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Outline
• Introduction / Background

– What were the discoveries?
– Mixed digital/analog arithmetic
– Residue number system (RNS)

• RNS with Continuous Digits (CD-RNS)
– Distinct from conventional RNS
– Motivations for this study

• Dynamic Range and Precision
• Choosing the CD-RNS Moduli
• Conclusions / Future Work Figure from
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Abstract
The discovery that mammals use a multi-modular method akin 
to residue number system (RNS), but with continuous residues 
or digits, to encode position information led to the award of 
the 2014 Nobel Prize in Medicine. After a brief review of the 
evidence in support of this hypothesis, and how it relates to 
RNS, I discuss the properties of continuous-digit RNS, and 
present results on the dynamic range, representational 
accuracy, and factors affecting the choice of the moduli, which 
are themselves real numbers. I conclude with suggestions for 
further research on important open problems concerning the 
process of selection, or evolutionary refinement, of the set of 
moduli in such a representation.
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Parallel processing
Parallelism used extensively in human brain 
and other natural systems

Dependable (fault-tolerant) computing
The self-healing amphibian axolotl
can regenerate a near-perfect replica 
of almost any body part it loses

Computer arithmetic
My subject area today: Use of residue
representation in rat’s navigational system
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How Looking at Nature Helps my Research



Nobel Prize in Physiology or Medicine: 2014
One half went to John O'Keefe (University College, London),
the other half to May-Britt Moser (Center for Neural 
Computation, Norway) and Edvard I. Moser (Kavli Institute 
for Systems Neuroscience, Norway) "for their discoveries of 
cells that constitute a positioning system in the brain."  
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The sense of place and the ability to navigate are some of the most 
fundamental brain functions. 

German philosopher Immanuel Kant (1724-1804) argued that 
some mental abilities exist independent of experience. 

He considered perception of place as one of these innate abilities 
through which the external world had to be organized/perceived.
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Sense of Place in Humans and Animals



The Nobel Laureates’ Contributions
John O’Keefe discovered place cells in the hippocampus that signal 
position and provide the brain with spatial memory capacity. 

May-Britt Moser and Edvard I. Moser discovered in the medial 
entorhinal cortex, a region of the brain next to hippocampus, grid 
cells that provide the brain with a coordinate system for navigation. 
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Place cells 
firings
(image from
Wikipedia)

Grid cells 
firings
(image from 
Moser/Rowland/
Moser, 2015)



First Attempt at Understanding
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• Rat’s navigation system
– Wavy travel path
– Straight return path
– Even in the dark

• Nervous system has 
place cells & grid cells
– Grid cell firings
– Relative in-cell position
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Localization with Grid Cells

• In-cell positions within 
several grids pinpoints 
rat’s absolute location

(a) Travel and return paths

Start

(b) Rat’s hexagonal grid

End

(c) Firings and locations [3] (d) Two hexagonal grids [3]

A



The Questions to Be Addressed
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• A rat can go up to a certain distance and still 
be able to find its way back (range)
– Translating grid-cell firings to spatial information
– How the range is related to grid-cell parameters
– Representation range vs. the observed distance

• Fiete, Burak, and Brookings had connected 
the grid cells to residue representation
– Couldn’t confirm the hypothesis theoretically 
– Relied on extensive simulation for confirmation



My First Contribution to the Problem
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RNS with Analog Digits (Remainders)
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• I formulated the spatial representation 
problem with the grid cells to CD-RNS
– First time RNS is used with analog remainders
– Conventional RNS theory is inapplicable
– I developed a theory for CD-RNS and its range

• Analog and mixed digital-analog technology 
has a long history in computer arithmetic
– Brief review presented in the next few slides
– More use of analog features expected to come



Quasi-Digital Parallel Counter
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• Analog current summing
– 7 inputs, 3-bit output
– (*): Number of 1 inputs 

required to produce a 1

• The scheme is even older
– Riordan and Morton,        

Use of Analog Techniques 
in Binary Arithmetic Units, 
IEEE TC, Feb. 1965 Figure from: Swartzlander

(IEEE TC, Nov. 1973)



Current-Summing Multivalued Logic
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Figures from: Etiemble & Navi (SMVP, May 1993)

• Binary stored-carry addition
– Limited-carry algorithm

• 3-valued to binary conv.: 3BC

CMOS
3BC



Mixed D/A Positional Representation
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• Continuous-valued number system (CVNS)
– The MSD has all the magnitude info
– Other digits provide successive refinements

• Familiar example: utility meter

Figure from: Saed, Ahmadi, Jullien (IEEE TC, 2002)



Puzzle, due to the Chinese scholar Sun Tzu,1500+ years ago: 

What number has the remainders of 2, 3, and 2 
when divided by 7, 5, and 3, respectively? 

Residues (akin to digits in positional systems) uniquely identify the 
number, hence they constitute a representation: (2 | 3 | 2)RNS(7|5|3)

In a weird way, RNS is a weighted representation

For RNS(7 | 5 | 3), the weights of the 3 positions are:

15 21 70

Example -- Chinese puzzle:  (2 | 3 | 2)RNS(7|5|3) represents the number

15  2  +  21  3  +  70  2105 =  233105 =  23

18

An Ancient Chinese Puzzle



• Pairwise prime moduli:  mk–1 > . . . > m1 > m0

• Representation of x:  {ri = x mod mi | 0 ik–1}
• RNS dynamic range: M = P0 i k–1 mi

– Unsigned in [0, M – 1]
– Signed in [–M/2, M/2 – 1]

• RNS arithmetic algorithms
– Digitwise add, sub, mult
– Difficult div, sign test, compare
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Residue Number System (RNS)

mod 8    mod 7    mod 5   mod 3

Mod-8 
  Unit

Mod-7 
  Unit

Mod-5 
  Unit

Mod-3 
  Unit

3 3 3 2

Operand 1 Operand 2

Result
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Integer Moduli and Residues
• Two-modulus RNS {4, 3}
• Dynamic range [0, 11]
• Imagine residues with errors

– Errors < 0.5 correctable
– Errors < 1.0 detectable

• Multiresidue systems
– 3-modulus RNS {5, 4, 3}
– {5,4,3}  {20,3}  {15,4}  {12,5}
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Integer Moduli, Continuous Residues

 r1

r0

R  (correct value)

R + emax

R (decoded value)

R e1

e0

(Incorrect 
value)

Line with 
slope of 1

R – emax

• Residue errors e1 and e0
• Decoding error  max(e1, e0)
• Dynamic range?
• Max allowable error < 0.25

[0, 12 – emax]
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Continuous Moduli and Residues

0.0 1.2 2.4 3.6

4.8

0.0

1.2

2.4

3.6

Case 1: The moduli are integer 
multiples of their difference

With proper scaling, the CD-RNS
can be converted to an RNS

3.6

4.8

7.2

9.6

10.8

14.4

Question: 
Are there CD-RNSs that cannot 
be replaced with ordinary RNSs?

This example is equivalent to 
RNS {4, 3} with scale factor 1.2
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Equivalence of CD-RNS and RNS
Case 2a: The moduli are integer 
multiples of some number s 
(that divides their difference)

With proper scaling, the CD-RNS
can be converted to an RNS, 
provided max error target is  s/4

For this example, s = 0.4 and  
the system is equivalent to 
RNS {11, 9} with scale factor 0.4
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Representational Power of CD-RNS
Case 2b: The moduli are integer 
multiples of some number s 
(that divides their difference),  
but max error target > s/4

The CD-RNS is not equivalent to
an RNS in terms of representational
capability and dynamic range 

For this example, s = 0.1 but  
the system is different from
RNS {65, 44} with scale factor 0.1



• Distance encoded by mod-a and mod-b residues
– Phases f and y given
– Reverse conversion provides R
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Conceptually Simpler 1D Example

• R is a point whose mod-a and mod-b residues 
match f and y to within the error bound

i – 2 i – 1 i +2 i + 3i +1

j j – 1 j +2j +1 y

x
f

y
R

ai

bj

i



• CRT and its derivatives are inapplicable
– Conversion amplifies the errors
– Example 15 in my 2015 Computer Journal paper

• View the conversion as nonlinear optimization
– Convergence occurs with circuit’s RC time constant
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Backward Conversion to Binary

r0

r1

Amod m1

mod m0

x

R

C

Sun & Yao, IEEE Int’l Conf. 
Neural Networks, 1994

Forward 
conversion



Hex Grid Coordinate System
• Point identified by 3 coordinates, one of which 

is redundant
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• Redundancy 
allows error 
correction 
beyond the 
system’s 
accuracy range

x

y

z

2 0 0

1 1-1

1-2 2

-2 0 0



Open Problems in Neurobiology
• Dynamic range of rat’s navigation system
• Numerical simulation: Range  (1/emax)Exponent

Exponent  Number of moduli – q
• Example: 12 moduli    Exponent = 10.7

Our results yield an exponent of 11.0
• How did the rat’s navigational grids evolve? 

(Evolutionary basis for moduli optimization)
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Dynamic Range Lower Bound
• CD-RNS with the moduli m1 and m0

• s–1 = m1; s0 = m0; si+1 = min(|si–1|si, si – |si–1|si)
• Theorem 2: Dynamic range is at least
m0(1 + m1/m0m0/s1)s1/s2s2/s3 . . . sj–1/sj
where j is the largest index for which sj  2emax

• Intuition: Remove floors to get m0m1/(2emax)
• Example 6: CD-RNS with m1 = 4.4, m0 = 3.6, emax = 0.2  
 s1 = 0.8, s2 = 0.4   Dynamic range  36.0
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Dynamic Range Upper Bound
• CD-RNS with the moduli m1 and m0

• d = Largest number that divides m1 and m0 if it exists, 
0 otherwise

• Theorem 3: Dynamic range is at most
max(m0m1/g, m1m0/g)
where g = max(2emax, d)

• Intuition: Remove floors to get m0m1/g
• Example 6: CD-RNS with m1 = 4.4, m0 = 3.6, emax = 0.2  
 d = 0.4, g = 0.4   Dynamic range  39.6
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Lower and Upper Bounds Example
• Example 10 in paper
• Fix m1 at 4.4
• Vary m0 in steps of 0.1
• Range varies (dashed)
• Tightness varies
• Matching of upper 

bound = Optimality?
• Achieving wider range

31
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Choosing the CD-RNS Moduli
Theorem 2:  m  36.0
Theorem 3: m  39.6

Intuitively, the moduli are optimal 
when the two bounds coincide

To cover the dynamic range m, 
choose the moduli that are 
on the order of (2memax)1/2

and differ by 2emax



Conclusions
• Introduced RNS with continuous residues

– Distinct from ordinary RNS
– Advantages (similar to other hybrid schemes)

• Studied range, accuracy, and tradeoffs
– Tight bounds for dynamic range
– Optimal choice of moduli

• Showed link to computational neuroscience
– Rat’s sense of location, navigation
– Moduli in nature: evolutionary implications
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Ongoing and Future Work
• Refine and extend the theoretical framework

– Arithmetic and algorithmic implications
– Exact dynamic range, or even tighter bounds

• Study development and application aspects
– Circuit realization and building blocks
– Latency, area, and energy implications

• Pursue links with other hybrid D/A methods
– Mixed implementations?
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RNS Dynamic Range
Product M of the k pairwise relatively prime moduli is the dynamic range

M = mk–1  . . .  m1  m0

For RNS(8 | 7 | 5 | 3), M = 8753 = 840

Negative numbers: Complement relative to M
–xmi

= M – xmi
21 = (5 | 0 | 1 | 0)RNS

–21 = (8 – 5 | 0 | 5 – 1 | 0)RNS = (3 | 0 | 4 | 0)RNS

Here are some example numbers in our default RNS(8 | 7 | 5 | 3):
(0 | 0 | 0 | 0)RNS Represents 0 or 840 or . . .
(1 | 1 | 1 | 1)RNS Represents 1 or 841 or . . .
(2 | 2 | 2 | 2)RNS Represents 2 or 842 or . . .
(0 | 1 | 3 | 2)RNS Represents 8 or 848 or . . .
(5 | 0 | 1 | 0)RNS Represents 21 or 861 or . . .
(0 | 1 | 4 | 1)RNS Represents 64 or 904 or . . .
(2 | 0 | 0 | 2)RNS Represents –70 or 770 or . . .
(7 | 6 | 4 | 2)RNS Represents –1 or 839 or . . .

We can take the 
range of RNS(8|7|5|3) 
to be [-420, 419] or 
any other set of 840 
consecutive integers
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RNS Encoding and Arithmetic Operations

Fig. 4.1     Binary-coded 
format for RNS(8 | 7 | 5 | 3). 

Arithmetic in RNS(8 | 7 | 5 | 3)
(5 | 5 | 0 | 2)RNS Represents x = +5
(7 | 6 | 4 | 2)RNS Represents y = –1
(4 | 4 | 4 | 1)RNS x + y : 5 + 78 = 4, 5 + 67 = 4, etc.
(6 | 6 | 1 | 0)RNS x – y : 5 – 78 = 6, 5 – 67 = 6, etc.

(alternatively, find –y and add to x)
(3 | 2 | 0 | 1)RNS x  y : 5  78 = 3, 5  67 = 2, etc.

mod 8    mod 7    mod 5   mod 3

mod 8    mod 7    mod 5   mod 3

Mod-8 
  Unit

Mod-7 
  Unit

Mod-5 
  Unit

Mod-3 
  Unit

3 3 3 2

Operand 1 Operand 2

Result

Fig. 4.2     The structure of an adder, 
subtractor, or multiplier for RNS(8|7|5|3). 
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Difficult RNS Arithmetic Operations
Sign test and magnitude comparison are difficult

Example: Of the following RNS(8 | 7 | 5 | 3) numbers:

Which, if any, are negative?
Which is the largest?
Which is the smallest?

Assume a range of [–420, 419]

a =  (0 | 1 | 3 | 2)RNS

b =  (0 | 1 | 4 | 1)RNS

c =  (0 | 6 | 2 | 1)RNS

d =  (2 | 0 | 0 | 2)RNS

e =  (5 | 0 | 1 | 0)RNS

f =  (7 | 6 | 4 | 2)RNS

Answers:
d <  c <  f <  a <  e <  b

–70  < –8   <   –1  <    8    <   21   <   64
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Forward and Reverse Conversions

Binary
Inputs

One or more 
arithmetic 
Operations

Binary
OutputBinary-to-

RNS 
converter

RNS-to-
binary 

converter

Encoding or 
forward 

conversion

Decoding or 
reverse 

conversion

The more the amount of computation performed between the 
initial forward conversion and final reverse conversion (reconversion), 
the greater the benefits of RNS representation.

Example: 
Digital filter
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Intuitive Justification for CRT
Puzzle: What number has the remainders of 2, 3, and 2 

when divided by the numbers 7, 5, and 3, respectively? 

x =  (2 | 3 | 2)RNS(7|5|3) =  (?)ten

(1 | 0 | 0)RNS(7|5|3) =  multiple of 15 that is 1 mod 7  =  15
(0 | 1 | 0)RNS(7|5|3) =  multiple of 21 that is 1 mod 5  =  21
(0 | 0 | 1)RNS(7|5|3) =  multiple of 35 that is 1 mod 3  =  70

(2 | 3 | 2)RNS(7|5|3) =  (2 | 0 | 0) +  (0 | 3 | 0) + (0 | 0 | 2)
=  2  (1 | 0 | 0) + 3  (0 | 1 | 0) + 2  (0 | 0 | 1)

=  2  15 + 3  21 + 2  70 
=  30 + 63 + 140
=  233 = 23 mod 105

Therefore, x = (23)ten
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Reverse converter: Multioperand adder, with shifted xis as inputs

Example RNS with Special Moduli
For RNS(17 | 16 | 15), the weights of the 3 positions are:

2160 3825 2176

Example:  (x2, x1, x0) = (2 | 3 | 4)RNS represents the number

21602 + 38253 + 217644080 =  24,4994080 =  19

2160 = 24  (24 – 1)  (23 + 1) = 211 + 27 – 24

3825 = (28 – 1)  (24 – 1) = 212 – 28 – 24 + 1

2176 = 27  (24 + 1) = 211 + 27

4080 = 212 – 24 ; thus, to subtract 4080, ignore bit 12 and add 24
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Limits of Fast Arithmetic in RNS
Known results from number theory

Implications to speed of arithmetic in RNS

Theorem 4.5: It is possible to represent all k-bit binary numbers
in RNS with O(k / log k) moduli such that the largest modulus
has O(log k) bits

That is, with fast log-time adders, addition needs O(log log k) time

Theorem 4.2: The ith prime pi is asymptotically i ln i

Theorem 4.3: The number of primes in [1, n] is asymptotically n / ln n

Theorem 4.4: The product of all primes in [1, n] is asymptotically en
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