
The Return of
Table-Based Computing

Behrooz Parhami
University of California,

Santa Barbara

Oct. 2018 The Return of Table-Based Computing Slide 2

About This Presentation

This slide show was first developed in fall of 2018 for an
October 2018 talk at the 52nd Asilomar Conference on
Signals, Systems, and Computers), Pacific Grove, CA, USA.
All rights reserved for the author. ©2018 Behrooz Parhami

Edition Released Revised Revised Revised

First Fall 2018

Oct. 2018 The Return of Table-Based Computing Slide 3

Tabular Computing: A History
Ancient tables: Manually computed
Charles Babbage: Polynomial approximation of functions
Math handbooks: My generation used them
Modern look-up tables: Speed-up; Caching; Seed value

Oct. 2018 The Return of Table-Based Computing Slide 4

Example of Table-Based Computation
Compute log10 35.419

Table: log of values in [1.00, 9.99], in increments of 0.01]

Pre-scaling: log10 35.419 = 1 + log10 3.5419

Table access: log10 3.54 = 0.549 003
log10 3.55 = 0.550 228

Interpolation: log10 3.5419 = log10 3.54 + e
= 0.549 003 + (0.19)(0.550 228 – 0.549 003)
= 0.549 236

Final result: log10 35.419 = 1 + 0.549 236 = 1.549 236

Oct. 2018 The Return of Table-Based Computing Slide 5

Direct and Indirect Table-Lookup

2 by
table

Result(s)
 bits

Pre-
proces-
sing
logic

Post-
processing
logic

Smaller
table(s)

Operand(s)
 bitsu u v

v

Operand(s)
 bitsu

Result(s)
 bitsv

.

.

.

. . .

Direct lookup: Operands serve as address bits into table
Indirect lookup: Inputs pre-processed; output post-processed

Oct. 2018 The Return of Table-Based Computing Slide 6

Memory Cost Reduction Trends

Oct. 2018 The Return of Table-Based Computing Slide 7

Tables in Primary and Supporting Roles
Tables are used in two ways:

As main computing mechanism

In supporting role (e.g., as in initial estimate for division)

Boundary between two uses is fuzzy

Pure logic Hybrid solutions Pure tabular

Historically, we started with the goal of designing logic circuits
for particular arithmetic computations and ended up using
tables to facilitate or speed up certain steps

From the other side, we aim for a tabular implementation and
end up using peripheral logic circuits to reduce the table size

Some solutions can be derived starting at either endpoint

Oct. 2018 The Return of Table-Based Computing Slide 8

Lx + f+() Lx + f-()

Strategy: Reduce the table size by using an auxiliary unary
function to evaluate a desired binary function

Addition/subtraction in a logarithmic number system; i.e.,
finding Lz = log(x y), given Lx and Ly

Solution: Let = Ly – Lx

Lz = log(x y)

= log(x (1 y/x))

= log x + log(1 y/x)

= Lx + log(1 log–1)

Pre-
process

f+ table f- table

Postprocess

Lx

Ly

Lz

 = Ly – Lx

Example for Table Size Reduction

Oct. 2018 The Return of Table-Based Computing Slide 9

Interpolating Memory Unit

Add

a

f(x)

Multiply

b

x

x

x lo x hi x

f(x)

Initial linear
approximation

Improved linear
approximation

a + b x

Linear interpolation: Computing f(x), x [xlo, xhi], from f(xlo) and f(xhi)

x – xlof (x) = f (xlo) + [f (xhi) – f (xlo)] 4 adds, 1 divide, 1 multiply
xhi – xlo (2 adds) (1 shift)

Oct. 2018 The Return of Table-Based Computing Slide 10

Linear
interpolation
for computing
f(x) using 4
subintervals.

Add

a

f(x)

Multiply 4x

x

x min x max x

f(x)

i = 0

a + b x

 (i) b /4 (i)

4-entry tables
2-bit address

x

(i) (i)

i = 1
i = 2

i = 3

Approximating
log2x for x in
[1,2) using linear
interpolation
within 4
subintervals.

––
i xlo xhi a (i) b (i)/4 Max error

––
0 1.00 1.25 0.004 487 0.321 928 0.004 487

1 1.25 1.50 0.324 924 0.263 034 0.002 996

2 1.50 1.75 0.587 105 0.222 392 0.002 142

3 1.75 2.00 0.808 962 0.192 645 0.001 607
––

Linear Interpolation with 4 Subintervals

Oct. 2018 The Return of Table-Based Computing Slide 11

Approximation of reciprocal (1/x) and reciprocal square root (1/x)
functions with 29-30 bits of precision, so that a long floating-point
result can be obtained with just one iteration at the end [Pine02]

u v w 1.

c
Table

b
Table

a
Table

Squarer Radix-4
Booth

Radix-4
Booth

Partial products gen Partial products gen

9 bits 24 bits 19 bits

30 bits 20 bits 12 bits

16 bits

Multioperand adder

30 bits,
carry-save

Double-
precision
significand f(x) = c + bv + av 2

1 square

Comparable
to a

multiplier

2 mult’s

2 adds

Second-Degree Interpolation Example

Oct. 2018 The Return of Table-Based Computing Slide 12

Trade-offs in Cost, Speed, and Accuracy

6 8 10
-9

W
o

rs
t-

ca
se

 a
b

so
lu

te
 e

rr
o

r

Number of bits (h)

Linear

0 2 4
10

-6
10

-3
10

-8
10

-5
10

-2
10

-7
10

-4
10

-1
10

Second-
order

Third-
order

For the same
target error,
higher-order
interpolation
leads to
smaller tables
(2h entries)
but greater
hardware
complexity on
the periphery

Oct. 2018 The Return of Table-Based Computing Slide 13

Distributed arithmetic for the evaluation of weighted sums
and other linear expressions

Evaluation of linear expressions
(assume unsigned values)

z = ax + by = a xi 2i + b yi 2i

= (axi + byi) 2i

0

Address

4-entry table

b

a + b

a

xi

yi

Sum

Carry

CSA

Data

k
/

k–1
/

k–1
/

k
/

k–1
/

k–1
/

LSB
zi

CS residual
Super-efficient computation
of linear forms using only
bitwise addition hardware

Tables in Bit-Serial Arithmetic

Oct. 2018 The Return of Table-Based Computing Slide 14

Level-1 table provides a rough approximation for the sum

Two-Level Table for Approximate Sum

Level-2 table refines the sum for a greater precision

Oct. 2018 The Return of Table-Based Computing Slide 15

(x + y) mod p = (x mod p + y mod p) mod p

Table
 1

Table
 2

v

d d

Adder

Adder

–p

Mux+ –

d-bit output

b-bit input
b–g g

d d

d+1

dd

Sign

d+1

z

z mod p

LvH

Two-table modular reduction scheme
based on divide-and-conquer.

Divide the argument z into
(b – g)-bit upper part (x) and
g-bit lower part (y), where x
ends with g zeros

Modular Reduction: Computing z mod p

Oct. 2018 The Return of Table-Based Computing Slide 16

Modular reduction based on
successive refinement.

Table
 2 m*

d

d-bit output

b–h h

z mod p

b-bit
input

z

Adder

Table
 1

v

d*

d*–h h d*

d*

Table 1 provides a rough estimate
for the final result

Table 2 refines the estimate

Divide the argument z into
(b – h)-bit upper part (x)
and h-bit lower part (y),
where x ends with h zeros

Another 2-Level Table for Mod Reduction

z mod p

Oct. 2018 The Return of Table-Based Computing Slide 17

Bipartite tables:
Main idea

Total table size is 2a+b + 2k–b,
in lieu of 2k; width of table
entries has been ignored in
this comparison

a

k-bit input x

Add

u Table

v Table

b

k–a–b

k-bit output y

x0

x1

x2

u(x0, x1)

v(x0, x2)

f(x)

Subintervals

An interval

f(x)

x

(a) Hardware realization (b) Linear approximation

Common
Slope

Divide the domain of interest into
2a intervals, each of which is further
divided into 2b smaller subintervals

The trick: Use linear interpolation
with an initial value determined for
each subinterval and a common
slope for each larger interval

Bipartite and Multipartite Lookup Tables

Oct. 2018 The Return of Table-Based Computing Slide 18

Approximate value is read out from the top table, which also
supplies an error direction and an accurate error bound

Adaptive Table-Based Computing

The more precise value is compared with the approximate
value off the critical path for periodic quality monitoring

Oct. 2018 The Return of Table-Based Computing Slide 19

The more computationally complex the function, the greater
the cost and latency benefits of using table-based schemes

FPGA-Based Integer Square-Rooters

Oct. 2018 The Return of Table-Based Computing Slide 20

Conclusions and Future Work

Use of tables is expanding: Memory cost Memory size

Benefits of Returning to Table-Based Computing:
Fast approximation + added precision as needed

Knowable error direction and magnitude
Table-size/latency/precision trade-offs

Avoid waste from recomputation

Future work and more detailed comparisons
Assessment of speed benefits in application contexts

Quantifying cost and energy reduction
Bit-level table optimization methods

Sparse and associative tables

 ⛏

parhami@ece.ucsb.edu
http://www.ece.ucsb.edu/~parhami/

Questions or Comments?

The Return of
Table-Based Computing

Behrooz Parhami
University of California,

Santa Barbara

Back-Up Slides

Oct. 2018 The Return of Table-Based Computing Slide 23

The [0,1) range
divided into 4
nonuniform
intervals

One way to use interpolation with nonuniform intervals to
successively divide ranges and subranges of interest into 2 parts,
with finer divisions used where the function exhibits greater
curvature (nonlinearity)

0 1

.0xx .10x .111.110

In this way, a number of leading bits can be used to decide which
subrange is applicable

Interpolation with Nonuniform Intervals

Oct. 2018 The Return of Table-Based Computing Slide 24

An approximate 4k-bit addition scheme

Carry predictor is correct most of the time, leading to
addition time dictated by the shorter k-bit adders

Approximate Computing Example

The adder can also perform precise addition, if required

