

27th

The Return of Table-Based Computing

Behrooz Parhami

University of California, Santa Barbara

14 1	Sinus 1,	Tangens	Secans
31 1	2506616	2589280	10329781
32	2509432	2592384	10330559
33	2512248	2,595488	10331339
34	2515063	2598593	10332119
35	2517879	2601699	10332901
36	2520694	2504805	10333683
37	2523508	2607911	10334467
38	2526323	2611018	10335251
32	2529137	2614126	10336037
40	2531952	2617234	10336823
41	2534766	2620342	10337611
42	2537579	2623451	10338399
43	2540393	2626560	10339188
44	2543206	2629670	10339979
45	2546019	2632780	10340770

About This Presentation

This slide show was first developed in fall of 2018 for an October 2018 talk at the 52nd Asilomar Conference on Signals, Systems, and Computers), Pacific Grove, CA, USA. All rights reserved for the author. ©2018 Behrooz Parhami

Edition	Released	Revised	Revised	Revised
First	Fall 2018			

Oct. 2018

Tabular Computing: A History

Ancient tables: Manually computed Charles Babbage: Polynomial approximation of functions Math handbooks: My generation used them Modern look-up tables: Speed-up; Caching; Seed value

Oct. 2018

The Return of Table-Based Computing

Example of Table-Based Computation Compute log₁₀ 35.419

Table: log of values in [1.00, 9.99], in increments of 0.01]

Pre-scaling: $\log_{10} 35.419 = 1 + \log_{10} 3.5419$

Table access: $\log_{10} 3.54 = 0.549\ 003$ $\log_{10} 3.55 = 0.550\ 228$

Interpolation: $\log_{10} 3.5419 = \log_{10} 3.54 + \epsilon$ = 0.549 003 + (0.19)(0.550 228 - 0.549 003) = 0.549 236

Final result: log₁₀ 35.419 = 1 + 0.549 236 = 1.549 236

The Return of Table-Based Computing

Direct and Indirect Table-Lookup

Direct lookup: Operands serve as address bits into table **Indirect lookup:** Inputs pre-processed; output post-processed

Memory Cost Reduction Trends

Tables in Primary and Supporting Roles

Tables are used in two ways:

As main computing mechanism

In supporting role (e.g., as in initial estimate for division)

Boundary between two uses is fuzzy

Pure logic Hybrid solutions Pure tabular

Historically, we started with the goal of designing logic circuits for particular arithmetic computations and ended up using tables to facilitate or speed up certain steps

From the other side, we aim for a tabular implementation and end up using peripheral logic circuits to reduce the table size

Some solutions can be derived starting at either endpoint

Oct. 2018

The Return of Table-Based Computing

Example for Table Size Reduction

Strategy: Reduce the table size by using an auxiliary unary function to evaluate a desired binary function

Addition/subtraction in a logarithmic number system; i.e., finding $Lz = log(x \pm y)$, given Lx and Ly

The Return of Table-Based Computing

Interpolating Memory Unit

Linear interpolation: Computing f(x), $x \in [x_{lo}, x_{hi}]$, from $f(x_{lo})$ and $f(x_{hi})$

Linear Interpolation with 4 Subintervals

Linear interpolation for computing *f*(*x*) using 4 subintervals.

Approximating	i	X lo	X _{hi}	a ⁽ⁱ⁾	b ⁽ⁱ⁾ /4	Max error
[1,2] using linear	0	1.00	1.25	0.004 487	0.321 928	± 0.004 487
interpolation	1	1.25	1.50	0.324 924	0.263 034	\pm 0.002 996
within 4	2	1.50	1.75	0.587 105	0.222 392	\pm 0.002 142
subintervals.	3	1.75	2.00	0.808 962	0.192 645	\pm 0.001 607

Oct. 2018

The Return of Table-Based Computing

Second-Degree Interpolation Example

Approximation of reciprocal (1/x) and reciprocal square root $(1/\sqrt{x})$ functions with 29-30 bits of precision, so that a long floating-point result can be obtained with just one iteration at the end [Pine02]

Trade-offs in Cost, Speed, and Accuracy

For the same target error, higher-order interpolation leads to smaller tables (2^h entries) but greater hardware complexity on the periphery

Tables in Bit-Serial Arithmetic

Distributed arithmetic for the evaluation of weighted sums and other linear expressions

Oct. 2018

Two-Level Table for Approximate Sum

Level-1 table provides a rough approximation for the sum

Level-2 table refines the sum for a greater precision

Oct. 2018

The Return of Table-Based Computing

Modular Reduction: Computing z mod p

The Return of Table-Based Computing

Another 2-Level Table for Mod Reduction

b-bit

input

Divide the argument z into (b - h)-bit upper part (x) and h-bit lower part (y), where x ends with h zeros

Table 1 provides a rough estimate for the final result

Table 2 refines the estimate

Modular reduction based on successive refinement.

The Return of Table-Based Computing

Bipartite and Multipartite Lookup Tables

(a) Hardware realization

Divide the domain of interest into 2^{*a*} intervals, each of which is further divided into 2^b smaller subintervals

The trick: Use linear interpolation with an initial value determined for each subinterval and a common slope for each larger interval

Bipartite tables:

Main idea

(b) Linear approximation

entries has been ignored in this comparison

Oct. 2018

The Return of Table-Based Computing

Adaptive Table-Based Computing

Approximate value is read out from the top table, which also supplies an error direction and an accurate error bound

The more precise value is compared with the approximate value off the critical path for periodic quality monitoring

Oct. 2018

The Return of Table-Based Computing

FPGA-Based Integer Square-Rooters

Table 1 FPGA-based integer square-rooters [20]

Bits	CLBs	LUTs	Gates	Delay
8	12	21	~18K	15 ns
12	25	40	~37K	22 ns
16	42	73	~63K	40 ns

Table 2 FPGA-based integer square-rooters [21]

Bits	CLBs	LUTs	Gates	Delay
8	10	17	~12K	9 ns
12	22	39	~26K	20 ns
16	39	71	~47K	37 ns

The more computationally complex the function, the greater the cost and latency benefits of using table-based schemes

B The Return of Table-Based Computing

Slide 19

Oct. 2018

Conclusions and Future Work

Use of tables is expanding: Memory cost \downarrow Memory size \uparrow

Benefits of Returning to Table-Based Computing:

Fast approximation + added precision as needed Knowable error direction and magnitude Table-size/latency/precision trade-offs Avoid waste from recomputation

Future work and more detailed comparisons

Assessment of speed benefits in application contexts Quantifying cost and energy reduction Bit-level table optimization methods Sparse and associative tables

Oct. 2018

The Return of Table-Based Computing

Questions or Comments?

parhami@ece.ucsb.edu

http://www.ece.ucsb.edu/~parhami/

27

The Return of Table-Based Computing Back-Up Slides

Behrooz Parhami

University of California, Santa Barbara

[14]]	Strine 1	Tangens	Secans
31 11	2506616	2589280	10329781
32	2509432	2592384	10330559
33	2512248	2,595488	10331339
34	2515063	2598593	10332119
35	2517879	2601699	10332901
36	2520694	2504805	10333683
37	2523508	2607911	10334467
38	2526323	2611018	10335251
32	2529137	2614126	10336037
40	2531952	2617234	10336823
41	2534766	2620342	10337611
42	2537579	2623451	10338399
43	2540393	2626560	10339188
44	2543206	2629670	10339979
45	2546019	2632780	10340770

Interpolation with Nonuniform Intervals

One way to use interpolation with nonuniform intervals to successively divide ranges and subranges of interest into 2 parts, with finer divisions used where the function exhibits greater curvature (nonlinearity)

In this way, a number of leading bits can be used to decide which subrange is applicable

Approximate Computing Example

An approximate 4*k*-bit addition scheme

Carry predictor is correct most of the time, leading to addition time dictated by the shorter *k*-bit adders

The adder can also perform precise addition, if required

The Return of Table-Based Computing

