Number Representation and Arithmetic in the Human Brain

> Jennifer Volk Prof. Behrooz Parhami

UC SANTA BARBARA

Topics to be Covered

- 1. Existing neuromorphic technologies
- 2. Number representation in the human brain
- 3. Generalizable qualities of arithmetic & parts of the brain responsible
- 4. Choose a model: analog, digital, or hybrid?
- 5. Error sources and sources of latency
- 6. Future work
- 7. Conclusion

Existing Neuromorphic Architectures

(TrueNorth, Neurogrid, BrainScaleS, SpiNNaker:)

- Utilize an artificial version of a biological neuron
- Focus on high interconnectivity
- Physical connectivity limited to 2D
- Low efficiency

True North layout Yale Engineering

UCSB The Human Number Line: Logarithmic or Linear?

• Mental visualization tends to be linear

• Mental encoding is hypothesized to be logarithmic

Number Sense

• Applies to small numbers (usually zero to 5); 0 1 2 3 4 5

• May have been advantageous wrt evolution;

• Is encoded in a distinct region of the brain.

(This means faster cognition)

[4,5,6,7]

The Triple Code

Numbers are encoded in the brain in three forms:

- Verbal /'faɪv/
- Numeral 5
- Quantitative

Different Types of Arithmetic Considered **UCSB**

- Small operands vs Large (1 to 5 versus > 5)
- Calculations vs Comparisons (8 + 9 = 17 versus 100 <= 101)
- Approximate vs. Exact (10 + 21 ≅ 30 versus 25 + 24 = 49)

Approximate vs Exact Computations vs Comparisons

Approx vs Exact Calculations vs Comparison

K. Kucian

Is the Human Brain Analog, Digital, or Hybrid?

Analog computing by spatial reference

Parhami, 2015

Analog, Digital, or Hybrid?

Analog computing example (spatial orientation)

UCSB

(Top two are the same, bottom two different)

C. J. Maley, 2018

[16]

UCSB

Background Intensity (I)

Analog, Digital, or Hybrid?

• Case for hybrid (take-aways,

best of both worlds)

UCSB

Error Sources and Sources of Latency

• Distance Effect

19 + 18 = 250?	Fast to reject			
10 * 10 = 5000?	Fast			
56 > 58?	Slow			
56 > 100?	Fast			

UCSB

Error Sources and Sources of Latency

Size Effect:

Which has more dots?

Error Sources and Sources of Latency

[13]

- Additive carries are slow
- Stored/memorized arithmetic facts can be noisy and

error-prone

 Mathematical facts stored in the original language in which they were learned

	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42		Ŷ
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

Neural Error-Tolerance and Robustness

• The brain is a noisy biological environment

- Error-checking features:
 - Odd-Even Rule
 19 + 16 ≠ 34
 - Factor-Checking
 - Distance Effect

19 + 16 ≠ 347 * 5 = 30? 26 + 29 = 2? UCSB

Future Work

- Signal processing (neuronal input/output) (human)
- Neuromorphic CMOS Scaling (artificial)
- Mathematical training (human)
- Artificial arithmetic (artificial)

- Human brains are bad at math, computers are good at math (and can perform it with less power) [19]
- But humans are better at other things
- Therefore we may say that a chip performing things like language synthesis, object recognition, etc. may benefit from architectural choices closer to the human brain

UCSB

References

- "New research creates a computer chip that emulates human cognition," *YaleNews*, Nov. 28, 2017. https://news.yale.edu/2017/11/28/new-research-creates-computer-chip-emulates-human-cognition (accessed Oct. 16, 2020).
- 2. E. Xie, "Using Computer Vision to Find the Best Cat Photo Towards Data Science," *Medium*, May 09, 2020. https://towardsdatascience.com/using-computer-vision-to-find-the-best-cat-photo-from-a-video-fd11c43596b8 (accessed Oct. 16, 2020).
- M. A. Pastor, J. Artieda, J. Arbizu, M. Valencia, and J. C. Masdeu, "Human Cerebral Activation during Steady-State Visual-Evoked Responses," *The Journal of Neuroscience*, vol. 23, no. 37, pp. 11621–11627, Dec. 2003, doi: 10.1523/jneurosci.23-37-11621.2003.
- 4. "'I Awakened One Lion.' World Tribune," *World Tribune*, Oct. 06, 2017. https://www.worldtribune.org/2017/10/awakened-one-lion/ (accessed Oct. 16, 2020).]
- 5. A. Tucker, "The Truth About Lions," *Smithsonian Magazine*, 2010. https://www.smithsonianmag.com/science-nature/the-truth-about-lions-11558237/ (accessed Oct. 16, 2020).
- 6. SpinalCord.com, "Parietal Lobe," *Spinalcord.com*, 2020. https://www.spinalcord.com/parietal-lobe (accessed Oct. 16, 2020).
- 7. "Graphing," *Tbaisd.org*, 2012. http://moodle.tbaisd.org/mod/book/print.php?id=51342 (accessed Oct. 16, 2020).

UCSB

References

- "The Brain From Top To Bottom," *Mcgill.ca*, 2020. https://thebrain.mcgill.ca/flash/a/a_10/a_10_cr/a_10_cr_lan/a_10_cr_lan.html (accessed Oct. 16, 2020).
- 9. K. Kucian, T. Loenneker, T. Dietrich, M. Dosch, E. Martin, and M. von Aster, *Behavioral and Brain Functions*, vol. 2, no. 1, p. 31, 2006, doi: 10.1186/1744-9081-2-31.
- 10. Wikipedia Contributors, "Precuneus," *Wikipedia*, Apr. 26, 2020. https://en.wikipedia.org/wiki/Precuneus (accessed Oct. 16, 2020).
- 11. R. Stanescu-Cosson, P. Pinel, V. D. Moortele, D. L. Bihan, L. Cohen, S. Dehaene, S. H. Fre, and S. H. Fre, "Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation," Brain, vol. 123, no. 11, 2000, pp. 2240–2255.
- 12. "Polka Dot Pattern Generator," *Gitlab.io*, 2019. https://rdyar.gitlab.io/background-generator/background-generators/polka-dot-pattern-generator/ (accessed Oct. 16, 2020).
- 13. "Multiplication charts: 1-12 & 1-100 [Free and printable!]," *Prodigygame.com*, 2019. https://www.prodigygame.com/main-en/blog/multiplication-chart/ (accessed Oct. 16, 2020).
- 14. B. Parhami, "Digital Arithmetic in Nature: Continuous-Digit RNS, "Computer J., vol. 58, no. 5, 2015, pp. 1214-1223

UCSB

References

- 15. C. J. Maley, "Brains as Analog Computers," The Spike, 2018. https://medium.com/the-spike/brains-as-analog-computers- fa297021f935
- 16. "Weber's Law," *Rit.edu*, 2020. https://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_3/ch3p1.html (accessed Oct. 16, 2020).
- 17. Network Encyclopedia, "Analog-to-Digital Converter (ADC) | Network Encyclopedia," *Network Encyclopedia*, Aug. 17, 2019. https://networkencyclopedia.com/analog-to-digital-converter-adc/ (accessed Oct. 16, 2020).
- "Basic explanation of how a neuron works," *Animatlab.com*, 2011. http://animatlab.com/Help/Documentation/Neural-Network-Editor/Neural-Simulation-Plug-ins/Firing-Rate-Neural-Plu g-in/Neuron-Basics (accessed Oct. 16, 2020).
- 19. K. Meier, "The Brain as Computer: Bad at Math, Good at Everything Else," *IEEE Spectrum*. May 31, 2017. https://spectrum.ieee.org/computing/hardware/the-brain-as-computer-bad-at-math-good-at-everything-else