Part III

The Arithmetic/Logic Unit

<table>
<thead>
<tr>
<th>Parts</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Background and Motivation</td>
<td>1. Combinational Digital Circuits</td>
</tr>
<tr>
<td></td>
<td>2. Digital Circuits with Memory</td>
</tr>
<tr>
<td></td>
<td>3. Computer System Technology</td>
</tr>
<tr>
<td></td>
<td>4. Computer Performance</td>
</tr>
<tr>
<td>II. Instruction-Set Architecture</td>
<td>5. Instructions and Addressing</td>
</tr>
<tr>
<td></td>
<td>6. Procedures and Data</td>
</tr>
<tr>
<td></td>
<td>7. Assembly Language Programs</td>
</tr>
<tr>
<td></td>
<td>8. Instruction-Set Variations</td>
</tr>
<tr>
<td>III. The Arithmetic/Logic Unit</td>
<td>9. Number Representation</td>
</tr>
<tr>
<td></td>
<td>10.adders and Simple ALUs</td>
</tr>
<tr>
<td></td>
<td>11. Multipliers and Dividers</td>
</tr>
<tr>
<td></td>
<td>12. Floating-Point Arithmetic</td>
</tr>
<tr>
<td>IV. Data Path and Control</td>
<td>13. Instruction Execution Steps</td>
</tr>
<tr>
<td></td>
<td>14. Control Unit Synthesis</td>
</tr>
<tr>
<td></td>
<td>15. Pipelined Data Paths</td>
</tr>
<tr>
<td></td>
<td>16. Pipeline Performance Limits</td>
</tr>
<tr>
<td>V. Memory System Design</td>
<td>17. Main Memory Concepts</td>
</tr>
<tr>
<td></td>
<td>18. Cache Memory Organization</td>
</tr>
<tr>
<td></td>
<td>19. Mass Memory Concepts</td>
</tr>
<tr>
<td></td>
<td>20. Virtual Memory and Paging</td>
</tr>
<tr>
<td>VI. Input/Output and Interfacing</td>
<td>21. Input/Output Devices</td>
</tr>
<tr>
<td></td>
<td>22. Input/Output Programming</td>
</tr>
<tr>
<td></td>
<td>23. Buses, Links, and Interfacing</td>
</tr>
<tr>
<td></td>
<td>24. Context Switching and Interrupts</td>
</tr>
<tr>
<td>VII. Advanced Architectures</td>
<td>25. Road to Higher Performance</td>
</tr>
<tr>
<td></td>
<td>26. Vector and Array Processing</td>
</tr>
<tr>
<td></td>
<td>27. Shared-Memory Multiprocessing</td>
</tr>
<tr>
<td></td>
<td>28. Distributed Multicomputing</td>
</tr>
</tbody>
</table>
About This Presentation

This presentation is intended to support the use of the textbook *Computer Architecture: From Microprocessors to Supercomputers*, Oxford University Press, 2005, ISBN 0-19-515455-X. It is updated regularly by the author as part of his teaching of the upper-division course ECE 154, Introduction to Computer Architecture, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes. Any other use is strictly prohibited. © Behrooz Parhami

<table>
<thead>
<tr>
<th>Edition</th>
<th>Released</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
</tr>
</thead>
</table>
III The Arithmetic/Logic Unit

Overview of computer arithmetic and ALU design:
• Review representation methods for signed integers
• Discuss algorithms & hardware for arithmetic ops
• Consider floating-point representation & arithmetic

<table>
<thead>
<tr>
<th>Topics in This Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 9 Number Representation</td>
</tr>
<tr>
<td>Chapter 10 Adders and Simple ALUs</td>
</tr>
<tr>
<td>Chapter 11 Multipliers and Dividers</td>
</tr>
<tr>
<td>Chapter 12 Floating-Point Arithmetic</td>
</tr>
</tbody>
</table>
Preview of Arithmetic Unit in the Data Path

Instruction fetch Reg access / decode ALU operation Data access

Fig. 13.3 Key elements of the single-cycle MicroMIPS data path.
Computer Arithmetic as a Topic of Study

Our textbook’s treatment of the topic falls between the extremes (4 chaps.)

Graduate course
9 Number Representation

Arguably the most important topic in computer arithmetic:
- Affects system compatibility and ease of arithmetic
- Two’s complement, flp, and unconventional methods

<table>
<thead>
<tr>
<th>Topics in This Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Positional Number Systems</td>
</tr>
<tr>
<td>9.2 Digit Sets and Encodings</td>
</tr>
<tr>
<td>9.3 Number-Radix Conversion</td>
</tr>
<tr>
<td>9.4 Signed Integers</td>
</tr>
<tr>
<td>9.5 Fixed-Point Numbers</td>
</tr>
<tr>
<td>9.6 Floating-Point Numbers</td>
</tr>
</tbody>
</table>
9.1 Positional Number Systems

Representations of natural numbers \(\{0, 1, 2, 3, \ldots \} \)

- sticks or **unary** code
- 27 radix-10 or **decimal** code
- 11011 radix-2 or **binary** code
- XXVII Roman numerals

Fixed-radix positional representation with \(k \) **digits**

Value of a number:
\[
x = (x_{k-1}x_{k-2}\ldots x_1x_0)_r = \sum_{i=0}^{k-1} x_i r^i
\]

For example:
\[
27 = (11011)_\text{two} = (1\times2^4) + (1\times2^3) + (0\times2^2) + (1\times2^1) + (1\times2^0)
\]

Number of digits for \([0, P]\):
\[
k = \lceil \log_r (P + 1) \rceil = \lfloor \log_r P \rfloor + 1
\]
Unsigned Binary Integers

Figure 9.1 Schematic representation of 4-bit code for integers in [0, 15].
Representation Range and Overflow

Overflow region

Numbers smaller than max^-

Finite set of representable numbers

Numbers larger than max^+

Figure 9.2 Overflow regions in finite number representation systems. For unsigned representations covered in this section, $max^- = 0$.

Example 9.2, Part d

Discuss if overflow will occur when computing $3^{17} - 3^{16}$ in a number system with $k = 8$ digits in radix $r = 10$.

Solution

The result 86 093 442 is representable in the number system which has a range $[0, 99 999 999]$; however, if 3^{17} is computed en route to the final result, overflow will occur.
9.2 Digit Sets and Encodings

Conventional and unconventional digit sets

- Decimal digits in [0, 9]; 4-bit BCD, 8-bit ASCII
- Hexadecimal, or hex for short: digits 0-9 & a-f
- Conventional ternary digit set in [0, 2]
 Conventional digit set for radix \(r \) is [0, \(r - 1 \)]
 Symmetric ternary digit set in [−1, 1]
- Conventional binary digit set in [0, 1]
 Redundant digit set [0, 2], encoded in 2 bits
 \((0 \ 2 \ 1 \ 1 \ 0)_{\text{two}}\) and \((1 \ 0 \ 1 \ 0 \ 2)_{\text{two}}\) represent 22
Carry-Save Numbers

Radix-2 numbers using the digits 0, 1, and 2

Example: \((1 \ 0 \ 2 \ 1)_\text{two} = (1 \times 2^3) + (0 \times 2^2) + (2 \times 2^1) + (1 \times 2^0) = 13\)

Possible encodings

(a) Binary

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>1</td>
<td>01 (First alternate)</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1</td>
<td>10 (Second alternate)</td>
</tr>
<tr>
<td></td>
<td>11 (Unused)</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>

(b) Unary

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>1</td>
<td>01 (First alternate)</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>

```
MSB
0 0 1 0 = 2
First bit
0 0 1 1 = 3

LSB
1 0 0 1 = 9
Second bit
1 0 1 0 = 10
```
The Notion of Carry-Save Addition

Digit-set combination: \(\{0, 1, 2\} + \{0, 1\} = \{0, 1, 2, 3\} = \{0, 2\} + \{0, 1\} \)

a. Carry-save addition.

b. Adding two carry-save numbers.

Figure 9.3 Adding a binary number or another carry-save number to a carry-save number.
9.3 Number Radix Conversion

Two ways to convert numbers from an old radix r to a new radix R

- **Perform arithmetic in the new radix $R**
 Suitable for conversion from radix r to radix 10
 Horner’s rule:
 \[
 (x_{k-1}x_{k-2} \ldots x_1x_0)_r = ((0 + x_{k-1})r + x_{k-2})r + \ldots + x_1)r + x_0
 \]
 \[(1 0 1 1 0 1 0 1)_{\text{two}} = 0 + 1 \rightarrow 1 \times 2 + 0 \rightarrow 2 \times 2 + 1 \rightarrow 5 \times 2 + 1 \rightarrow 11 \times 2 + 0 \rightarrow 22 \times 2 + 1 \rightarrow 45 \times 2 + 0 \rightarrow 90 \times 2 + 1 \rightarrow 181\]

- **Perform arithmetic in the old radix r**
 Suitable for conversion from radix 10 to radix R
 Divide the number by R, use the remainder as the LSD and the quotient to repeat the process
 \[19 / 3 \rightarrow \text{rem } 1, \text{quo } 6 / 3 \rightarrow \text{rem } 0, \text{quo } 2 / 3 \rightarrow \text{rem } 2, \text{quo } 0\]
 Thus, $19 = (2 0 1)_{\text{three}}$
Justifications for Radix Conversion Rules

\[(x_{k-1}x_{k-2} \cdots x_0)_r = x_{k-1}r^{k-1} + x_{k-2}r^{k-2} + \cdots + x_1r + x_0\]

\[= x_0 + r(x_1 + r(x_2 + r(\cdots)))\]

Justifying Horner’s rule.

Figure 9.4 Justifying one step of the conversion of x to radix 2.
9.4 Signed Integers

- We dealt with representing the natural numbers
- Signed or directed whole numbers = integers
 \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \}
- Signed-magnitude representation
 +27 in 8-bit signed-magnitude binary code 0 0011011
 -27 in 8-bit signed-magnitude binary code 1 0011011
 -27 in 2-digit decimal code with BCD digits 1 0010 0111
- Biased representation
 Represent the interval of numbers [-N, P] by the unsigned interval [0, P + N]; i.e., by adding N to every number
Two’s-Complement Representation

With \(k \) bits, numbers in the range \([-2^{k-1}, 2^{k-1} - 1]\) represented. Negation is performed by inverting all bits and adding 1.

Figure 9.5 Schematic representation of 4-bit 2’s-complement code for integers in \([-8, +7]\).
Conversion from 2’s-Complement to Decimal

Example 9.7

Convert $x = (1 0 1 1 0 1 0 1)_{2's-compl}$ to decimal.

Solution

Given that x is negative, one could change its sign and evaluate $-x$.

Shortcut: Use Horner’s rule, but take the MSB as negative

\[-1 \times 2 + 0 \rightarrow -2 \times 2 + 1 \rightarrow -3 \times 2 + 1 \rightarrow -5 \times 2 + 0 \rightarrow -10 \times 2 + 1 \rightarrow -19 \times 2 + 0 \rightarrow -38 \times 2 + 1 \rightarrow -75\]

Sign Change for a 2’s-Complement Number

Example 9.8

Given $y = (1 0 1 1 0 1 0 1)_{2's-compl}$, find the representation of $-y$.

Solution

\[-y = (0 1 0 0 1 0 1 0) + 1 = (0 1 0 0 1 0 1 1)_{2's-compl} \quad (i.e., \, 75)\]
Two’s-Complement Addition and Subtraction

Figure 9.6 Binary adder used as 2’s-complement adder/subtractor.
9.5 Fixed-Point Numbers

Positional representation: \(k \) whole and \(l \) fractional digits

Value of a number:
\[
x = (x_{k-1}x_{k-2}\ldots x_1x_0\cdot x_{-1}x_{-2}\ldots x_{-l})_r = \sum x_i r^i
\]

For example:
\[
2.375 = (10.011)_\text{two} = (1\times2^1) + (0\times2^0) + (0\times2^{-1}) + (1\times2^{-2}) + (1\times2^{-3})
\]

Numbers in the range \([0, r^k - ulp]\) representable, where \(ulp = r^{-l}\)

Fixed-point arithmetic same as integer arithmetic
(radix point implied, not explicit)

Two’s complement properties (including sign change) hold here as well:
\[
(01.011)_\text{2's-compl} = (-0\times2^1) + (1\times2^0) + (0\times2^{-1}) + (1\times2^{-2}) + (1\times2^{-3}) = +1.375 \\
(11.011)_\text{2's-compl} = (-1\times2^1) + (1\times2^0) + (0\times2^{-1}) + (1\times2^{-2}) + (1\times2^{-3}) = -0.625
\]
Fixed-Point 2’s-Complement Numbers

Figure 9.7 Schematic representation of 4-bit 2’s-complement encoding for (1 + 3)-bit fixed-point numbers in the range [-1, +7/8].
Radix Conversion for Fixed-Point Numbers

Convert the whole and fractional parts separately.
To convert the fractional part from an old radix r to a new radix R:

- **Perform arithmetic in the new radix $R**

 Evaluate a polynomial in r^{-1}: $(.011)_{\text{two}} = 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}$

 Simpler: View the fractional part as integer, convert, divide by r^l

 $(.011)_{\text{two}} = (??)_{\text{ten}}$

 Multiply by 8 to make the number an integer: $(011)_{\text{two}} = (3)_{\text{ten}}$

 Thus, $(.011)_{\text{two}} = (3 / 8)_{\text{ten}} = (.375)_{\text{ten}}$

- **Perform arithmetic in the old radix r**

 Multiply the given fraction by R, use the whole part as the MSD and the fractional part to repeat the process

 $(.72)_{\text{ten}} = (??)_{\text{two}}$

 $0.72 \times 2 = 1.44$, so the answer begins with 0.1

 $0.44 \times 2 = 0.88$, so the answer begins with 0.10
9.6 Floating-Point Numbers

Useful for applications where very large and very small numbers are needed simultaneously

- Fixed-point representation must sacrifice precision for small values to represent large values

 \[x = (0000 \ 0000 \ . \ 0000 \ 1001)_{\text{two}} \quad \text{Small number} \]

 \[y = (1001 \ 0000 \ . \ 0000 \ 0000)_{\text{two}} \quad \text{Large number} \]

- Neither \(y^2 \) nor \(y / x \) is representable in the format above

- Floating-point representation is like scientific notation:

 \[-20 \ 000 \ 000 = -2 \times 10^7 \quad +0.000 \ 000 \ 007 = +7 \times 10^{-9} \]

Also, \(7 \times 10^{-9} \)
ANSI/IEEE Standard Floating-Point Format (IEEE 754)

Revision (IEEE 754R) was completed in 2008: The revised version includes 16-bit and 128-bit binary formats, as well as 64- and 128-bit decimal formats.

Short (32-bit) format

- Sign: 1 bit
- Exponent: 11 bits, bias = 127, range: –126 to 127
- Significand: 23 bits for fractional part (plus hidden 1 in integer part)

Long (64-bit) format

- Sign: 1 bit
- Exponent: 11 bits, bias = 1023, range: –1022 to 1023
- Significand: 52 bits for fractional part (plus hidden 1 in integer part)

Figure 9.8 The two ANSI/IEEE standard floating-point formats.
Short and Long IEEE 754 Formats: Features

Table 9.1 Some features of ANSI/IEEE standard floating-point formats

<table>
<thead>
<tr>
<th>Feature</th>
<th>Single/Short</th>
<th>Double/Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word width in bits</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Significand in bits</td>
<td>23 + 1 hidden</td>
<td>52 + 1 hidden</td>
</tr>
<tr>
<td>Significand range</td>
<td>[1, 2 (-2^{23})]</td>
<td>[1, 2 (-2^{52})]</td>
</tr>
<tr>
<td>Exponent bits</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Exponent bias</td>
<td>127</td>
<td>1023</td>
</tr>
<tr>
<td>Zero (±0)</td>
<td>(e + \text{bias} = 0, f = 0)</td>
<td>(e + \text{bias} = 0, f = 0)</td>
</tr>
<tr>
<td>Denormal (Subnormal)</td>
<td>(e + \text{bias} = 0, f \neq 0) represents (\pm 0.f \times 2^{-126})</td>
<td>(e + \text{bias} = 0, f \neq 0) represents (\pm 0.f \times 2^{-1022})</td>
</tr>
<tr>
<td>Infinity (±∞)</td>
<td>(e + \text{bias} = 255, f = 0)</td>
<td>(e + \text{bias} = 2047, f = 0)</td>
</tr>
<tr>
<td>Not-a-number (NaN)</td>
<td>(e + \text{bias} = 255, f \neq 0)</td>
<td>(e + \text{bias} = 2047, f \neq 0)</td>
</tr>
<tr>
<td>Ordinary number</td>
<td>(e + \text{bias} \in [1, 254]) [e \in [-126, 127]) represents (1.f \times 2^e)</td>
<td>(e + \text{bias} \in [1, 2046]) [e \in [-1022, 1023]) represents (1.f \times 2^e)</td>
</tr>
<tr>
<td>(\min)</td>
<td>(2^{-126} \approx 1.2 \times 10^{-38})</td>
<td>(2^{-1022} \approx 2.2 \times 10^{-308})</td>
</tr>
<tr>
<td>(\max)</td>
<td>(\approx 2^{128} \approx 3.4 \times 10^{38})</td>
<td>(\approx 2^{1024} \approx 1.8 \times 10^{308})</td>
</tr>
</tbody>
</table>
10 Adders and Simple ALUs

Addition is the most important arith operation in computers:
- Even the simplest computers must have an adder
- An adder, plus a little extra logic, forms a simple ALU

<table>
<thead>
<tr>
<th>Topics in This Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Simple Adders</td>
</tr>
<tr>
<td>10.2 Carry Propagation Networks</td>
</tr>
<tr>
<td>10.3 Counting and Incrementation</td>
</tr>
<tr>
<td>10.4 Design of Fast Adders</td>
</tr>
<tr>
<td>10.5 Logic and Shift Operations</td>
</tr>
<tr>
<td>10.6 Multifunction ALUs</td>
</tr>
</tbody>
</table>
10.1 Simple Adders

Figures 10.1/10.2 Binary half-adder (HA) and full-adder (FA).

Digit-set interpretation:

\{0, 1\} + \{0, 1\} = \{0, 2\} + \{0, 1\}
Full-Adder Implementations

Figure 10.3 Full adder implemented with two half-adders, by means of two 4-input multiplexers, and as two-level gate network.
Ripple-Carry Adder: Slow But Simple

Figure 10.4 Ripple-carry binary adder with 32-bit inputs and output.
Carry Chains and Auxiliary Signals

Bit positions

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[g = xy \]

\[p = x \oplus y \]

Carry chains and their lengths

\[c_{out} \]

\[c_{in} \]
Carry Chains Illustrated with Dominoes
10.2 Carry Propagation Networks

<table>
<thead>
<tr>
<th>g_i</th>
<th>p_i</th>
<th>Carry is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td></td>
<td>annihilated or killed</td>
</tr>
<tr>
<td>0 1</td>
<td></td>
<td>propagated</td>
</tr>
<tr>
<td>1 0</td>
<td></td>
<td>generated</td>
</tr>
<tr>
<td>1 1</td>
<td></td>
<td>(impossible)</td>
</tr>
</tbody>
</table>

$g_i = x_i \cdot y_i$

$p_i = x_i \oplus y_i$

Figure 10.5 The main part of an adder is the carry network. The rest is just a set of gates to produce the g and p signals and the sum bits.
Ripple-Carry Adder Revisited

The carry recurrence: \(c_{i+1} = g_i \lor p_i \cdot c_i \)

Latency of \(k \)-bit adder is roughly \(2k \) gate delays:

1 gate delay for production of \(p \) and \(g \) signals, plus
2\((k - 1)\) gate delays for carry propagation, plus
1 XOR gate delay for generation of the sum bits

Figure 10.6 The carry propagation network of a ripple-carry adder.
The Complete Design of a Ripple-Carry Adder

<table>
<thead>
<tr>
<th>g_i</th>
<th>p_i</th>
<th>Carry is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td></td>
<td>annihilated or killed</td>
</tr>
<tr>
<td>0 1</td>
<td></td>
<td>propagated</td>
</tr>
<tr>
<td>1 0</td>
<td></td>
<td>generated</td>
</tr>
<tr>
<td>1 1</td>
<td></td>
<td>(impossible)</td>
</tr>
</tbody>
</table>

Figure 10.6 (ripple-carry network) superimposed on Figure 10.5 (general structure of an adder).

$$g_i = x_i y_i$$
$$p_i = x_i \oplus y_i$$
First Carry Speed-Up Method: Carry Skip

Figures 10.7/10.8 A 4-bit section of a ripple-carry network with skip paths and the driving analogy.
Mux-Based Skip Carry Logic

Fig. 10.7

The carry-skip adder of Fig. 10.7 works fine if we begin with a clean slate, where all signals are 0s; otherwise, it will run into problems, which do not exist in this mux-based implementation.
10.3 Counting and Incrementation

Figure 10.9 Schematic diagram of an initializable synchronous counter.

- Data in
- Incr’Init
- Update

- Count register
- Adder

- c_{in}
- c_{out}

- k
- a (Increment amount)
Circuit for Incrementation by 1

Substantially simpler than an adder

Figure 10.6

Figure 10.10 Carry propagation network and sum logic for an incrementer.
10.4 Design of Fast Adders

- Carries can be computed directly without propagation
- For example, by unrolling the equation for c_3, we get:
 \[c_3 = g_2 \lor p_2 \lor c_2 = g_2 \lor p_2 \lor g_1 \lor p_2 \lor p_0 \lor p_1 \lor c_0 \]

- We define “generate” and “propagate” signals for a block extending from bit position a to bit position b as follows:
 \[g_{[a,b]} = g_b \lor p_b \lor g_{b-1} \lor p_b \lor p_{b-1} \lor g_{b-2} \lor \cdots \lor p_b \lor p_{b-1} \cdots p_{a+1} \lor g_a \]
 \[p_{[a,b]} = p_b \lor p_{b-1} \cdots p_{a+1} \lor p_a \]

- Combining g and p signals for adjacent blocks:
 \[g_{[h,j]} = g_{[i+1,j]} \lor p_{[i+1,j]} \lor g_{[h,i]} \]
 \[p_{[h,j]} = p_{[i+1,j]} \lor p_{[h,i]} \]

 \[[h, j] = [i + 1, j] \cap [h, i] \]
Carries as Generate Signals for Blocks [0, i]

<table>
<thead>
<tr>
<th>(g_i)</th>
<th>(p_i)</th>
<th>Carry is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>annihilated or killed</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>propagated</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>generated</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(impossible)</td>
</tr>
</tbody>
</table>

Assuming \(c_0 = 0 \), we have \(c_i = g_{[0,i-1]} \)

Figure 10.5
Second Carry Speed-Up Method: Carry Lookahead

Figure 10.11 Brent-Kung lookahead carry network for an 8-digit adder, along with details of one of the carry operator blocks.
Recursive Structure of Brent-Kung Carry Network

Figure 10.12 Brent-Kung lookahead carry network for an 8-digit adder, with only its top and bottom rows of carry-operators shown.
An Alternate Design: Kogge-Stone Network

Kogge-Stone lookahead carry network for an 8-digit adder.

$c_8 = g_{[0,7]}$, $c_7 = g_{[0,6]}$, $c_6 = g_{[0,5]}$, $c_5 = g_{[0,4]}$, $c_4 = g_{[0,3]}$, $c_3 = g_{[0,2]}$, $c_2 = g_{[0,1]}$, $c_1 = g_{[0,0]}$
Brent-Kung vs. Kogge-Stone Carry Network

11 carry operators
4 levels

17 carry operators
3 levels
Carry-Lookahead Logic with 4-Bit Block

Figure 10.13 Blocks needed in the design of carry-lookahead adders with four-way grouping of bits.
Third Carry Speed-Up Method: Carry Select

Allows doubling of adder width with a single-mux additional delay

The lower a positions, (0 to $a - 1$) are added as usual

Figure 10.14 Carry-select addition principle.
10.5 Logic and Shift Operations

Conceptually, shifts can be implemented by multiplexing.

Figure 10.15 Multiplexer-based logical shifting unit.
Arithmetic Shifts

Purpose: Multiplication and division by powers of 2

sra $t0,$s1,2 # $t0 ← ($s1) right-shifted by 2
srav $t0,$s1,$s0 # $t0 ← ($s1) right-shifted by ($s0)

Figure 10.16 The two arithmetic shift instructions of MiniMIPS.
Practical Shifting in Multiple Stages

Figure 10.17 Multistage shifting in a barrel shifter.

(a) Single-bit shifter

(b) Shifting by up to 7 bits
Bit Manipulation via Shifts and Logical Operations

AND with mask to isolate a field: 0000 0000 0000 0000 1111 1100 0000 0000

Right-shift by 10 positions to move field to the right end of word

The result word ranges from 0 to 63, depending on the field pattern

32-pixel (4 × 8) block of black-and-white image:

Representation as 32-bit word: 1010 0000 0101 1000 0000 0110 0001 0111
Hex equivalent: 0xa0a80617

Figure 10.18 A 4 × 8 block of a black-and-white image represented as a 32-bit word.
10.6 Multifunction ALUs

General structure of a simple arithmetic/logic unit.
An ALU for MiniMIPS

Figure 10.19 A multifunction ALU with 8 control signals (2 for function class, 1 arithmetic, 3 shift, 2 logic) specifying the operation.
11 Multipliers and Dividers

Modern processors perform many multiplications & divisions:
• Encryption, image compression, graphic rendering
• Hardware vs programmed shift-add/sub algorithms

<table>
<thead>
<tr>
<th>Topics in This Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Shift-Add Multiplication</td>
</tr>
<tr>
<td>11.2 Hardware Multipliers</td>
</tr>
<tr>
<td>11.3 Programmed Multiplication</td>
</tr>
<tr>
<td>11.4 Shift-Subtract Division</td>
</tr>
<tr>
<td>11.5 Hardware Dividers</td>
</tr>
<tr>
<td>11.6 Programmed Division</td>
</tr>
</tbody>
</table>
11.1 Shift-Add Multiplication

Figure 11.1 Multiplication of 4-bit numbers in dot notation.

\[z^{(j+1)} = (z^{(j)} + y_j \times 2^k) \times 2^{-1} \quad \text{with} \quad z^{(0)} = 0 \quad \text{and} \quad z^{(k)} = z \]

|—— add ——|
|—— shift right ——|
Binary and Decimal Multiplication

Figure 11.2 Step-by-step multiplication examples for 4-digit unsigned numbers.

<table>
<thead>
<tr>
<th>Position</th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x2^4$</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>y</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>$z^{(0)}$</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>$+y_0x2^4$</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>$2z^{(1)}$</td>
<td>0 1 0 1 0</td>
</tr>
<tr>
<td>$z^{(1)}$</td>
<td>0 1 0 1 0</td>
</tr>
<tr>
<td>$+y_1x2^4$</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>$2z^{(2)}$</td>
<td>0 1 1 1 1 0</td>
</tr>
<tr>
<td>$z^{(2)}$</td>
<td>0 1 1 1 1 0</td>
</tr>
<tr>
<td>$+y_2x2^4$</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>$2z^{(3)}$</td>
<td>0 0 1 1 1 1 0</td>
</tr>
<tr>
<td>$z^{(3)}$</td>
<td>0 0 1 1 1 1 0</td>
</tr>
<tr>
<td>$+y_3x2^4$</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>$2z^{(4)}$</td>
<td>0 0 0 1 1 1 0</td>
</tr>
<tr>
<td>$z^{(4)}$</td>
<td>0 0 0 1 1 1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x10^4$</td>
<td>3 5 2 8</td>
</tr>
<tr>
<td>y</td>
<td>4 0 6 7</td>
</tr>
<tr>
<td>$z^{(0)}$</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>$+y_0x10^4$</td>
<td>2 4 6 9 6</td>
</tr>
<tr>
<td>$10z^{(1)}$</td>
<td>2 4 6 9 6</td>
</tr>
<tr>
<td>$z^{(1)}$</td>
<td>0 2 4 6 9 6</td>
</tr>
<tr>
<td>$+y_1x10^4$</td>
<td>2 1 1 6 8</td>
</tr>
<tr>
<td>$10z^{(2)}$</td>
<td>2 3 6 3 7 6</td>
</tr>
<tr>
<td>$z^{(2)}$</td>
<td>2 3 6 3 7 6</td>
</tr>
<tr>
<td>$+y_2x10^4$</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>$10z^{(3)}$</td>
<td>0 2 3 6 3 7 6</td>
</tr>
<tr>
<td>$z^{(3)}$</td>
<td>0 2 3 6 3 7 6</td>
</tr>
<tr>
<td>$+y_3x10^4$</td>
<td>1 4 1 1 2</td>
</tr>
<tr>
<td>$10z^{(4)}$</td>
<td>1 4 3 4 8 3 7 6</td>
</tr>
<tr>
<td>$z^{(4)}$</td>
<td>1 4 3 4 8 3 7 6</td>
</tr>
</tbody>
</table>
Two’s-Complement Multiplication

Example 11.2

```
<table>
<thead>
<tr>
<th>Position</th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x2^4</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>y</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>z(0)</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>+y0x2^4</td>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>2z(1)</td>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>z(1)</td>
<td>1 1 1 0 1 0</td>
</tr>
<tr>
<td>+y1x2^4</td>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>2z(2)</td>
<td>1 0 1 1 1 0</td>
</tr>
<tr>
<td>z(2)</td>
<td>1 1 0 1 1 1 0</td>
</tr>
<tr>
<td>+y2x2^4</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>2z(3)</td>
<td>1 1 0 1 1 1 0</td>
</tr>
<tr>
<td>z(3)</td>
<td>1 1 1 0 1 1 0</td>
</tr>
<tr>
<td>+(-y3x2^4)</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>2z(4)</td>
<td>1 1 1 0 1 1 0</td>
</tr>
<tr>
<td>z(4)</td>
<td>1 1 1 0 1 1 0</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Position</th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x2^4</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>y</td>
<td>1 0 1 1</td>
</tr>
<tr>
<td>z(0)</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>+y0x2^4</td>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>2z(1)</td>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>z(1)</td>
<td>1 1 1 0 1 0</td>
</tr>
<tr>
<td>+y1x2^4</td>
<td>1 1 0 1 0</td>
</tr>
<tr>
<td>2z(2)</td>
<td>1 0 1 1 1 0</td>
</tr>
<tr>
<td>z(2)</td>
<td>1 1 0 1 1 1 0</td>
</tr>
<tr>
<td>+y2x2^4</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>2z(3)</td>
<td>1 1 0 1 1 1 0</td>
</tr>
<tr>
<td>z(3)</td>
<td>1 1 1 0 1 1 0</td>
</tr>
<tr>
<td>+(-y3x2^4)</td>
<td>0 0 1 1 0</td>
</tr>
<tr>
<td>2z(4)</td>
<td>0 0 0 1 1 1 0</td>
</tr>
<tr>
<td>z(4)</td>
<td>0 0 0 1 1 1 0</td>
</tr>
</tbody>
</table>
```

Figure 11.3 Step-by-step multiplication examples for 2’s-complement numbers.
11.2 Hardware Multipliers

Figure 11.4 Hardware multiplier based on the shift-add algorithm.
The Shift Part of Shift-Add

Figure 11.5 Shifting incorporated in the connections to the partial product register rather than as a separate phase.
High-Radix Multipliers

Radix-4 multiplication in dot notation.

\[z^{(j+1)} = (z^{(j)} + y_j \cdot x \cdot 2^k) \times 4^{-1} \]

with \(z^{(0)} = 0 \) and \(z^{(k/2)} = z \)

Assume \(k \) even

Oct. 2014

Computer Architecture, The Arithmetic/Logic Unit

Slide 58
Tree Multipliers

(a) Full-tree multiplier

Large tree of carry-save adders

Adder

Product

Several partial products

Small tree of carry-save adders

Adder

Product

(b) Partial-tree multiplier

Figure 11.6 Schematic diagram for full/partial-tree multipliers.
Array Multipliers

Figure 11.7 Array multiplier for 4-bit unsigned operands.

Our original dot-notation representing multiplication

Figure 9.3a (Recalling carry-save addition)

Straightened dots to depict array multiplier to the left
11.3 Programmed Multiplication

MiniMIPS instructions related to multiplication

- `mult $s0,$s1` # set Hi,Lo to ($s0)×($s1); signed
- `multu $s2,$s3` # set Hi,Lo to ($s2)×($s3); unsigned
- `mfhi $t0` # set $t0 to (Hi)
- `mflo $t1` # set $t1 to (Lo)

Example 11.3

Finding the 32-bit product of 32-bit integers in MiniMIPS

Multiply; result will be obtained in Hi, Lo

For unsigned multiplication:

- Hi should be all-0s and Lo holds the 32-bit result

For signed multiplication:

- Hi should be all-0s or all-1s, depending on the sign bit of Lo
Emulating a Hardware Multiplier in Software

Example 11.4 (MiniMIPS shift-add program for multiplication)

Figure 11.8 Register usage for programmed multiplication superimposed on the block diagram for a hardware multiplier.
Multiplication When There Is No Multiply Instruction

Example 11.4 (MiniMIPS shift-add program for multiplication)

```
shamu:  move $v0,$zero  # initialize Hi to 0
         move $v1,$zero  # initialize Lo to 0
         addi $t2,$zero,32 # init repetition counter to 32
mloop:  move $t0,$zero  # set c-out to 0 in case of no add
         move $t1,$a1  # copy ($a1) into $t1
         srl $a1,1  # halve the unsigned value in $a1
         subu $t1,$t1,$a1  # subtract ($a1) from ($t1) twice to
         subu $t1,$t1,$a1  # obtain LSB of ($a1), or y[j], in $t1
         beqz $t1,noadd  # no addition needed if y[j] = 0
         addu $v0,$v0,$a0  # add x to upper part of z
         sltu $t0,$v0,$a0  # form carry-out of addition in $t0
         noadd: move $t1,$v0  # copy ($v0) into $t1
               srl $v0,1  # halve the unsigned value in $v0
               subu $t1,$t1,$v0  # subtract ($v0) from ($t1) twice to
               subu $t1,$t1,$v0  # obtain LSB of Hi in $t1
               sll $t0,$t0,31  # carry-out converted to 1 in MSB of $t0
               addu $v0,$v0,$t0  # right-shifted $v0 corrected
               srl $v1,1  # halve the unsigned value in $v1
               sll $t1,$t1,31  # LSB of Hi converted to 1 in MSB of $t1
               addu $v1,$v1,$t1  # right-shifted $v1 corrected
               addi $t2,$t2,-1  # decrement repetition counter by 1
               bne $t2,$zero,mloop  # if counter > 0, repeat multiply loop
         jr $ra  # return to the calling program
```
11.4 Shift-Subtract Division

Figure 11.9 Division of an 8-bit number by a 4-bit number in dot notation.

\[z(j) = 2z(j-1) - y_{k-j} \times 2^k \]
with \(z(0) = z \) and \(z(k) = 2^k \cdot s \)
Integer and Fractional Unsigned Division

Example 11.5

<table>
<thead>
<tr>
<th>Position</th>
<th>7 6 5 4 3 2 1 0</th>
<th>Position</th>
<th>–1 –2 –3 –4 –5 –6 –7 –8</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>0 1 1 1 0 1 0 1</td>
<td>z</td>
<td>.1 4 3 5 1 5 0 2</td>
</tr>
<tr>
<td>x</td>
<td>1 0 1 0</td>
<td>x</td>
<td>.4 0 6 7</td>
</tr>
<tr>
<td>z(0)</td>
<td>0 1 1 1 0 1 0 1</td>
<td>z(0)</td>
<td>.1 4 3 5 1 5 0 2</td>
</tr>
<tr>
<td>2z(0)</td>
<td>0 1 1 1 0 1 0 1</td>
<td>10z(0)</td>
<td>1.4 3 5 1 5 0 2</td>
</tr>
<tr>
<td>y3x24</td>
<td>1 0 1 0</td>
<td>y3x1</td>
<td>1.2 2 0 1</td>
</tr>
<tr>
<td>z(1)</td>
<td>0 1 0 0 1 0 1 1</td>
<td>z(1)</td>
<td>.2 1 5 0 5 0 2</td>
</tr>
<tr>
<td>2z(1)</td>
<td>0 1 0 0 1 0 1 1</td>
<td>10z(1)</td>
<td>2.1 5 0 5 0 2</td>
</tr>
<tr>
<td>y2x24</td>
<td>0 0 0 0</td>
<td>y2x1</td>
<td>2.0 3 3 5</td>
</tr>
<tr>
<td>z(2)</td>
<td>1 0 0 1 0 1 1 1</td>
<td>z(2)</td>
<td>.1 1 7 0 0 2</td>
</tr>
<tr>
<td>2z(2)</td>
<td>1 0 0 1 0 1 1 1</td>
<td>10z(2)</td>
<td>1.1 7 0 0 2</td>
</tr>
<tr>
<td>y1x24</td>
<td>1 0 1 0</td>
<td>y1x1</td>
<td>0.8 1 3 4</td>
</tr>
<tr>
<td>z(3)</td>
<td>1 0 0 0 1</td>
<td>z(3)</td>
<td>.3 5 6 6 2</td>
</tr>
<tr>
<td>2z(3)</td>
<td>1 0 0 0 1</td>
<td>10z(3)</td>
<td>3.5 6 6 2</td>
</tr>
<tr>
<td>y0x24</td>
<td>1 0 1 0</td>
<td>y0x1</td>
<td>3.2 5 3 6</td>
</tr>
<tr>
<td>z(4)</td>
<td>0 1 1 1</td>
<td>z(4)</td>
<td>.3 1 2 6</td>
</tr>
<tr>
<td>s</td>
<td>0 1 1 1</td>
<td>s</td>
<td>.0 0 0 0 3 1 2 6</td>
</tr>
<tr>
<td>y</td>
<td>1 0 1 1</td>
<td>y</td>
<td>.3 5 2 8</td>
</tr>
</tbody>
</table>

Figure 11.10 Division examples for binary integers and decimal fractions.
Division with Same-Width Operands

Figure 11.11 Division examples for 4/4-digit binary integers and fractions.

<table>
<thead>
<tr>
<th>Position</th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>0 0 0 0 1 1 0 1</td>
</tr>
<tr>
<td>$x2^4$</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>$z^{(0)}$</td>
<td>0 0 0 0 1 1 0 1</td>
</tr>
<tr>
<td>$2z^{(0)}$</td>
<td>0 0 0 1 1 0 1</td>
</tr>
<tr>
<td>$-y_3x2^4$</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>$z^{(1)}$</td>
<td>0 0 0 1 1 0 1</td>
</tr>
<tr>
<td>$2z^{(1)}$</td>
<td>0 0 1 1 0 1</td>
</tr>
<tr>
<td>$-y_2x2^4$</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>$z^{(2)}$</td>
<td>0 0 1 1 0 1</td>
</tr>
<tr>
<td>$2z^{(2)}$</td>
<td>0 1 1 0 1</td>
</tr>
<tr>
<td>$-y_1x2^4$</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>$z^{(3)}$</td>
<td>0 0 0 1 1</td>
</tr>
<tr>
<td>$2z^{(3)}$</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>$-y_0x2^4$</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>$z^{(4)}$</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>s</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>y</td>
<td>0 0 1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>-1 -2 -3 -4 -5 -6 -7 -8</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>x</td>
<td>1 1 0 1</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>$z^{(0)}$</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>$2z^{(0)}$</td>
<td>0.1 0 1 0</td>
</tr>
<tr>
<td>$-y_{-1}x$</td>
<td>0.0 0 0 0</td>
</tr>
<tr>
<td>$z^{(1)}$</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>$2z^{(1)}$</td>
<td>1.0 1 0 0</td>
</tr>
<tr>
<td>$-y_{-2}x$</td>
<td>0.1 1 0 1</td>
</tr>
<tr>
<td>$z^{(2)}$</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>$2z^{(2)}$</td>
<td>0.1 1 1 0</td>
</tr>
<tr>
<td>$-y_{-3}x$</td>
<td>0.1 1 0 1</td>
</tr>
<tr>
<td>$z^{(3)}$</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>$2z^{(3)}$</td>
<td>0.0 0 1 0</td>
</tr>
<tr>
<td>$-y_{-4}x$</td>
<td>0.0 0 0 0</td>
</tr>
<tr>
<td>$z^{(4)}$</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>s</td>
<td>0 0 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td>y</td>
<td>0 1 1 0</td>
</tr>
</tbody>
</table>

Example 11.6
Signed Division

Method 1 (indirect): strip operand signs, divide, set result signs

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Divisor</th>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>z = 5</td>
<td>x = 3</td>
<td>y = 1</td>
<td>s = 2</td>
</tr>
<tr>
<td>z = 5</td>
<td>x = –3</td>
<td>y = –1</td>
<td>s = 2</td>
</tr>
<tr>
<td>z = –5</td>
<td>x = 3</td>
<td>y = –1</td>
<td>s = –2</td>
</tr>
<tr>
<td>z = –5</td>
<td>x = –3</td>
<td>y = 1</td>
<td>s = –2</td>
</tr>
</tbody>
</table>

Method 2 (direct 2’s complement): develop quotient with digits –1 and 1, chosen based on signs, convert to digits 0 and 1

Restoring division: perform trial subtraction, choose 0 for q digit if partial remainder negative

Nonrestoring division: if sign of partial remainder is correct, then subtract (choose 1 for q digit) else add (choose –1)
11.5 Hardware Dividers

Figure 11.12 Hardware divider based on the shift-subtract algorithm.
The Shift Part of Shift-Subtract

Figure 11.13 Shifting incorporated in the connections to the partial remainder register rather than as a separate phase.
High-Radix Dividers

Radix-4 division in dot notation.

\[z^{(j)} = 4z^{(j-1)} - (y_{k-2j+1} y_{k-2j})_{\text{two}} x 2^k \]

with \(z^{(0)} = z \) and \(z^{(k/2)} = 2^k s \)

<table>
<thead>
<tr>
<th>shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>subtract</td>
</tr>
</tbody>
</table>

Assume \(k \) even
Figure 11.14 Array divider for 8/4-bit unsigned integers.
11.6 Programmed Division

MiniMIPS instructions related to division

```
div    $s0,$s1    # Lo = quotient, Hi = remainder
divu   $s2,$s3   # unsigned version of division
mfhi   $t0       # set $t0 to (Hi)
mflo   $t1       # set $t1 to (Lo)
```

Example 11.7

Compute $z \mod x$, where z (signed) and $x > 0$ are integers

Divide; remainder will be obtained in Hi

- if remainder is negative,
 - then add $|x|$ to (Hi) to obtain $z \mod x$
- else Hi holds $z \mod x$
Emulating a Hardware Divider in Software

Example 11.8 (MiniMIPS shift-add program for division)

Figure 11.15 Register usage for programmed division superimposed on the block diagram for a hardware divider.
Division When There Is No Divide Instruction

Example 11.7 (MiniMIPS shift-subtract program for division)

```assembly
shsdi:  move $v0,$a2          # initialize Hi to ($a2)
         move $v1,$a3          # initialize Lo to ($a3)
         addi $t2,$zero,32     # initialize repetition counter to 32
dloop:  slt  $t0,$v0,$zero   # copy MSB of Hi into $t0
         sll  $v0,$v0,1        # left-shift the Hi part of $z
         slt  $t1,$v1,$zero    # copy MSB of Lo into $t1
         or   $v0,$v0,$t1      # move MSB of Lo into LSB of Hi
         sll  $v1,$v1,1        # left-shift the Lo part of $z
         sge  $t1,$v0,$a0      # quotient digit is 1 if (Hi) ≥ x,
         or   $t1,$t1,$t0      # or if MSB of Hi was 1 before shifting
         sll  $a1,$a1,1        # shift y to make room for new digit
         or   $a1,$a1,$t1      # copy y[k-j] into LSB of $a1
         beq  $t1,$zero,nosub  # if y[k-j] = 0, do not subtract
         subu $v0,$v0,$a0      # subtract divisor x from Hi part of $z
         nosub: addi $t2,$t2,$a0 # decrement repetition counter by 1
                  bne  $t2,$zero,dloop # if counter > 0, repeat divide loop
         move $v1,$a1          # copy the quotient y into $v1
         jr   $ra              # return to the calling program
```
Divider vs Multiplier: Hardware Similarities

Figure 11.12
Figure 11.4
Figure 11.14
Turn upside-down

Oct. 2014
Computer Architecture, The Arithmetic/Logic Unit
Slide 75
12 Floating-Point Arithmetic

Floating-point is no longer reserved for high-end machines
• Multimedia and signal processing require flp arithmetic
• Details of standard flp format and arithmetic operations

<table>
<thead>
<tr>
<th>Topics in This Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Rounding Modes</td>
</tr>
<tr>
<td>12.2 Special Values and Exceptions</td>
</tr>
<tr>
<td>12.3 Floating-Point Addition</td>
</tr>
<tr>
<td>12.4 Other Floating-Point Operations</td>
</tr>
<tr>
<td>12.5 Floating-Point Instructions</td>
</tr>
<tr>
<td>12.6 Result Precision and Errors</td>
</tr>
</tbody>
</table>
12.1 Rounding Modes

IEEE 754 Format

± 0, $\pm \infty$, NaN

$1.f \times 2^e$

Denormals: $0.f \times 2^{e_{\text{min}}}$

Denormals allow graceful underflow

Short (32-bit) format

- 8 bits, bias = 127, -126 to 127
- 23 bits for fractional part
 (plus hidden 1 in integer part)

Long (64-bit) format

- 11 bits, bias = 1023, -1022 to 1023
- 52 bits for fractional part
 (plus hidden 1 in integer part)

± 0, $\pm \infty$, NaN

Example: $1.f \times 2^e$

Denormals: $0.f \times 2^{e_{\text{min}}}$

Figure 12.1 Distribution of floating-point numbers on the real line.
Round-to-Nearest (Even)

Figure 12.2 Two round-to-nearest-integer functions for x in $[-4, 4]$.
Directed Rounding

(a) Round inward to nearest integer
(b) Round upward to nearest integer

Figure 12.3 Two directed round-to-nearest-integer functions for x in $[-4, 4]$.
12.2 Special Values and Exceptions

Zeros, infinities, and NaNs (not a number)

\[\pm 0 \quad \text{Biased exponent = 0, significand = 0 (no hidden 1)} \]
\[\pm \infty \quad \text{Biased exponent = 255 (short) or 2047 (long), significand = 0} \]
\[\text{NaN} \quad \text{Biased exponent = 255 (short) or 2047 (long), significand} \neq 0 \]

Arithmetic operations with special operands

\[(+0) + (+0) = (+0) - (-0) = +0 \]
\[(+0) \times (+5) = +0 \]
\[(+0) / (-5) = -0 \]
\[(+\infty) + (+\infty) = +\infty \]
\[x - (+\infty) = -\infty \]
\[(+\infty) \times x = \pm\infty, \text{ depending on the sign of } x \]
\[x / (+\infty) = \pm 0, \text{ depending on the sign of } x \]
\[\sqrt{(+\infty)} = +\infty \]
Exceptions

Undefined results lead to NaN (not a number)

\[
(\pm 0) / (\pm 0) = \text{NaN} \\
(\pm\infty) + (\pm\infty) = \text{NaN} \\
(\pm 0) \times (\pm\infty) = \text{NaN} \\
(\pm\infty) / (\pm\infty) = \text{NaN}
\]

Arithmetic operations and comparisons with NaNs

\[
\begin{align*}
\text{NaN} + x &= \text{NaN} & \text{NaN} &< 2 &\rightarrow \text{false} \\
\text{NaN} + \text{NaN} &= \text{NaN} & \text{NaN} &= \text{Nan} &\rightarrow \text{false} \\
\text{NaN} \times 0 &= \text{NaN} & \text{NaN} &\neq (+\infty) &\rightarrow \text{true} \\
\text{NaN} \times \text{NaN} &= \text{NaN} & \text{NaN} &\neq \text{NaN} &\rightarrow \text{true}
\end{align*}
\]

Examples of invalid-operation exceptions

Addition: \((+\infty) + (\pm\infty)\)
Multiplication: \(0 \times \infty\)
Division: \(0 / 0 \text{ or } \infty / \infty\)
Square-root: \(\text{Operand} < 0\)
12.3 Floating-Point Addition

\[(\pm2^{e_1}s_1) + (\pm2^{e_1}(s_2 / 2^{e_1-e_2})) = \pm2^{e_1}(s_1 \pm s_2 / 2^{e_1-e_2})\]

Numbers to be added:

\[x = 2^5 \times 1.00101101\]
\[y = 2^1 \times 1.11101101\]

Operands after alignment shift:

\[x = 2^5 \times 1.00101101\]
\[y = 2^5 \times 0.000111101101\]

Result of addition:

\[s = 2^5 \times 1.0100101111101\]
\[s = 2^5 \times 1.01001100\]

Figure 12.4 Alignment shift and rounding in floating-point addition.
Hardware for Floating-Point Addition

Figure 12.5
Simplified schematic of a floating-point adder.
12.4 Other Floating-Point Operations

Floating-point multiplication

\[(\pm 2^{e_1}s_1) \times (\pm 2^{e_2}s_2) = \pm 2^{e_1+e_2}(s_1 \times s_2)\]

Product of significands in [1, 4)

If product is in [2, 4), halve to normalize (increment exponent)

Overflow (underflow) possible

Floating-point division

\[(\pm 2^{e_1}s_1) / (\pm 2^{e_2}s_2) = \pm 2^{e_1-e_2}(s_1 / s_2)\]

Ratio of significands in (1/2, 2)

If ratio is in (1/2, 1), double to normalize (decrement exponent)

Overflow (underflow) possible

Floating-point square-rooting

\[(2^{e}s)^{1/2} = 2^{e/2}(s)^{1/2}\]

when \(e\) is even

= \(2^{(e-1)/2}(2s)^{1/2}\)

when \(e\) is odd

Normalization not needed
Hardware for Floating-Point Multiplication and Division

Figure 12.6 Simplified schematic of a floating-point multiply/divide unit.
12.5 Floating-Point Instructions

Floating-point arithmetic instructions for MiniMIPS:

- `add.s $f0,$f8,$f10` # set $f0 to ($f8) + fp ($f10)
- `sub.d $f0,$f8,$f10` # set $f0 to ($f8) - fp ($f10)
- `mul.d $f0,$f8,$f10` # set $f0 to ($f8) * fp ($f10)
- `div.s $f0,$f8,$f10` # set $f0 to ($f8) / fp ($f10)
- `neg.s $f0,$f8` # set $f0 to -(fp($f8))

Figure 12.7 The common floating-point instruction format for MiniMIPS and components for arithmetic instructions. The extension (ex) field distinguishes single (* = s) from double (* = d) operands.
Pairs of registers, beginning with an even-numbered one, are used for double operands.

Figure 5.1 Memory and processing subsystems for MiniMIPS.
Floating-Point Format Conversions

MiniMIPS instructions for number format conversion:

- `cvt.s.w $f0,$f8` # set $f0 to single(integer $f8)
- `cvt.d.w $f0,$f8` # set $f0 to double(integer $f8)
- `cvt.d.s $f0,$f8` # set $f0 to double($f8)
- `cvt.s.d $f0,$f8` # set $f0 to single($f8,$f9)
- `cvt.w.s $f0,$f8` # set $f0 to integer($f8)
- `cvt.w.d $f0,$f8` # set $f0 to integer($f8,$f9)

Figure 12.8 Floating-point instructions for format conversion in MiniMIPS.
Floating-Point Data Transfers

MiniMIPS instructions for floating-point load, store, and move:

```
lwc1 $f8,40($s3) # load mem[40+($s3)] into $f8
swc1 $f8,A($s3) # store ($f8) into mem[A+($s3)]
mov.s $f0,$f8  # load $f0 with ($f8)
mov.d $f0,$f8  # load $f0,$f1 with ($f8,$f9)
mfc1 $t0,$f12 # load $t0 with ($f12)
mtc1 $f8,$t4  # load $f8 with ($t4)
```

Figure 12.9 Instructions for floating-point data movement in MiniMIPS.
Floating-Point Branches and Comparisons

MiniMIPS instructions for floating-point load, store, and move:

- `bc1t L` # branch on fp flag true
- `bc1f L` # branch on fp flag false
- `c.eq.* $f0,$f8` # if ($f0)=$(f8), set flag to “true”
- `c.lt.* $f0,$f8` # if ($f0)<($f8), set flag to “true”
- `c.le.* $f0,$f8` # if ($f0)≤($f8), set flag to “true”

Figure 12.10 Floating-point branch and comparison instructions in MiniMIPS.
Floating-Point Instructions of MiniMIPS

Table 12.1

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Usage</th>
<th>ex</th>
<th>fn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move s/d registers</td>
<td>mov.* fd,fs</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Move fm coprocessor 1</td>
<td>mfcl rt,rd</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Move to coprocessor 1</td>
<td>mtc1 rd,rt</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Add single/double</td>
<td>add.* fd,fs,ft</td>
<td>#</td>
<td>0</td>
</tr>
<tr>
<td>Subtract single/double</td>
<td>sub.* fd,fs,ft</td>
<td>#</td>
<td>1</td>
</tr>
<tr>
<td>Multiply single/double</td>
<td>mul.* fd,fs,ft</td>
<td>#</td>
<td>2</td>
</tr>
<tr>
<td>Divide single/double</td>
<td>div.* fd,fs,ft</td>
<td>#</td>
<td>3</td>
</tr>
<tr>
<td>Negate single/double</td>
<td>neg.* fd,fs</td>
<td>#</td>
<td>7</td>
</tr>
<tr>
<td>Compare equal s/d</td>
<td>c.eq.* fs,ft</td>
<td>#</td>
<td>50</td>
</tr>
<tr>
<td>Compare less s/d</td>
<td>c.lt.* fs,ft</td>
<td>#</td>
<td>60</td>
</tr>
<tr>
<td>Compare less or eq s/d</td>
<td>c.le.* fs,ft</td>
<td>#</td>
<td>62</td>
</tr>
<tr>
<td>Convert integer to single</td>
<td>cvt.s.w fd,fs</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Convert integer to double</td>
<td>cvt.d.w fd,fs</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Convert single to double</td>
<td>cvt.d.s fd,fs</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>Convert double to single</td>
<td>cvt.s.d fd,fs</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>Convert single to integer</td>
<td>cvt.w.s fd,fs</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>Convert double to integer</td>
<td>cvt.w.d fd,fs</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Load word coprocessor 1</td>
<td>lwcl ft,imm(rs)</td>
<td>rs</td>
<td>8</td>
</tr>
<tr>
<td>Store word coprocessor 1</td>
<td>swcl ft,imm(rs)</td>
<td>rs</td>
<td>8</td>
</tr>
<tr>
<td>Branch coproc 1 true</td>
<td>bclt L</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Branch coproc 1 false</td>
<td>bclfl L</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

* * s/d for single/double
0/1 for single/double
12.6 Result Precision and Errors

Example 12.4

Laws of algebra may not hold in floating-point arithmetic. For example, the following computations show that the associative law of addition, \((a + b) + c = a + (b + c)\), is violated for the three numbers shown.

Numbers to be added first
\[
\begin{align*}
a &= -2^5 \times 1.10101011 \\
b &= 2^5 \times 1.10101110
\end{align*}
\]

Compute \(a + b\)
\[
\begin{align*}
2^5 &\times 0.00000011 \\
a+b &= 2^{-2} \times 1.10000000 \\
c &= -2^{-2} \times 1.01100101
\end{align*}
\]

Compute \((a + b) + c\)
\[
\begin{align*}
2^{-2} &\times 0.00011011 \\
Sum &= 2^{-6} \times 1.10110000
\end{align*}
\]

Numbers to be added first
\[
\begin{align*}
b &= 2^5 \times 1.10101110 \\
c &= -2^{-2} \times 1.01100101
\end{align*}
\]

Compute \(b + c\) (after preshifting \(c\))
\[
\begin{align*}
2^5 &\times 1.1010101100110111 \\
b+c &= 2^5 \times 1.10101011 \quad \text{(Round)} \\
a &= -2^5 \times 1.10101011
\end{align*}
\]

Compute \(a + (b + c)\)
\[
\begin{align*}
2^5 &\times 0.00000000 \\
Sum &= 0 \quad \text{(Normalize to special code for 0)}
\end{align*}
\]
Error Control and Certifiable Arithmetic

Catastrophic cancellation in subtracting almost equal numbers:

Area of a needlelike triangle

\[A = \left[s(s - a)(s - b)(s - c) \right]^{1/2} \]

Possible remedies

Carry extra precision in intermediate results (guard digits): commonly used in calculators

Use alternate formula that does not produce cancellation errors

Certifiable arithmetic with intervals

A number is represented by its lower and upper bounds \([x_l, x_u]\)

Example of arithmetic:

\[[x_l, x_u] + \text{interval } [y_l, y_u] = [x_l +_{fp\land} y_l, x_u +_{fp\land} y_u] \]
Evaluation of Elementary Functions

Approximating polynomials

\[
\ln x = 2(z + z^3/3 + z^5/5 + z^7/7 + \ldots) \quad \text{where} \quad z = (x - 1)/(x + 1)
\]
\[
e^x = 1 + x/1! + x^2/2! + x^3/3! + x^4/4! + \ldots
\]
\[
\cos x = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - \ldots
\]
\[
\tan^{-1} x = x - x^3/3 + x^5/5 - x^7/7 + x^9/9 - \ldots
\]

Iterative (convergence) schemes

For example, beginning with an estimate for \(x^{1/2}\), the following iterative formula provides a more accurate estimate in each step

\[
q^{(i+1)} = 0.5(q^{(i)} + x/q^{(i)})
\]

Table lookup (with interpolation)

A pure table lookup scheme results in huge tables (impractical); hence, often a hybrid approach, involving interpolation, is used.
Figure 12.12 Function evaluation by table lookup and linear interpolation.

The linear approximation above is characterized by the line equation $a + b x_L$, where a and b are read out from tables based on x_H. The best linear approximation in subinterval is given by:

$$f(x) = a + b x_L$$