Tight Bounds on the Ratio

 of Network Diameter to Average internode Distance
About This Presentation

This slide show was first developed in fall of 2018 for a November 2018 talk at IEEE IEMCON (Information Technology, Electronics \& Mobile Communication Conf.), University of British Columbia, Vancouver, BC, Canada. All rights reserved for the author. ©2018 Behrooz Parhami

Edition	Released	Revised	Revised	Revised
First	Fall 2018			

Network Attributes

Heterogeneous or homogeneous nodes

Distances in Path and Mesh Networks

$$
\begin{aligned}
& D_{p \text {-path }}=p-1 \\
& \Delta_{p \text {-path }}=\left(1 / p^{2}\right) \Sigma_{0 \leq j \leq p-1}\left[\Sigma_{0 \leq i \leq j}(j-i)+\Sigma_{j \leq i \leq p-1}(i-j)\right] \\
& \Delta_{p-\text { path }}=\left(1 / p^{2}\right) \Sigma_{0 \leq j \leq p-1}[j(j+1)-j(j+1) / 2 \\
& +(p-j)(p-1+j) / 2-j(p-j)]=(1 / 3)(p-1 / p) \\
& \bigcirc^{1}-\bigcirc^{2}- \\
& D_{q \mathrm{D}-\mathrm{mesh}}=\Sigma_{1 \leq i \leq q} n_{i}-q \\
& \Delta_{q \text { D-mesh }}=(1 / 3)\left[\Sigma_{1 \leq i \leq q}\left(n_{i}-1 / n_{i}\right)\right] \\
& D_{p \text {-path }} / \Delta_{p \text {-path }} \cong 3 \\
& D_{q \text { D-mesh }} / \Delta_{q \mathrm{D}-\mathrm{mesh}} \cong 3
\end{aligned}
$$

Distances in Ring and Torus Networks

$$
\begin{aligned}
& D_{p \text {-ring }}=(1 / 2)[p-(p \bmod 2) / p] \\
& \Delta_{p \text {-ring }}=(1 / 4)[p-(p \bmod 2) / p] \\
& D_{q \text { D-torus }}=(1 / 2) \Sigma_{1 \leq i \leq q}\left[n_{i}-\left(n_{i} \bmod 2\right) / n_{i}\right] \\
& \Delta_{q \text { D-torus }}=(1 / 4) \Sigma_{1 \leq i \leq q}\left[n_{i}-\left(n_{i} \bmod 2\right) / n_{i}\right]
\end{aligned}
$$

Alternative formula: $D_{p-r i n g}=\lceil(p-1) / 2\rceil$
$D_{p-\text { ring }} / \Delta_{p-\text { ring }}=2$
$D_{q \mathrm{D}-\text { torus }} / \Delta_{q \mathrm{D}-\text { torus }}=2$

Slide 5

Distances in Complete Binary Trees (1)

$D_{\text {binary-tree }}=2 l-2=2 \log _{2} m-2$
[Let $m=2^{l} ; T_{m}$ has $2^{l}-1$ nodes]
$\sigma\left(T_{m}\right)=1 \times 2^{1}+2 \times 2^{2}+\ldots+(l-1) \times 2^{l-1}=(l-2) 2^{l}+2$
$=m \log _{2} m-2 m+2$
$S(L, L)=S(R, R)=S\left(T_{m / 2}\right)$
$S(r, L)=S(r, R)=S(L, r)=S(R, r)$
$=m / 2-1+\sigma(m / 2)$
$S(L, R)=S(R, L)$
$=(m / 2-1)^{2}[2+2 \sigma(m / 2) /(m / 2-1)]$
$=(m-2) \sigma(m / 2)+(m-2)^{2} / 2$
Ratio of Diameter to Average Distance
(1) 10 (1):

Distances in Complete Binary Trees (2)

$$
\begin{aligned}
S\left(T_{m}\right) & =2 S(L, L)+4 S(r, L)+2 S(L, R) \\
& =2 S\left(T_{m / 2}\right)+m^{2} \log _{2} m-2 m^{2}+2 m \\
& =2 m^{2} \log _{2} m-6 m^{2}+2 m \log _{2} m+6 m
\end{aligned}
$$

$$
\Delta\left(T_{m}\right)=\left(2 m^{2} \log _{2} m-6 m^{2}+2 m \log _{2} m+6 m\right) /(m-1)^{2}
$$

$$
=\underbrace{2 \log _{2} m-6}_{\text {Asymptotic value }}+2\left(3 m \log _{2} m-3 m-\log _{2} m+3\right) /(m-1)^{2}
$$

Recall $D\left(T_{m}\right)=2 l-2=2 \log _{2} m-2$
$\lim _{m \rightarrow \infty} \Delta\left(T_{m}\right)=D\left(T_{m}\right)-4$
$\lim _{m \rightarrow \infty} D\left(T_{m}\right) / \Delta\left(T_{m}\right)=1$

Level 1

Level 2

Level /

Slide 7

Incomplete and Balanced Binary Trees

Complete binary tree: All $2^{L-1}=(p+1) / 2$ leaves are at level / Incomplete binary tree: There are leaves in 2 or more levels Balanced binary tree: Leaves are at levels / and I-1
Complete binary tree: All leaves are at level /

Distances in Balanced Binary Trees

Theorem 1: In an incomplete binary tree with more than one incomplete level, removing a node from an incomplete level k and adding a node to an incomplete level $k-j(j>0)$ does not increase the diameter and always reduces the average internode distance. ■

Theorem 2: In a balanced binary tree, with the final level l containing missing nodes in both subtrees, removing a node from a side with equal or fewer nodes and adding a node to the other side decreases the average internode distance, with no increase in diameter. ■

Extremes in Distance Ratio Bounds

$$
\begin{aligned}
& D(G)=m \\
& \Delta(G)=\left[n^{2}+m\left(m^{2}-1\right) / 3+2(n-1)(2+3+\ldots+m)\right] /(n+m-1)^{2}
\end{aligned}
$$

$\lim _{n \rightarrow \infty} \Delta(G)=1$ $\lim _{n \rightarrow \infty} D\left(T_{m}\right) / \Delta\left(T_{m}\right)=m$

Ratio of Diameter to Average Distance

Ratio Bounds in Symmetric Networks

Theorem 3: Given a node-symmetric network with node degree d, diameter D, and average internode distance Δ, we have $D / 2 \leq \Delta \leq D$. ■
Proof outline: Consider a node X and a diametrically opposite node to it, Y. Let there be d nodes that are distance-1 to X (its immediate neighbors). By nodesymmetry, Y also has d distance-1 nodes. The latter nodes are at least distance $D-1$ to X. So, the average distance from X to the two set of nodes (neighbors of X and Y) is at least $D / 2$. This process can be repeated for distance-2, distance-3, ... nodes, until done. ■

Some Practical Implications

D and Δ are important network parameters
Can't judge a network merely on the basis of its aggregate bandwidth Bw
Consider a 100-link network, with $B w=100 b$
Probability of being able to establish an ith random routing path of length Δ in the network is

$$
p_{i}=\binom{C-(i-1) \Delta}{\Delta} /\binom{C}{\Delta}
$$

Conclusions and Future Work

Calculating average distance avoidable in many cases
Ratio of diameter to average internode distance is:
Unbounded in worst-case (impractical extremes)

Between 1 and 2 in symmetric networks
Fairly small in other practical cases
Very close to 1 for trees
Future work and practical impact
Tighten the bounds for special classes of networks Study pertinent bounds for Cayley graphs

Simulate in detail effects of D and Δ

Derive exact Δ for more networks Routing-based D and Δ

Tight Bounds on the Ratio

 of Network Diameter to Average nternode Distance
Back-Up Slides

Behrooz Parhami

University of California, Santa Barbara

Effect of Δ in Establishing Routing Paths

Probability of being able to establish an ith random routing path of length Δ in a 100 -link network

$\Delta \downarrow \boldsymbol{i} \rightarrow$	$\underline{\mathbf{2}}$	$\underline{\mathbf{3}}$	$\underline{\mathbf{5}}$	$\underline{\mathbf{7}}$	$\underline{\mathbf{1 0}}$
$\mathbf{1}$	0.990	0.980	0.960	0.940	0.910
2	0.960	0.921	0.846	0.773	0.671
3	0.912	0.829	0.679	0.548	0.385
4	0.847	0.713	0.492	0.327	0.162
5	0.770	0.584	0.319	0.161	0.046
6	0.683	0.455	0.183	0.063	0.008
7	0.592	0.336	0.092	0.019	0.001
8	0.500	0.234	0.040	0.004	0.000
9	0.395	0.154	0.014	0.001	0.000
10	0.310	0.095	0.004	0.000	0.000
Nov. 2018	UCSB	Ratio of Diameter to Average Distance	BPTefitill	Slide 16	

Routing with Wormhole Switching

Average internode distance Δ is an indicator of performance
Δ is closely related to the diameter D
For symmetric nets: $D / 2 \leq \Delta \leq \boldsymbol{D}$
Short worms: hop distance clearly dictates the message latency

Long worms: latency is insensitive to hop distance, but tied up links and waste due to dropped or deadlocked messages rise with hop distance

