

Recursive Implementation of Voting Networks

Behrooz Parhami

Department of Electrical and Computer Engineering University of California, Santa Barbara, USA

IEEE 14th Annual Computing and Communication Workshop and Conference Las Vegas, Nevada, USA, January 2024

Voters or Voting Networks

Majority voters (for TMR & NMR redundancy)

Recursive Implementation of a \geq 3/5 Voter

Shannon expansion or decomposition

 $f(x_1, x_2, \ldots, x_{n-1}, x_n) = x_n' f(x_1, x_2, \ldots, x_{n-1}, 0) \vee x_n f(x_1, x_2, \ldots, x_{n-1}, 1)$

Cost and Delay Formulas for $\geq l/n$ Voter

 $C(\geq l/n) = (n-l)(l-1) + \text{linear terms}$ $D(\geq l/n) = n - \text{small constant}$ $AND(x_1, \ldots, x_6) \xrightarrow{\geq 6/6}$ $AND(x_1, \ldots, x_5) \ge 5/5$ ∖≥6/7 $\operatorname{AND}(x_1,\ldots,x_4) \xrightarrow{\geq 4/4}$ >5/6 >6/8 Mux $x_5) \ge 4/5$ $x_{7} \ge 5/7$ $AND(x_1, x_2, x_3) \xrightarrow{>3/3}$ >6/9 $(x_6)^{\geq 4/6}$ $x_{1}^{\geq 3/4}$ $(x_8)^{\geq 5/8}$ >6/10 x_{10} $x_5 \ge 3/5$ $x_7 \ge 4/7$ $x_9)^{\geq 5/9}$ $Maj(x_1, x_2, x_3) \xrightarrow{\geq 2/3}$ >6/11 $x_{\lambda} \geq 2/4$ $(x_8)^{\geq 4/8}$ $(x_{10})^{\geq 5/10}$ ≥3/6 >3/7 (x₉)<u>≥4/9</u> $OR(x_1, x_2, x_3) \xrightarrow{\geq 1/3}$ $\geq 2/5$ x7 $(x_8)^{\geq 3/8}$ >2/6 **Reminiscent of array** $OR(x_1, ..., x_4)$ $(x_7)^{\geq 2/7}$ multiplier, which also has $OR(x_1, ..., x_s)$ $OR(x_1, \ldots, x_6) \xrightarrow{\geq 1/6}$ $O(n^2)$ cost and O(n) delay

Theoretical Speed vs. VLSI-Friendliness

Recursive Implementation of a <2/8 Circuit

Comparisons with Prior Designs

Multiplexer Options

Speed, Area, Power, Energy Gains

Absolute delay reduction increases with *n*, but relative reduction decreases

Reductions achieved over 5 different implementations

Delay: 18% Transistors: 51% Power: 54% Energy: > 60%

Advantages and Drawbacks

- Recursion not applicable to all of our needs
- May not lead to theoretically-optimal design
- But ... Optimal designs tend to be complex
 → Long design times and many design errors
- Recursive designs: Analyzable and verifiable
- Stop recursion upon hitting a known design
- Commonly-used parts can be fully optimized
- Good for prototyping, if not for final circuit

Recursive Design of Weight-Checkers

Between-Limits Threshold Counters

 $C(\in [l, m)/n) =$ Open problem $D(\in [l, m)/n) = n - 2 + a$ small constant

< 7/8

Example application:

Codewords of length 9 bits and weights 4 or 5

C(4, 9) + C(5, 9) = 126 + 126 = 252

Membership Checkers

{3,4,6}/8 membership checker

Negative terms and terms larger than *n* are dropped

Recursive Implementation of Voting Networks

Questions?

parhami@ece.ucsb.edu PDF files of B. Parhami's papers are available at: www.ece.ucsb.edu/~parhami/publications.htm

B. Parhami (UCSB)