About This Presentation

This presentation belongs to the lecture series entitled “Ten Puzzling Problems in Computer Engineering,” devised for a ten-week, one-unit, freshman seminar course by Behrooz Parhami, Professor of Computer Engineering at University of California, Santa Barbara. The material can be used freely in teaching and other educational settings. Unauthorized uses, including any use for financial gain, are prohibited. © Behrooz Parhami

<table>
<thead>
<tr>
<th>Edition</th>
<th>Released</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apr. 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reminder on ECE 1’s Theme and Direction

A puzzling problem:
- Looks deceptively simple, but ...
- Appears very difficult, or even impossible, but is readily tamed with the appropriate insight

Many engineering problems are puzzle-like (especially in CE)

Each lecture starts with puzzles that we try to solve together

I introduce you to CE problems that are related to the puzzles

Topics thus far:
- Easy, Hard, Impossible (Collatz conjecture)
- Placement and Routing (houses & utilities)
- Satisfiability (making change)
- Cryptography (secret message)
- Byzantine Generals (liars and truth-tellers)

Topics for the 2nd half:
- Binary Search (counterfeit coin)
- Task Scheduling (Sudoku)
- String Matching (word search)
- Sorting Networks (rearranging trains)
- Malfunction Diagnosis (logical reasoning)
Do you realize how dead you will be if she realizes this is your weekly “bar meeting”?

WASHINGTON ABOUT TO BREAK HIS "CANNOT TELL A LIE" COMMITMENT.

GEORGE...DO I LOOK FAT?
The Island of Liars and Truth-Tellers

Setting for puzzles in the next few slides:
You are on an island populated by two tribes. Members of one tribe consistently lie. Members of the other tribe always tell the truth. Tribe members can recognize one another, but you can’t tell them apart.

You run into a man on the island and ask him whether he is a truth-teller. A blaring siren prevents you from hearing his answer. You inquire, “Sorry, did you say you’re a truth-teller?” He responds: “No, I did not.” To which tribe does the man belong?

He is a liar

You meet a woman on the island. What single (yes/no) question can you ask her to determine whether she is a liar or a truth-teller?

If I asked you whether you were a liar, what would your answer be?
Meeting Two People on the Island

You meet two people A and B on the island. A says, “Both of us are from the liars tribe.” Which tribe is A from? What about B? A: Liar, B: TT

You meet two people, C and D on the island. C says, “Exactly one of us is from the liars tribe.” Which tribe is D from? D: Liar

You meet two people E and F on the island. E says, “It is not the case that both of us are from the truth-tellers tribe.” Which tribe is E from? What about F? E: TT, F: Liar

You meet two people, G and H on the island. Each of the two makes a statement. Which tribes are G and H from? G says: “We are from different tribes.” H says: “G is from the liars tribe.” G: TT, H: Liar
Meeting Three People on the Island

You meet three people A, B, C. You ask A, “How many among you are truth-tellers?” You don’t hear her answer, so you ask B, “What did she just say?” “She said one,” he replies. Then C adds, “Don’t believe him, he is lying!” What can you say about B’s or C’s tribe?

Solution by exhaustive search

Answer: B is a liar, C is a truth teller

Apr. 2012

UCSB

Byzantine Generals

Slide 7
More Examples and a Variation

Is it possible to ask the exact same question twice of a truth-teller and get two different answers?

Yes, just use any question whose answer is time-dependent
Or say, “Did I just ask you a question for the second time?”

Twelve politicians from the island go to a city hall meeting.
The 1st one says: “Not a single person in this room tells the truth.”
The 2nd one says: “No more than one person in this room tells the truth.”
The 3rd one says: “No more than two people in this room tell the truth.”
... The 12th one says: “No more than 11 people in this room tell the truth.”
What can you say about the composition of this group of politicians?

Truth-tellers and nay-sayers: You are allowed only yes/no questions. One group of people answer truthfully and the other always answer “no”
How can you tell a truth-teller apart from a nay-sayer?
Other Interesting Variations

Liars who lie selectively; for example, in answer to every other question or on certain days of the week

Inhabitants of another island lie consistently on Tuesdays, Thursdays, and Saturdays, and they tell the truth on the other four days of the week. You have forgotten what day of the week it is, so you ask a passerby. “Saturday,” he answers. “And what day will it be tomorrow?” you inquire. “Wednesday,” he replies. Can you tell what day it is today?

Today cannot be M, W, F, Sa, or Su. So it is: Tu or Th

Tomorrow cannot be M, F, or Su. So it is: T, W, Th, or Sa
Liars, Randoms, and Truth-Tellers

Setting for more complex puzzles:
You are on an island populated by three tribes. Members of one tribe always tell the truth. Members of the second tribe choose to tell the truth or lie, completely at random. Members of the third tribe consistently lie. Tribe members can recognize one another, but you can’t tell them apart.

Three people from the island, one representing each tribe, come to visit. How can you identify who is from which tribe by asking only three yes/no questions? Each question must be directed at only one person, but you can ask the same person multiple questions.

Hint: There are 6 possibilities for P1, P2, P3: LRT, LTR, RLT, RTL, TLR, TRL

Additional hint: Ask the leftmost person whether letters corresponding to the other two appear in alphabetical order. Then, regardless of the answer, you will have one position which excludes a random person.
The Two Generals’ Paradox

Troops led by two generals are camped on the outskirts of an enemy city.

The generals can only communicate via messengers who must travel through enemy territory and are thus subject to delays or capture.

The two generals have previously agreed on a plan of attack, but they must communicate to set up the attack time.

Not attacking together has dire results.

G1 decides to send the message, “Let’s attack at noon tomorrow.”

G1 will not attack before getting an acknowledgment from G2.

G2 will not attack before making sure that his acknowledgment was received by G1 (because he knows G1 would not attack otherwise), so he waits for an acknowledgment of his acknowledgment.
Liars, Randoms, and Truth-Tellers Stand for ...

Sites communicating with one another to reach an agreement (e.g., to select a coordinating site, often called “leader”)

Site status ...

Healthy: Gives the appropriate response to every message
Crashed: Does not respond to any message
Permanently failed: May respond identically to every message
Permanently failed: May give the wrong response consistently
Arbitrarily failed: May give an unpredictable response
Maliciously failed: Gives a response that is calculated to do the maximum harm (adversary, worst-case failure)

Truth-teller
Quiet
Nay-sayer
Liar
Random
Byzantine
The Byzantine Generals Problem

A general and $n - 1$ lieutenant generals lead n divisions of the Byzantine army camped on the outskirts of an enemy city.

The n divisions can only communicate via messengers, who may be captured or arbitrarily delayed (due to the need to hide for a while).

We seek a scheme for the generals to agree on a common plan of action (attack or retreat), even if some of the generals are traitors who will do anything to prevent loyal generals from reaching agreement.

The problem is nontrivial even if messengers are totally reliable.

With unreliable messengers, the problem becomes very complex.
Byzantine Generals with Reliable Messengers

With f Byzantine failures, $\geq 3f + 1$ nodes needed to reach agreement
3f + 1 Generals Needed with f Traitors

By exchanging messages in multiple rounds, the 2f + 1 loyal generals can eventually reach a common plan of action which matches the order of the commanding general, provided the latter is loyal.

Some deem Byzantine faults very unlikely and not worth considering. In “The Real Byzantine Generals,” the authors show why Byzantine faults are real and must be treated in both hardware and software.

“If a designer spent 50 hours per week, 52 weeks per year, for 35 years staring at one system, that would be less than 10^5 hours . . . far short of typical avionics requirements.”

50 × 52 × 35 = 91,000
Without Malicious Faults, Voting Will Do

Data fusion:
Obtaining dependable results from potentially incorrect, inaccurate, or incomplete data

Centralized voting with majority rule

Approximate voting with imprecise inputs:
E.g., temperature readings of 78.2, 45.5, 79.1, 78.7, 21.2, 120.0, 77.6

Mean of reasonable inputs 78.4
Median of all inputs 78.2

Distributed voting: Same concept, provided erroneous values are seen identically by the fusion processes at all sites
Voting Comes in Many Flavors

Example: What time is it?
Seven students write the exact time
(hour and minute) on sticky notes
Sort the sticky notes on the board
Pick one of the following values:

Majority, if a majority exists
Plurality, if a plurality exists
Median of all the values proposed
Mean of all the values proposed
Mean of five values, after removing
the largest and smallest of the seven
Mean of three values, after removing
the 2 largest and 2 smallest values

Interval voting:
Each proposer supplies a range
of values that is guaranteed to
hold the correct value
Mathematics of Voting

Voting studied in several fields:
Mathematics / Computing
Political science
Sociology (social choice theory)
Economics

No voting scheme is totally fool-proof

Regular voting: Candidates A1, A2, B
More qualified candidates A1 and A2 may split the votes, leading to the election of B (run-off helps in solving this problem, but creates others)

Approval voting
Vote for any number of candidates you like

Borda voting comes pretty close to an ideal voting scheme
Each participant ranks all candidates; tally votes by giving \(n \) points to each 1st-place choice, \(n - 1 \) points for 2nd place, \(... \), 1 point for \(n \)th place
With Signed Messages, Agreement is Easy

L2 may take two actions –
Forward the signed message: This leads to correct outcome
Send a different fake message that is recognized by L1 as fake (loyal generals ignore messages coming from known traitors)