e e b e i P e

The Return of
Table Based Computl

Behrooz Parhaml

University of Califerhia,
Santa Barbara

About This Presentation

This slide show was first developed in fall of 2018 for an
October 2018 talk at the 52nd Asilomar Conference on
Signals, Systems, and Computers), Pacific Grove, CA, USA.
All rights reserved for the author. ©2018 Behrooz Parhami

Edition Released Revised Revised Revised
First Fall 2018

Oct. 2018 | | (" © J }'j The Return of Table-Based Computing B‘mli Slide 2

Tabular Computing: A History

Ancient tables: Manually computed

Charles Babbage: Polynomial approximation of functions
Math handbooks: My generation used them

Modern look-up tables: Speed-up; Caching; Seed value

MILLER & POWELL
THE CAMBRIDGE ELEMENTARY
MATHEMATICAL TABLES

LOG
TABLES

R R T e e
PALLLI Rt es 108 TanTES U
AHLES 100 TAMIES

Oct. 2018 U » 5 B The Return of Table-Based Computing m Slide 3
L

Example of Table-Based Computation
Compute log,, 35.419

Table: log of values in [1.00, 9.99], in increments of 0.01]
Pre-scaling: log,, 35.419 =1 + log,, 3.5419

Table access: log,, 3.54 = 0.549 003
log,, 3.55 = 0.550 228

Interpolation: log,; 3.5419 = log,; 3.54 + ¢
=0.549 003 + (0.19)(0.550 228 — 0.549 003)
=0.549 236

Final result: log,, 35.419 =1 + 0.549 236 = 1.549 236

Oct. 2018 U f; L ‘B The Return of Table-Based Computing m Slide 4

e

Direct and Indirect Table-Lookup

Direct lookup: Operands serve as address bits into table
Indirect lookup: Inputs pre-processed; output post-processed

Operand(s) Operand(s)| Pre- —t
u bits 2% by v u bits proces- | - Smaller
> table —> sing . table(s)
logic .
—P>
Result(s) Post-
v bits — | processing
logic
Result(s)
v bits

Oct. 2018 | [[~ .—{.’ {: The Return of Table-Based Computing B‘mli Slide 5

Memory Cost Reduction Trends

Price F
—— —
(S/T8) " Flip-flops
3 -
= - Core =
= n
S1T & —
= sl 1Cson Boards
= [
- — O —
s18 — *—|—Flopp es #
- | Big Drives = o Aa— "t
2 4
- = — SIMMs
= 3 =5 T= s —|———— |
: %-35"5%— "= _2 DIMMs
$IM 52 7
: Small Brives™ e
E -
E % Flgsh "o | N
31'(= = — —— 7&55[),
51 year
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
The Return of Table-Based Computing Slide 6

Oct. 2018 U P

__--""""F

JJLJ

Seeir

Tables in Primary and Supporting Roles

Tables are used in two ways:

As main computing mechanism

In supporting role (e.g., as in initial estimate for division)

Boundary between two uses is fuzzy

Pure logic > Hybrid solutions <: Pure tabular

Historically, we started with the goal of designing logic circuits
for particular arithmetic computations and ended up using
tables to facilitate or speed up certain steps

From the other side, we aim for a tabular implementation and
end up using peripheral logic circuits to reduce the table size

Some solutions can be derived starting at either endpoint

Oct. 2018 | | (" © J *;'j The Return of Table-Based Computing B‘mli Slide 7

— —

Example for Table Size Reduction

Strategy: Reduce the table size by using an auxiliary unary

function to evaluate a desired binary function

Addition/subtraction in a logarithmic number system; i.e.,
finding Lz = log(x £ y), given Lx and Ly

Solution: LetA=Ly—-Lx

Ly A=Ly-Lx
Lz = log(x £ |
og(y) Pre_ \ 4 \ 4
= log(x(1 £ y/x L rocess
gix(1 £ y/x)) X P O table ¢~ table
= log x + log(1 * y/x)
= Lx + log(1 £ log—'A) * *
> Postprocess
Lx + ¢*(A) Lx + ¢7(A)
Oct. 2018 | 1 [© J .j The Return of Table-Based Computing

Interpolating Memory Unit

Linear interpolation: Computing f(x), x € [x,,, X,;], from f(x,,) and f(x,;)

Fx) = F(x,.) +;‘ X)'(°[f(xhi)—f(x,o)] 4 adds, 1 divide, 1 multiply
i~ “lo

hi (2 adds) (1 shift)
A Improved linear a b
approximation
a+bAx

Initial linear

approximation y
/’(X) AX { Multiply J

A 4

|
“Aax \\ACE/

Oct. 2018 | [[~ r") 1: The Return of Table-Based Computing B‘mli Slide 9

Linear Interpolation with 4 Subintervals

4-entry tables
A a+ piAx 2-bit address [-———————--] | ———
i=3 I I i
=2 / i 0 Linear
. i=1 Xl | = t I =
i=0 / (y interpolation
Ty I ;L Multiply J for computing
— f(x) using 4
r— subintervals.
o—>
Ax ; Add /_
X rin X Xoex L fx)
Approximating i X0 Xp,; al b /4 Max error

log,x for x in

[1,2) using linear 0 1.00 1.25 0.004487 0.321928 +0.004 487
interpolation 1 1.25 1.50 0.324924 0.263034 +0.002 996
within 4 2 150 1.75 0587105 0.222392 +0.002 142
subintervals. 3 175 200 0.808962 0.192645 +0.001 607

Oct. 2018 | | (" © J *;'j The Return of Table-Based Computing B‘mli Slide 10

Second-Degree Interpolation Example

Approximation of reciprocal (1/x) and reciprocal square root (1/Vx)
functions with 29-30 bits of precision, so that a long floating-point
result can be obtained with just one iteration at the end [Pine02]

Double- 9 bits 24 bits 19 bits
precision — 2
significand " u v - w f(X) c + bV+ aIV:
L 16 bits ”
v v ! L
i 2 adds
C a Radix-4 .
Squarer L
Tabl Tabl Tabl
able able able Booth 2 mult’s
30 bits 20 bits 12 bits v v !
Radix-4 1 square
Booth
A 4 A 4 ‘ L N
Partial products gen Partial products gen
L Vv b e b Comparable
Multioperand adder tO. a .
multiplier
30 bits, l L 7
carry-save
Oct. 2018 | [

4 J - The Return of Table-Based Computing

. , B‘m‘i Slide 11

Trade-offs in Cost,

Speed, and Accuracy

10

10

10

order

Worst-case absolute error
o

Second-

For the same
target error,
higher-order
interpolation
leads to
smaller tables
(2" entries)
but greater

Linear

10 hardware
complexity on
10 the periphery
109 2 4 6 8 10
Number of bits (h)
Oct. 2018 | _.' B The Return of Table-Based Computing

aI.J'
-y

Tables in Bit-Serial Arithmetic

Distributed arithmetic for the evaluation of weighted sums
and other linear expressions

Evaluation of linear expressions

0 (assume unsigned values)
X .
- I b _ _ . .
Address Data z=ax+by=a Z.X,-Z’ tbry2
Sy 7% a =2 (ax;+ by, 2
athbh .
4-entry table L/ . k LSB
/ dz .
k-1
- Sum /-~ CSA
k-1 | k-1
k-1 [f
- Carry /— Super-efficient computation

CS residual of linear forms using only
bitwise addition hardware

Oct. 2018 | | (" © J .j The Return of Table-Based Computing Blmli Slide 13

Two-Level Table for Approximate Sum

Xu | Xm| Xr Vo |[Vm| W

‘_——
Yy

Level-2 Table

Level-1 Table —I—>

!
e s e

Level-1 table provides a rough approximation for the sum

Level-2 table refines the sum for a greater precision

Oct. 2018 | [[.-'.) !j The Return of Table-Based Computing B‘mli Slide 14

Modular Reduction: Computing z mod p

b-bit input z
Thg 18

Divide the argument z into
(b — g)-bit upper part (x) and
g-bit lower part (y), where x —d =
ends with g zeros

1 2
~ta ——d)
=
) \iﬂ
p
(x+y)modp=(xmodp+ymodp)modp | |
i Ac\izier
""""" 9 d+1 €T
d+ +d
—A\+ -/ Mux
Two-table modular reduction scheme . Sign

based on divide-and-conquer. d-bit output z mod p

Oct. 2018 | | & J 1j The Return of Table-Based Computing B‘mli Slide 15
o __,_..a-'"'

Another 2-Level Table for Mod Reduction

Divide the argument zinto b-bit z , d¥
(b — h)-bit upper part (x) Input —p———1~+ ' T
and h-bit lower part (y), Table
where x ends with h zeros ? > 1 \
d*~h1t h Fax
Table 1 provides a rough estimate d
for the final result \ Ac\l/der —
Table 2 refines the estimate d*T Table «
—P 5 m
Modular reduction based on d-bit output
successive refinement. z mod p

Oct. 2018 | | [J .j The Return of Table-Based Computing 84W Slide 16

Bipartite and Multipartite Lookup Tables

k-bit irEut X V(Xo, Xz) k-bit outpit y “f(x) <_S,lfﬂ|2te<_,rvfl_s,
k-a-b| | | X2 | yTable
o ~f(x) p
b X _ /E,/’fi)’(;mmon
S u Table L e T
HEA - u(Xy X,) H An interval X
(a) Hardware realization (b) Linear approximation
Divide the domain of interest into Bipartite tables:
22 intervals, each of which is further Main idea
divided into 2P smaller subintervals
The trick: Use linear interpolation Total table size is 220 + 2k-b,
with an initial value determined for in lieu of 2k; width of table
each subinterval and a common entries has been ignored in
slope for each larger interval this comparison

Oct. 2018 | | (" © J .j The Return of Table-Based Computing Blmli Slide 17

— R

Adaptive Table-Based Computing

ETOr:

Direction 1
[

Error
Bound

'

@—»| Adjustment

Approximate
Value

t >

Y Off-Critical-Path

Mux Periodic
Quality Monitoring

o

Approximate value is read out from the top table, which also
supplies an error direction and an accurate error bound

The more precise value is compared with the approximate
value off the critical path for periodic quality monitoring

Oct. 2018 | ' J .j The Return of Table-Based Computing 84W Slide 18

FPGA-Based Integer Square-Rooters

Table 1 FPGA-based integer square-rooters [20]

Bits CILBs LUTs Gates Delay
8 12 21 ~18K 15 ns

12 25 40 ~37K 22 ns
16 42 73 ~63K 40 ns

Table 2 FPGA-based integer square-rooters [21]

Bits CILBs ILUTs Gates Delay
8 10 15 ~12K 9 ns

12 22 39 ~26K 20 ns
16 39 71 ~47TK 37 ns

The more computationally complex the function, the greater
the cost and latency benefits of using table-based schemes

Oct. 2018 | [[~ ; 1: The Return of Table-Based Computing B‘mli Slide 19

Conclusions and Future Work

Use of tables is expanding: Memory cost ¢ Memory size T

Benefits of Returning to Table-Based Computing:
Fast approximation + added precision as needed
gttt Knowable error direction and magnitude
Table-size/latency/precision trade-offs
Avoid waste from recomputation

Future work and more detailed comparisons
Assessment of speed benefits in application contexts
Quantifying cost and energy reduction
fUTU re Bit-level table optimization methods
Sparse and associative tables

WHI'K

Oct. 2018 | j { r‘; H The Return of Table-Based Computing 84Wi Slide 20

L

> Questions-or Comments?

O parhami@ece.ucsb.edu
htt '//ww§ce.ucsb.edu/~parhami/

=11

The Return of
Table Based Computhg

BackeUp Slldes~ 4

o '
4
-

Behrooz Parhaml

University of Califernia,
Santa Barbara

Interpolation with Nonuniform Intervals

One way to use interpolation with nonuniform intervals to
successively divide ranges and subranges of interest into 2 parts,
with finer divisions used where the function exhibits greater
curvature (nonlinearity)

In this way, a number of leading bits can be used to decide which
subrange is applicable

The [0,1) range

divided into 4 O—

nonuniform | : i

intervals 0xx . A0x 110|111
0 1

Oct. 2018 | | [J .j The Return of Table-Based Computing 84W Slide 23
. _._'__.,..-' _F—""_'.

Approximate Computing Example

Mux Mux Mux

Carry \(Carry \(Carry _.J{
Predictor [™ Predictor [™ Predictor

Sy | IORNE | PRI | U
~»| k-bit adder [/ S k-bit adder [-»1 /" ' k-bit adder -/ k-bit adder -
Y | Y Y Y

An approximate 4k-bit addition scheme

Carry predictor is correct most of the time, leading to
addition time dictated by the shorter k-bit adders

The adder can also perform precise addition, if required

Oct. 2018 | [[r") 1: The Return of Table-Based Computing B‘mli Slide 24

