

About This Presentation

This slide show was first developed in fall of 2018 for an October 2018 talk at the 52nd Asilomar Conference on Signals, Systems, and Computers), Pacific Grove, CA, USA. All rights reserved for the author. ©2018 Behrooz Parhami

Edition	Released	Revised	Revised	Revised
First	Fall 2018			

Tabular Computing: A History

Ancient tables: Manually computed
Charles Babbage: Polynomial approximation of functions Math handbooks: My generation used them
Modern look-up tables: Speed-up; Caching; Seed value

The Return of Table-Based Computing

Example of Table-Based Computation

Compute $\log _{10} 35.419$
Table: log of values in [1.00, 9.99], in increments of 0.01]
Pre-scaling: $\log _{10} 35.419=1+\log _{10} 3.5419$
Table access: $\log _{10} 3.54=0.549003$

$$
\log _{10} 3.55=0.550228
$$

Interpolation: $\log _{10} 3.5419=\log _{10} 3.54+\varepsilon$

$$
\begin{aligned}
& =0.549003+(0.19)(0.550228-0.549003) \\
& =0.549236
\end{aligned}
$$

Final result: $\log _{10} 35.419=1+0.549236=1.549236$

Direct and Indirect Table-Lookup

Direct lookup: Operands serve as address bits into table Indirect lookup: Inputs pre-processed; output post-processed

Memory Cost Reduction Trends

Oct. 2018
The Return of Table-Based Computing
Slide 6

Tables in Primary and Supporting Roles

Tables are used in two ways:
As main computing mechanism
In supporting role (e.g., as in initial estimate for division)
Boundary between two uses is fuzzy

Historically, we started with the goal of designing logic circuits for particular arithmetic computations and ended up using tables to facilitate or speed up certain steps

From the other side, we aim for a tabular implementation and end up using peripheral logic circuits to reduce the table size Some solutions can be derived starting at either endpoint

Example for Table Size Reduction

Strategy: Reduce the table size by using an auxiliary unary function to evaluate a desired binary function

Addition/subtraction in a logarithmic number system; i.e., finding $L z=\log (x \pm y)$, given $L x$ and $L y$

Solution: Let $\Delta=\mathrm{L} y-\mathrm{Lx}$

$$
\begin{aligned}
L z & =\log (x \pm y) \\
& =\log (x(1 \pm y / x)) \\
& =\log x+\log (1 \pm y / x) \\
& =L x+\log \left(1 \pm \log ^{-1} \Delta\right)
\end{aligned}
$$

$$
L x+\phi^{+}(\Delta) \quad L x+\phi^{-}(\Delta)
$$

Interpolating Memory Unit

Linear interpolation: Computing $f(x), x \in\left[x_{10}, x_{\text {hi }}\right]$, from $f\left(x_{10}\right)$ and $f\left(x_{\mathrm{h})}\right)$

$$
f(x)=f\left(x_{10}\right)+\frac{x-x_{10}}{x_{\mathrm{hi}}-x_{10}}\left[f\left(x_{\mathrm{hi}}\right)-f\left(x_{10}\right)\right]
$$

4 adds, 1 divide, 1 multiply (2 adds) (1 shift)

The Return of Table-Based Computing

Linear Interpolation with 4 Subintervals

Slide 10

Second-Degree Interpolation Example

Approximation of reciprocal ($1 / x$) and reciprocal square root $(1 / \sqrt{ } x)$ functions with 29-30 bits of precision, so that a long floating-point result can be obtained with just one iteration at the end [Pine02]

Trade-offs in Cost, Speed, and Accuracy

For the same target error, higher-order interpolation leads to smaller tables (2^{h} entries) but greater hardware complexity on the periphery

The Return of Table-Based Computing

Tables in Bit-Serial Arithmetic

Distributed arithmetic for the evaluation of weighted sums and other linear expressions

Super-efficient computation of linear forms using only bitwise addition hardware

Two-Level Table for Approximate Sum

Level-1 table provides a rough approximation for the sum
Level-2 table refines the sum for a greater precision

Modular Reduction: Computing z mod p

Divide the argument z into ($b-g$)-bit upper part (x) and g-bit lower part (y), where x ends with g zeros

Two-table modular reduction scheme based on divide-and-conquer.

Another 2-Level Table for Mod Reduction

Divide the argument z into (b - h)-bit upper part (x) and h-bit lower part (y), where x ends with h zeros

Table 1 provides a rough estimate for the final result

Table 2 refines the estimate

Modular reduction based on successive refinement.

Bipartite and Multipartite Lookup Tables

(a) Hardware realization

Divide the domain of interest into 2^{a} intervals, each of which is further divided into 2^{b} smaller subintervals

The trick: Use linear interpolation with an initial value determined for each subinterval and a common slope for each larger interval

(b) Linear approximation

Bipartite tables: Main idea

Total table size is $2^{a+b}+2^{k-b}$, in lieu of $\mathbf{2}^{\boldsymbol{k}}$; width of table entries has been ignored in this comparison

Adaptive Table-Based Computing

Approximate value is read out from the top table, which also supplies an error direction and an accurate error bound

The more precise value is compared with the approximate value off the critical path for periodic quality monitoring

FPGA-Based Integer Square-Rooters

Table 1 FPGA-based integer square-rooters [20]

Bits	CLBs	LUTs	Gates	Delay
8	12	21	$\sim 18 \mathrm{~K}$	15 ns
12	25	40	$\sim 37 \mathrm{~K}$	22 ns
16	42	73	$\sim 63 \mathrm{~K}$	40 ns

Table 2 FPGA-based integer square-rooters [21]

Bits	CLBs	LUTs	Gates	Delay
8	10	17	$\sim 12 \mathrm{~K}$	9 ns
12	22	39	$\sim 26 \mathrm{~K}$	20 ns
16	39	71	$\sim 47 \mathrm{~K}$	37 ns

The more computationally complex the function, the greater the cost and latency benefits of using table-based schemes

Conclusions and Future Work

Use of tables is expanding: Memory cost \downarrow Memory size \uparrow
Benefits of Returning to Table-Based Computing:
Fast approximation + added precision as needed Knowable error direction and magnitude Table-size/latency/precision trade-offs Avoid waste from recomputation

Future work and more detailed comparisons
Assessment of speed benefits in application contexts
Quantifying cost and energy reduction
Bit-level table optimization methods
Sparse and associative tables

Interpolation with Nonuniform Intervals

One way to use interpolation with nonuniform intervals to successively divide ranges and subranges of interest into 2 parts, with finer divisions used where the function exhibits greater curvature (nonlinearity)

In this way, a number of leading bits can be used to decide which subrange is applicable

The $[0,1$) range divided into 4 nonuniform intervals

Slide 23

Approximate Computing Example

An approximate $\mathbf{4 k}$-bit addition scheme
Carry predictor is correct most of the time, leading to addition time dictated by the shorter \boldsymbol{k}-bit adders

The adder can also perform precise addition, if required

