A Formulation of Fast Carry Chains Suitable for Efficient Implementation with Majority Elements

Behrooz Parhami (2nd author)
Dept. Electrical & Computer Eng.
Univ. of California, Santa Barbara

Ghassem Jaberipur
Shahid Beheshti Univ. & IPM, Iran

Dariush Abedi
Shahid Beheshti Univ., Iran
Continual Reassessment of Designs

- Change in cost/delay models with advent of ICs
 Transistors became faster/cheaper; wires costlier/slower
- Adaptation to CMOS, domino logic, and the like
 Optimal design for one technology not best with another
- Power and energy-efficiency considerations
 Voltage levels and number of transitions became important
- Quantum computing and reversible circuits
 Fan-out; managing constant inputs and garbage outputs
- Nanotech and process uncertainty / unreliability
 Designs for a wide range of circuit parameters and failures
- Novel circuit elements and design paradigms
 From designs optimized for FPGAs to biological computing
Threshold, Majority, Median

Threshold logic extensively studied since the 1940s.

“Fires” if weighted sum of the inputs equals or exceeds the threshold value.

Majority is a special case with unit weights and $t = \frac{n+1}{2}$

For 3-input majority gate: $w_1 = w_2 = w_3 = 1$; $t = 2$

For 0-1 inputs, majority is the same as median:

$$\text{sum} = w_1x_1 + w_2x_2 + w_3x_3$$

Axioms defining a median algebra:

- $M(a, b, b) = b$
- $M(a, b, c) = M(a, c, b)$
- $M(a, b, c) = M(c, a, b)$
- $M(M(a, x, b), x, c) = M(a, x, M(b, x, c))$
Emerging Majority-Based Technologies

- Quantum-dot cellular automata (QCA)
 The basic cell has four electron place-holders ("dots")
- Single-electron tunneling (SET)
 Based on controlled transfer of individual electrons
- Tunneling phase logic (TPL)
 Capacitively-coupled inputs feed a load capacitance
- Magnetic tunnel junction (MTJ)
 Uses two ferromagnetic thin-film layers, free and fixed
- Nano-scale bar magnets (NBM)
 Scaled-down adaptation of fairly old magnetic logic
- Biological embodiments of majority function
 Basis for neural computation in human / animal brains
Quantum-dot Cellular Automata (QCA)

The basic cell has four electron place-holders ("dots")

A robust QCA Inverter

Three QCA cell configurations

M(1,1,0) = 1

M(0,1,0) = 0

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements

Slide # 005
Single-Electron Tunneling (SET)

Based on controlled transfer of individual electrons

SET circuits for M (left) and inversion (right) [28]

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements

Slide # 006
Tunneling Phase Logic (TPL)

Capacitively-coupled inputs feed a load capacitance

The basic TPL gate implements the minority function

\[\text{inv}(a) = \overline{a} = \text{minority}(a, 0, 1) \]
Magnetic Tunnel Junction (MTJ)

Uses two ferromagnetic thin-film layers, free and fixed

Majority gate in MTJ logic

B. Parhami ARITH-23: Fast Carry Chains with Majority Elements Slide # 008
Nano-scale Bar Magnets (NBM)

Voting with nanomagnets

Scaled-down adaptation of fairly old magnetic logic

Two types of nanomagnet wires

B. Parhami ARITH-23: Fast Carry Chains with Majority Elements Slide # 009
The Carry Recurrence and Operator

\[c_{i+1} = a_i b_i \lor (a_i \lor b_i)c_i \quad 0 \leq i \leq n - 1 \]

With \textit{generate} \(g_i = a_i b_i \) and \textit{propagate} \(p_i = a_i \lor b_i \) signals:

\[c_{i+1} = g_i \lor p_i c_i \]

With \textit{group-generate} \(G_{i:j} \) and \textit{group-propagate} \(P_{i:j} \) signals:

\[(G_{i:j}, P_{i:j}) = (G_{i:k} \lor P_{i:k} G_{k-1:j}, P_{i:k} P_{k-1:j}) \]

\[c_{i+1} = G_{i:j} \lor P_{i:j} c_j \]

Carry generation using a majority gate:

\[c_{i+1} = M(a_i, b_i, c_i) \]
The Full-Adder (FA) Building Block

\[s_i = a_i \oplus b_i \oplus c_i \]

\[c_{i+1} = a_i b_i + (a_i + b_i)c_i \]

FA has been widely studied and optimized
Implementation with seven 2-input gates:
Majority-Gate Implementations of FA

Blind mapping: Seven partially utilized M-gates, 2 inverters:

![Diagram of PUM and FUM]

Three fully-utilized M gates, 2 inverters:

\[s_i = M(M(\overline{c_i}, a_i, b_i), M(a_i, b_i, c_i), c_i) \]
\[c_{i+1} = M(a_i, b_i, c_i) \]
Parallel-Prefix Kogge-Stone-Like CGN

\[
\begin{align*}
&(a, b_7) \quad (a, b_6) \quad (a, b_5) \quad (a, b_4) \quad (a, b_3) \quad (a, b_2) \quad (a, b_1) \\
& c_7 \quad c_6 \quad c_5 \quad c_4 \quad c_3 \quad c_2 \quad c_1 \\
& \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad c_{\text{out}}
\end{align*}
\]

KS with \(c_{\text{in}}\)

M-based implementations of the building blocks:
Blind mapping
Total of 73 PUM gates

B. Parhami ARITH-23: Fast Carry Chains with Majority Elements Slide # 013
Exploiting Fully Utilized M-Gates: First Attempt by Pudi et al.

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements

Slide # 014

8-bit CGN:
CDP: 5 M
FUMs: 13
M total: 28
FUM%: 53

[61% fewer M-gates than with blind mapping]
Exploiting Fully Utilized M-Gates: Second Attempt by Perri et al.

Two-bit CGN with 1 M CDP in c_i-to-c_{i+2} path

Total for 8-bit adder: 24
[67% fewer M-gates than with blind mapping]

$$c_{i+2} = M(M(a_{i+1}, b_{i+1}, p_i), M(a_{i+1}, b_{i+1}, g_i), c_i)$$

Conventional (2M delay, 2 FUM):
$$c_{i+2} = M(a_{i+1}, b_{i+1}, M(a_i, b_i, c_i))$$
Our Compromise Solution
(1M carry-path delay, 3 FUM)

\[c_{i+2} = M(M(a_{i+1}, b_{i+1}, a_i), M(a_{i+1}, b_{i+1}, b_i), c_i) \]

\[A_{i+1:i} = M(a_{i+1}, b_{i+1}, a_i) \]
\[B_{i+1:i} = M(a_{i+1}, b_{i+1}, b_i) \]
\[c_{i+2} = M(A_{i+1:i}, B_{i+1:i}, c_i) \]

Think of \(A_{i+1:i} \) and \(B_{i+1:i} \), as representing 2-bit inputs \(a_{i+1}a_i \) and \(b_{i+1}b_i \)

Example:

\[a_{i+1}a_i = c_i = 1 \implies a_i = c_i = 1 \implies c_{i+1} = 1 \text{ and } a_{i+1} = 1 \implies c_{i+2} = 1 \]
Generalizing the Compromise Solution

Twin M-gate:

\((A_{j:i}, B_{j:i}): (M(a_j, b_j, A_{j-1:i}), M(a_j, b_j, B_{j-1:i}))\)

Majority group generate and propagate:

\[\Gamma_{j:i} = A_{j:i}B_{j:i}\quad \Pi_{j:i} = A_{j:i} + B_{j:i}\]

\[\Gamma_{j:i} = g_j + p_j\Gamma_{j-1:i}\quad \Pi_{j:i} = g_j + p_j\Pi_{j-1:i}\]

Properties:

\[c_{i+j+1} = M(A_{i+j:i}, B_{i+j:i}, c_i)\]

Associativity:

\[A_{k+j:i} = M(A_{k+j:j}, B_{k+j:j}, A_{j-1:i}), B_{k+j:i} = M(A_{k+j:j}, B_{k+j:j}, B_{j-1:i})\]
KS-Like and LF-Like M-Based CGNs (with C_{in})

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements

Slide # 018
KS-Like M-Based CGNs
(with C_{in}) (% of FUM: 100)

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements

Slide # 019
LF-Like M-Based CGNs (with C_{in}) (% of FUM: 100)

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements

Slide # 020
Scaling up to 16-bit KS-Like Design

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements

Slide # 021
QCA Implementation: 8-Bit LF-Like

ARITH-23: Fast Carry Chains with Majority Elements
Comparison with Previous Work (8-bit CGN)

<table>
<thead>
<tr>
<th>Delay (clock zone)</th>
<th>PUM*</th>
<th>FUM*</th>
<th>Total M</th>
</tr>
</thead>
<tbody>
<tr>
<td>New KS-like</td>
<td>6</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>New LF-like</td>
<td>6</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>[13]</td>
<td>9</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>[15]</td>
<td>9</td>
<td>15</td>
<td>13</td>
</tr>
</tbody>
</table>

* Partially / Fully-Utilized M-Gates

B. Parhami ARITH-23: Fast Carry Chains with Majority Elements Slide # 023
Conclusions and Future Work

- Best M-based carry-network designs to date
 - More efficient use of (fully utilized) M-gates
 - Applicable to a variety of PPN design styles
 - Benefits over na"ive designs and prior attempts

- Majority-friendly tech’s becoming important
 - Improve, assess, and fine-tune implementations
 - Extend designs to several other word widths
 - Obtain generalized cost / latency formulas
 - Pursue design methods for other technologies