Fault-Tolerant Computing

Dealing with Low-Level Impairments
About This Presentation

This presentation has been prepared for the graduate course ECE 257A (Fault-Tolerant Computing) by Behrooz Parhami, Professor of Electrical and Computer Engineering at University of California, Santa Barbara. The material contained herein can be used freely in classroom teaching or any other educational setting. Unauthorized uses are prohibited. © Behrooz Parhami

<table>
<thead>
<tr>
<th>Edition</th>
<th>Released</th>
<th>Revised</th>
</tr>
</thead>
</table>
Fault Masking
Multilevel Model

Legend:
- Ideal
- Defective
- Faulty
- Erroneous
- Malfunctioning
- Degraded
- Failed

Legend:
- Tolerance
- Entry
- Deviation
- Remedy
- Last lecture

Component
Logic
Information
System
Service
Result
Handling Faults

Fault

Avoid

- Quality Assurance

Prevent

Remove

- Testing

- Detect

- Test

- Miss

Repair

- Yes

- Full?

- Yes

- Full?

Perfect

Fixed

Injured

Screened

Faulty

Faulty-safe

Degraded

Reconfigure

- Yes

Restored

Unaffected

Tolerate

- Dynamic Redundancy

Expose

- Static Redundancy

- Miss

- Monitor

Abort

- No

- Full?

Reconfig
Some Options for Fault Tolerance

1. **Detect and replace**
 Dynamic redundancy (cold/hot standby)
 Detection via
 -- coding, watchdog timer, self-checking
 -- duplication (pair-and-sares)

2. **Mask**
 Static redundancy
 May revert to simplex instead of duplex
 Design challenges include
 -- synchronization for voting
 -- voting on imprecise results

3. **Mask, diagnose, and reconfigure**
 Hybrid redundancy
 Fault masked at output, but diagnosed
 -- e.g., via comparison with voter output
 Faulty circuit is replaced by spare
 Becomes static upon spare exhaustion
Comparing Fault Tolerance Schemes

Advantages
- Less power (cold standby)
- Long life (just add spares)
- Immediate masking
- High safety
- Immediate masking
- Long life and high safety

Drawbacks
- Coverage factor
- Tolerance latency
- Power/area penalty
- Voter critical
- Power/area penalty
- Switch-voter critical
Inherent Fault Masking in Logic Circuits

Even nonredundant circuits have some masking capability

Is there a way to exploit the inherent masking capabilities of logic gates to achieve fault tolerance?

0 → 1 fault in b is critical
0 → 1 fault in c or d is not critical (it is masked)
1 → 0 fault in a or h is not critical (it is masked)
Interwoven Redundant Logic

Let $x_1, x_2, x_3, \text{ and } x_4$ be 4 copies of the signal x

$1 \to 0$ change is critical for AND, subcritical for OR

$0 \to 1$ change is critical for OR, subcritical for AND

Alternating layers of ANDs and ORs can mask each other’s critical faults

To mask h critical faults:
Number of gates multiplied by $(h + 1)^2$
Gate inputs multiplied by $h + 1$

For $h = 1$, the scheme is known as Quadded logic
Interwoven Logic for Nanoelectronics

Half-adder implemented in quadded logic

IEEE D&T
July-Aug. 2005
pp. 328-339

Highly Reliable Logic with “Crummy” Relays

Moore & Shannon, 1956

\(a: \text{prob [contact made | energized]} \)
\(c: \text{prob [contact made | not energized]} \)

No matter how crummy the relays (i.e., how close the values of \(a \) and \(c \)), one can interconnect many of them in a redundant series-parallel structure to achieve arbitrarily high reliability

\[
\text{prob [connection made | energized]} = 2a^2 - a^4 \quad (> a \text{ if } a > 0.62)
\]

\[
\text{prob [connection made | not energized]} = 2c^2 - c^4 \quad (\text{always } < c)
\]
TMR with Perfect Voter

\[R = 3R_m^2 - 2R_m^3 > R_m \]

Condition on the module reliability:

\[R = R_m [1 + (1 - R_m)(2R_m - 1)] \]

\[(1 - R_m)(2R_m - 1) > 0 \implies R_m > 1/2 \]

MTTF: TMR $\frac{5}{6\lambda}$

Simplex $\frac{1}{\lambda}$
TMR with Imperfect Voter

\[R = R_v(3R_m^2 - 2R_m^3) \geq R_m \]

Condition on the voter reliability
\[R_v > 1 / [3R_m - 2R_m^2] \]

\[dR_v^{\min} / dR_m = (-3 + 4R_m) / (3R_m - 2R_m^2)^2 \]

Condition on the module reliability
\[\frac{3 - \sqrt{9 - 8/R_v}}{4} < R_m < \frac{3 + \sqrt{9 - 8/R_v}}{4} \]

Example: \(R_v = 0.95 \) requires that
\[0.56 < R_m < 0.94 \]
TMR with Compensating Faults

\[R_m = 1 - p_0 - p_1 \quad (0\text{-} and \ 1\text{-}fault \ probabilities) \]

\[R = (3R_m^2 - 2R_m^3) + 6p_0p_1R_m \]

Example: \(R_m = 0.998 \), \(p_0 = p_1 = 0.001 \)

\[R = \frac{0.999,984}{0.000,006} = 0.999,990 \]

- Basic TMR
- Compensation

\(\text{RIF}_{\text{TMR/Simplex}} = 0.002 / 0.000,016 = 125 \)

\(\text{RIF}_{\text{Compen/TMR}} = 0.000,016 / 0.000,010 = 1.6 \)
Implementing a Bit-Voter

TMR bit-voting: \(y = x_1x_2 \lor x_2x_3 \lor x_3x_1 \)
(carry output of a single-bit full-adder)

What about 5MR, 7MR?

Gate-level design quickly explodes in size

Other designs are also possible
 Arithmetic: add the bits, compare to threshold
 Mux-based
 Selection-based (majority of bit values is their median)

3-out-of-5 voter built of 2-input gates

Two mux-based designs for a 3-out-of-5 bit-voter
Cost of majority bit-voters as a function of the number n of inputs
Voting at the Word Level

Using bit-by-bit voting may be dangerous

One might think that in this example, any of the module outputs could be correct, so that producing 1 0 at the output isn’t all that wrong

However, with bit-by-bit voting, the output may be different from all inputs

\[
\begin{align*}
x_1 &= 0 \ 0 \\
x_2 &= 1 \ 0 \\
x_3 &= 1 \ 1 \\
y &= 1 \ 0
\end{align*}
\]

\[
\begin{align*}
x_1 &= 0 \ 0 \ 0 \\
x_2 &= 1 \ 0 \ 1 \\
x_3 &= 1 \ 1 \ 0 \\
y &= 1 \ 0 \ 0
\end{align*}
\]
Some Simple Voter Designs

If in the case of 3-way disagreement any of the inputs can be chosen, then a simple design is possible.

This design can be readily generalized to a larger number of inputs.

One can perform pseudo voting that yields the median of 3 analog signals (Dennis, N.G., *Microelectronics and Reliability*, Aug. 1974).

Median and mean voting are also possible with digital signals.
A TMR Application and Its Bit-Voter

Single-event upset (SEU) = Soft error
Change of state caused by a high-energy particle strike

SEU effect on DRAMs (from SANYO website)

TMR flip-flop for SEU tolerance
Example: SEU Hardened Flip-Flop

For list of flip-flop hardening methods and their comparison, see: http://klabs.org/richcontent/fpga_content/pages/notes/seu_hardening.htm
Switch for Standby Redundancy

Standby redundancy requires an \(n \)-to-1 switch to select the output of the currently active module.

The detectors use various info to deduce fault conditions:

- Error coding
- Reasonableness checks
- Watchdog timer

Once a fault has been detected, the switch reconfigures the system by flagging the faulty unit and activating next spare in sequence.

If we use an \(n \)-to-2 switch and compare the two selected outputs, the configuration is known as “pair-and-sparers.”
Switch for Hybrid Redundancy

Hybrid redundancy with n active and s spare modules requires an $(n + s)$-to-n switch to select the outputs of the active modules.

Self-purging redundancy is a variant of hybrid redundancy in which all modules are active at the outset, but they are purged as they disagree with the majority output.

Voter in self-purging redundancy is a threshold voter that considers the inputs with weights of 1 (active) or 0 (purged).
Applications of nMR and Hybrid Redundancy

The Space Shuttle:
Uses 5-way redundancy in hardware
 Originally, 3 operational units + 2 spares
 (one warm, one cold)
 More recently, 4 operational + 1 spare
Also, uses 2 independently developed
 software systems (Design diversity)

Japanese Shinkansen “Bullet” Train
Triple-duplex system (6-fold redundancy)