Maps and Graphs

A Lecture in the Freshman Seminar Series:
Puzzling Problems in Science and Technology
About This Presentation

This presentation belongs to the lecture series entitled “Puzzling Problems in Science and Technology,” devised for a ten-week, one-unit, freshman seminar course by Behrooz Parhami, Professor of Computer Engineering at University of California, Santa Barbara. The material can be used freely in teaching and other educational settings. Unauthorized uses, including any use for financial gain, are prohibited. © Behrooz Parhami

<table>
<thead>
<tr>
<th>Edition</th>
<th>Released</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>Nov. 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ptolemy’s Map of the World (150 AD)
Globes and Flat Maps

Continents and countries appear to scale on a globe but they get distorted when drawn on some flat maps.

Africa same size on globe and map, but Greenland much wider on map.
The Globe Can Be Flattened

Segment in a photographic map of Mercury, with gaps inserted to preserve scale
Flattened Maps

Vertical longitudinal lines

The Equator

Curved longitudinal lines

The Equator
Map Scale

Scale does not apply to HI & AL
The Map Coloring Problem

We want to color countries, oceans, lakes, and islands on a map so that no two adjacent areas have the same color.

We know that four colors always suffice.
A map can be converted to a planar graph that can be drawn with no edges crossing.
Color These Maps with Four Colors

Color the following natural and artificial maps so that no two adjacent areas have the same color.
Mazes Represented as Graphs
The Bridges of Konigsberg Puzzle

Can you walk in the city of Konigsberg in such a way that you cross each bridge once and only once (in either direction)?
Shortest Path in a Graph

If the number on an edge represents travel distance, time, or cost, what is the shortest/fastest/cheapest way from point 2 to point 5?

What about from point G to point C in the graph on the right?
Solving a Maze

2-minute video: http://www.youtube.com/watch?v=mM10gQJJ7aM
Maze-Solving Robots

4-minute video: http://www.youtube.com/watch?v=MLHeUEPLSAY
Solve These Two Large Mazes
More Mazes to Solve

Enter/exit without ever making a left turn
Applications of Graph Coloring

9-minute video: http://www.youtube.com/watch?v=y4RAYQjKb5Y

Solving Sudoku Puzzles

- Fill in the blank cells so that each row, column and 2x2 box has the characters 1 to 4 exactly once.
A Closer Look at the Relief Map for S. California
We sometimes distort scale on purpose

Mountains, with heights doubled
Topographic Maps

7-minute video: http://www.youtube.com/watch?v=SymUFSwEm3c
Contours Add a Third Dimension to Maps
Draw a Hiking Trail from A to B
Contour Maps and Road/Bridge Building

Contour map of Hoover Dam’s surrounding area

New bridge connecting the two sides of Hoover Dam (Nevada to Arizona)
Example of a Snaking Road
Contour Map Under the Water
Where in the World Are You?

To locate a point in one dimension, we need a distance and a direction.

To locate a point in two dimensions, we need two distances and a little bit more information.

To locate a point in three dimensions, we need three distances and a little bit more information.
Global Positioning System (GPS)
How GPS Works: The Satellites

There are at least 24 satellites at any time; new ones are launched to replace older ones that need to be retired.

The satellites are positioned so that from any point on earth, radio communication with at least four of them is possible.

Each satellite follows a single orbit, passing over the same places on earth each time.
How GPS Works: The Measurements

Satellites in known positions

Approximate location of moving GPS receiver determined from distance to satellites

Communication

Fixed Station

Moving GPS receiver

Fixed station is used to make the location info more precise

Where am I?
The GPS Receiver on Your Smartphone

5-minute video: http://www.youtube.com/watch?v=70cDSUI4XKE
GPS-Guided Navigation

You know where you are (GPS) and where you want to go (address)
Roads form a known maze, stored on Google’s servers
When there are multiple paths, you want the shortest/fastest path
To determine which path is faster, dynamic congestion data may be used
Cartograms Combine Geographic and Other Data

Outcome of the 2004 US presidential election (S. Fabrikant, UCSB Geog Dept)

1. Standard US map, showing states won by Bush (red) and Kerry (blue)

2. Cartogram, with states distorted to have areas proportional to electoral votes

3. Cartogram, with relative support level for candidates indicated by shading

Distribution of news stories during 1994-98

Nov. 2016

UCSB

Maps and Graphs

BParhani

Slide 35
The Traveling Salesperson Problem

If the number on an edge represents travel distance, time, or cost, what is the shortest/fastest/cheapest tour of the six locations?

A salesperson may want to visit all the locations

A truck may have deliveries at all the locations

Other Optimization Problems

Assuming numbers shown are travel times for a fire truck in minutes, where is the best location for a single fire station?

Where should fire stations be placed for a response time of 8 minutes?