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Tabular Computing: A History
Ancient tables: Manually computed
Charles Babbage: Polynomial approximation of functions
Math handbooks: My generation used them
Modern look-up tables: Speed-up; Caching; Seed value
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Example of Table-Based Computation
Compute log10 35.419

Table: log of values in [1.00, 9.99], in increments of 0.01]

Pre-scaling: log10 35.419 = 1 + log10 3.5419

Table access: log10 3.54 = 0.549 003
log10 3.55 = 0.550 228

Interpolation: log10 3.5419 = log10 3.54 + e
= 0.549 003 + (0.19)(0.550 228 – 0.549 003)
= 0.549 236

Final result: log10 35.419 = 1 + 0.549 236 = 1.549 236
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Direct and Indirect Table-Lookup
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Direct lookup: Operands serve as address bits into table
Indirect lookup: Inputs pre-processed; output post-processed
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Memory Cost Reduction Trends
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Tables in Primary and Supporting Roles
Tables are used in two ways: 

As main computing mechanism 

In supporting role (e.g., as in initial estimate for division)

Boundary between two uses is fuzzy 

Pure logic               Hybrid solutions               Pure tabular 

Historically, we started with the goal of designing logic circuits 
for particular arithmetic computations and ended up using 
tables to facilitate or speed up certain steps 

From the other side, we aim for a tabular implementation and 
end up using peripheral logic circuits to reduce the table size 

Some solutions can be derived starting at either endpoint
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Lx + f+() Lx + f-()

Strategy: Reduce the table size by using an auxiliary unary 
function to evaluate a desired binary function

Addition/subtraction in a logarithmic number system; i.e., 
finding Lz = log(x  y), given Lx and Ly

Solution: Let  = Ly – Lx

Lz =  log(x  y)  

=  log(x (1  y/x))

=  log x + log(1  y/x)

=  Lx + log(1  log–1)

Pre-
process

f+ table f- table

Postprocess

Lx

Ly

Lz

 = Ly – Lx

Example for Table Size Reduction
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Interpolating Memory Unit
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Initial linear 
approximation 

Improved linear 
approximation 

a + b x 

Linear interpolation: Computing f(x), x  [xlo, xhi], from f(xlo) and f(xhi)

x – xlof (x)  =  f (xlo) +  [ f (xhi) – f (xlo) ]         4 adds, 1 divide, 1 multiply
xhi – xlo (2 adds) (1 shift)
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Linear 
interpolation 
for computing 
f(x) using 4 
subintervals.

Add 

a 

f(x) 

Multiply 4x 

x 

x min x max x 

f(x) 

i = 0 

a   + b   x 

 (i) b   /4  (i) 

4-entry tables 
2-bit address 

x 

(i) (i) 

i = 1 
i = 2 

i = 3 

Approximating 
log2x for x in 
[1,2) using linear 
interpolation 
within 4 
subintervals.

––––––––––––––––––––––––––––––––––––––––––––––––
i xlo xhi a (i) b (i)/4 Max error

––––––––––––––––––––––––––––––––––––––––––––––––
0 1.00 1.25 0.004 487 0.321 928  0.004 487

1 1.25 1.50 0.324 924 0.263 034  0.002 996

2 1.50 1.75 0.587 105 0.222 392  0.002 142

3 1.75 2.00 0.808 962 0.192 645  0.001 607
––––––––––––––––––––––––––––––––––––––––––––––––

Linear Interpolation with 4 Subintervals
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Approximation of reciprocal (1/x) and reciprocal square root (1/x) 
functions with 29-30 bits of precision, so that a long floating-point 
result can be obtained with just one iteration at the end [Pine02]

u v w 1. 

c 
Table 

b 
Table 

a 
Table 

Squarer Radix-4 
Booth 

Radix-4 
Booth 

Partial products gen Partial products gen 

9 bits 24 bits 19 bits 

30 bits 20 bits 12 bits 

16 bits 

Multioperand adder 

30 bits, 
carry-save 

Double-
precision 
significand f(x) = c + bv + av 2

1 square

Comparable 
to a 

multiplier

2 mult’s

2 adds

Second-Degree Interpolation Example
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Trade-offs in Cost, Speed, and Accuracy
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Distributed arithmetic for the evaluation of weighted sums 
and other linear expressions

Evaluation of linear expressions 
(assume unsigned values)

z = ax + by = a xi 2i + b yi 2i

=  (axi + byi) 2i

0

Address
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b
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CS residual
Super-efficient computation 
of linear forms using only 
bitwise addition hardware

Tables in Bit-Serial Arithmetic
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Level-1 table provides a rough approximation for the sum

Two-Level Table for Approximate Sum

Level-2 table refines the sum for a greater precision
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(x + y) mod p = (x mod p + y mod p) mod p

Table 
   1

Table 
   2

v

d d

Adder

Adder

–p

Mux+  –

d-bit output

b-bit input
b–g g

d d

d+1

dd

Sign

d+1

z

z mod p

LvH

Two-table modular reduction scheme 
based on divide-and-conquer.

Divide the argument z into 
(b – g)-bit upper part (x) and 
g-bit lower part (y), where x
ends with g zeros

Modular Reduction: Computing z mod p
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Modular reduction based on 
successive refinement.

Table 
   2 m*

d

d-bit output

b–h h

z mod p

b-bit  
input

z

Adder

Table 
   1

v

d*

d*–h h d*

d*

Table 1 provides a rough estimate 
for the final result

Table 2 refines the estimate

Divide the argument z into 
(b – h)-bit upper part (x) 
and h-bit lower part (y), 
where x ends with h zeros

Another 2-Level Table for Mod Reduction

z mod p
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Bipartite tables: 
Main idea

Total table size is 2a+b + 2k–b, 
in lieu of 2k; width of table 
entries has been ignored in 
this comparison

a

k-bit input x

Add

u Table

v Table

b

k–a–b 

k-bit output y

x0

x1

x2

u(x0, x1)

v(x0, x2)

f(x)

Subintervals

An interval

f(x)

x

(a) Hardware realization (b) Linear approximation

Common 
Slope

Divide the domain of interest into 
2a intervals, each of which is further 
divided into 2b smaller subintervals 

The trick: Use linear interpolation 
with an initial value determined for 
each subinterval and a common 
slope for each larger interval 

Bipartite and Multipartite Lookup Tables
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Approximate value is read out from the top table, which also 
supplies an error direction and an accurate error bound

Adaptive Table-Based Computing

The more precise value is compared with the approximate 
value off the critical path for periodic quality monitoring
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The more computationally complex the function, the greater 
the cost and latency benefits of using table-based schemes

FPGA-Based Integer Square-Rooters
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Conclusions and Future Work

Use of tables is expanding: Memory cost  Memory size 

Benefits of Returning to Table-Based Computing:
Fast approximation + added precision as needed 

Knowable error direction and magnitude
Table-size/latency/precision trade-offs

Avoid waste from recomputation

Future work and more detailed comparisons
Assessment of speed benefits in application contexts

Quantifying cost and energy reduction
Bit-level table optimization methods

Sparse and associative tables

 ⛏
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The [0,1) range 
divided into 4 
nonuniform 
intervals

One way to use interpolation with nonuniform intervals to 
successively divide ranges and subranges of interest into 2 parts, 
with finer divisions used where the function exhibits greater 
curvature (nonlinearity)

0 1

.0xx .10x .111.110

In this way, a number of leading bits can be used to decide which 
subrange is applicable

Interpolation with Nonuniform Intervals
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An approximate 4k-bit addition scheme

Carry predictor is correct most of the time, leading to 
addition time dictated by the shorter k-bit adders

Approximate Computing Example

The adder can also perform precise addition, if required


