estimate (1 – 10–9)

0 1 2 3 4 5 6 7 8 9 10

Masks
fail

Pressure
is lost

0 1 2 3 4 5 6 7 8 9 10

Masks
fail

Pressure
is lost

When we multiply the two flight-long failure rates, we are assuming
that the failure of these systems would be catastrophic at any time

This produces a pessimistic reliability estimate (1 – 10–8)

Oct. 2007 Background and Motivation Slide 14

Causes of Human Errors in Computer Systems
1. Personal factors (35%): Lack of skill, lack of interest or motivation,
fatigue, poor memory, age or disability

2. System design (20%): Insufficient time for reaction, tedium, lack of
incentive for accuracy, inconsistent requirements or formats

3. Written instructions (10%): Hard to understand, incomplete or
inaccurate, not up to date, poorly organized

4. Training (10%): Insufficient, not customized to needs, not up to date

5. Human-computer interface (10%): Poor display quality, fonts used,
need to remember long codes, ergonomic factors

6. Accuracy requirements (10%): Too much expected of operator

7. Environment (5%): Lighting, temperature, humidity, noise

Because “the interface is the system” (according to a popular saying),
items 2, 5, and 6 (40%) could be categorized under user interface

Oct. 2007 Background and Motivation Slide 15

Properties of a Good User Interface
1. Simplicity: Easy to use, clean and unencumbered look

2. Design for error: Makes errors easy to prevent, detect, and reverse;
asks for confirmation of critical actions

3. Visibility of system state: Lets user know what is happening inside
the system from looking at the interface

4. Use of familiar language: Uses terms that are known to the user
(there may be different classes of users, each with its own vocabulary)

5. Minimal reliance on human memory: Shows critical info on screen;
uses selection from a set of options whenever possible

6. Frequent feedback: Messages indicate consequences of actions

7. Good error messages: Descriptive, rather than cryptic

8. Consistency: Similar/different actions produce similar/different
results and are encoded with similar/different colors and shapes

Oct. 2007 Background and Motivation Slide 16

Operational Errors in Computer Systems
Hardware examples
Permanent incapacitation due to shock, overheating, voltage spike
Intermittent failure due to overload, timing irregularities, crosstalk
Transient signal deviation due to alpha particles, external interference

Software examples
Counter or buffer overflow
Out-of-range, unreasonable, or unanticipated input
Unsatisfied loop termination condition

Dec. 2004: “Comair runs a 15-year old scheduling software package from
SBS International (www.sbsint.com). The software has a hard limit of 32,000
schedule changes per month. With all of the bad weather last week, Comair
apparently hit this limit and then was unable to assign pilots to planes.”
It appears that they were using a 16-bit integer format to hold the count.

June 1996: Explosion of the Ariane 5 rocket 37 s into its maiden flight was
due to a silly software error. For an excellent exposition of the cause, see:
http://www.comp.lancs.ac.uk/computing/users/dixa/teaching/CSC221/ariane.pdf)

These can also be classified as design errors

http://www.comp.lancs.ac.uk/computing/users/dixa/teaching/CSC221/ariane.pdf

Oct. 2007 Background and Motivation Slide 17

A Motivating Case Study
Data availability and integrity concerns
Distributed DB system with 5 sites
Full connectivity, dedicated links
Only direct communication allowed
Sites and links may malfunction
Redundancy improves availability

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9

S: Probability of a site being available
L: Probability of a link being available

Single-copy availability = SL
Unavailability = 1 – SL

= 1 – 0.99 × 0.95 = 5.95% Fi

User

Data replication methods, and a challenge
File duplication: home / mirror sites
File triplication: home / backup 1 / backup 2
Are there availability improvement methods with less redundancy?

Oct. 2007 Background and Motivation Slide 18

Data Duplication: Home and Mirror Sites

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9
A = SL + (1 – SL)SL

Primary site
can be reached

Data unavailability reduced from 5.95% to 0.35%

Availability improved from ≈ 94% to 99.65%

Duplicated availability = 2SL – (SL)2

Unavailability = 1 – 2SL + (SL)2

= (1 – SL)2 = 0.35%

Primary site
inaccessible

Mirror site
can be reached

Fi home

Fi mirror

User

S: Site availability e.g., 99%
L: Link availability e.g., 95%

Oct. 2007 Background and Motivation Slide 19

Data Triplication: Home and Two Backups

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9

Triplicated avail. = 3SL – 3(SL)2 – (SL)3

Unavailability = 1 – 3SL – 3(SL)2 + (SL)3

= (1 – SL)3 = 0.35%

S: Site availability e.g., 99%
L: Link availability e.g., 95%

Fi home Fi backup 2

User

Fi backup 1

A = SL + (1 – SL)SL + (1 – SL)2SL

Primary site
can be reached

Data unavailability reduced from 5.95% to 0.02%

Availability improved from ≈ 94% to 99.98%

Primary site
inaccessible

Backup 1
can be reached

Primary and
backup 1

inaccessible

Backup 2
can be reached

Oct. 2007 Background and Motivation Slide 20

Data Dispersion: Three of Five Pieces

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9

Dispersed avail. = 6(SL)2 – 8(SL)3 + 3(SL)4

Availability = 99.92%
Unavailability = 1 – Availability = 0.08%

S: Site availability e.g., 99%
L: Link availability e.g., 95%

Piece 3 Piece 2

User

Piece 0
A = (SL)4 + 4(1 – SL)(SL)3 + 6(1 – SL)2(SL)2

All 4 pieces
can be reached

Scheme → Nonredund. Duplication Triplication Dispersion
Unavailability 5.95% 0.35% 0.02% 0.08%
Redundancy 0% 100% 200% 67%

Exactly 3 pieces
can be reached

Only 2 pieces
can be reached

Piece 1

Piece 4

Oct. 2007 Background and Motivation Slide 21

Dispersion for Data Security and Integrity

S0

S1

S2S3

S4

L1

L0

L2

L3

L4
L5

L6

L7

L8

L9

Piece 3 Piece 2

Piece 0

Piece 1Piece 4
a b c

f(x) = ax2+ bx + c

f(0) f(1) f(2) f(3) f(4)

l bits

5l/3 bits

Encoding with
67% redundancy

Note that two pieces
would be inadequate
for reconstruction

Oct. 2007 Background and Motivation Slide 22

Questions Ignored in Our Simple Example
1. How redundant copies of data are kept consistent
When a user modifies the data, how to update the redundant copies
(pieces) quickly and prevent the use of stale data in the meantime?

2. How malfunctioning sites and links are identified
Malfunction diagnosis must be quick to avoid data contamination

3. How recovery is accomplished when a malfunctioning site / link
returns to service after repair
The returning site must be brought up to date with regard to changes

4. How data corrupted by the actions of an adversary is detected
This is more difficult than detecting random malfunctions

The example does demonstrate, however, that:
Many alternatives are available for improving dependability
Proposed methods must be assessed through modeling
The most cost-effective solution may be far from obvious

	Fault-Tolerant Computing
	About This Presentation
	Background and Motivation for Dependable Computing
	The Curse of Complexity
	Defining Failure
	Design Flaws: “To Engineer is Human”1
	Concern for Computer System Dependability
	Design Flaws in Computer Systems
	Learning Curve: “Normal Accidents”1
	Mishaps, Accidents, and Catastrophes
	A Problem to Think About: Perils of Modeling
	Cabin Pressure and Oxygen Masks
	Causes of Human Errors in Computer Systems
	Properties of a Good User Interface
	Operational Errors in Computer Systems
	A Motivating Case Study
	Data Duplication: Home and Mirror Sites
	Data Triplication: Home and Two Backups
	Data Dispersion: Three of Five Pieces
	Dispersion for Data Security and Integrity
	Questions Ignored in Our Simple Example

