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Abstract 

 
Tabular computing, quite common in the pre-electronic-
computer days, is regaining importance, given substantial 
reduction in the cost of memory and higher computational 
requirements in the age of big data. An added bonus of 
table-based computing is greater control over the error 
characteristics of the results, which favors the use of 
tables over alternative modes of approximate computing. 
After presenting examples of architectural schemes and 
applications for table-based computing, we conclude with 
an assessment of cost, performance, and energy benefits. 
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1. Introduction 
 

Until the 1970s, when compact and affordable digital 
scientific calculators became available, we relied on 
published pre-calculated tables of important functions [1]. 
For example, base-10 logarithm of values from 1 to 10, at 
increments of 0.01, might have been given in a 900-entry 
table, allowing direct read-out of values if low-precision 
was acceptable or use of linear interpolation to obtain 
greater precision. To compute log 35.419, say, one notes 
that it is 1 + log 3.5419 = 1 + log 3.54 + r, where log 3.54 
is read out from the said table and r is derived based on 
the small residual 0.0019 using some sort of 
approximation or interpolation. The use of tables fell out 
of favor, once everyone became equipped with a 
sophisticated calculator and, later, with a computer.  

Table-based computation returned in at least two 
different forms in the 1990s. One was to speed up normal, 
circuit-based computations by providing an initial 
estimate that would then be refined. The other was to 
reduce complexity and power consumption [2]. 

2. Essentials of Tabular Computation 
 

 Simultaneously with the exponential growth of data 
production rates, bringing about the age of big data [3], 
we have been experiencing an exponential reduction in 
memory cost, as depicted in Fig. 1 [4]. This trend has 
rendered big-data applications feasible, while also 
enabling new categories of applications, which would not 
even be contemplated were it not for inexpensive storage. 
One such area is increased reliance on large-scale tables 
for performing or facilitating computation. 

Computing a function f(x), where x is the parameter 
vector, requires time and other resources, such as energy. 
If a particular function value is needed many times in the 
course of different computations, it makes sense to store 
the computed value and use it when needed. Storage can 
be accomplished via conventional tables that are accessed 
by operand values used as index into the table or may 
entail some form of cache structure that is consulted 
before triggering the requisite calculations to fill the 
needed entry in the event of a cache miss. 

 

 
Fig. 1   Exponentially declining memory cost [4]. 
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Table size can be reduced by subjecting the operands to 
some pre-processing or by allowing some post-processing 
of the value(s) read out from the table(s). This kind of 
indirect table lookup provides a range of trade-offs 
between pure table-lookup and pure computational or 
circuit-based approach. For example, the two-operand 
multiplication operation p(a, b) = ab can be performed via 
two accesses to a smaller squaring table, using the 
formula ab = [(a + b)2 – (a – b)2]/4, whose use entails two 
additions in the pre-processing phase, and one addition 
along with a 2-bit right-shift in the post-processing stage.  

Reading stored values requires less energy than 
recomputing them, particularly with emerging non-
volatile memory technologies [5], and reading may also 
be faster, particularly for a computationally complex 
function. Because table size grows exponentially with the 
number of bits in the input operand(s), table lookup is 
particularly efficient for low-precision data, although 
continual increase in size and reduction in cost of memory 
is expanding the method’s applicability.  

Low-precision computation, as embodied in the rapidly 
expanding field of approximate computing [6], is an 
increasingly important part of the workload in modern 
computing. One advantage of table-based approximate 
computing is that the exact error for each table entry is 
knowable, whereas in a circuit-based approach, often a 
bound on the error is the best we can provide. 
 
 
3. Multi-Table Interpolating Memory 
 

The interpolating memory scheme [7] represents a 
hardware realization of the standard interpolation method 
for computing the value of the function f(x), for a < x < b, 
given the values of f(a) and f(b). The scheme can be 
optimized to require less hardware, while offering desired 
error characteristics. Linear interpolation requires using 2 
tables (function value and slope) along with a multiplier 
and an adder, while quadratic interpolation needs 3 tables, 
a squarer, two multipliers, and two adders.  

Trade-offs exist between data-path widths and cost, 
error, and latency. Consider the computation of y = log2 x, 
where h upper bits of x, that is xk–1:k–h, are used as an 
index into 2h-entry tables, reading out yapprox, which is 
then refined using 1st-, 2nd-, or 3rd-degree interpolation. 
Error curves shown in Fig. 2 indicate that it is rarely 
advantageous to go beyond linear interpolation for 
achieving an overall error of 10–7, say. The table size 
reduction from 210 to 26 or 24 wouldn’t offset the added 
hardware needed for higher-degree interpolation. 
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Fig. 2   Lookup table accuracy-cost trade-offs [7]. 
 
The curves for other functions of common interest are 

quite similar to those shown in Fig. 2 for y = log2 x, save 
small upward or downward shifting. In most cases, the 
required data-path width is within 1 of that needed for 
the logarithm function, making it quite feasible to design 
a general-purpose interpolating memory unit, which can 
be customized for needed functions by plugging in ROMs 
with the required contents or by dynamically loading its 
RAM tables as appropriate.  

 
4. Two Other Multi-Table Methods 
 

In the three decades following the formulation of the 
interpolating memory concept discussed in Section 3, new 
methods and variations for tabular function evaluation 
have been proposed. In this section, we review two other 
classes of methods based on using multiple tables. In 
Section 5, we briefly review a few other methods. 

Bipartite tables [8] obviate the need for a multiplier in 
linear interpolation through a clever trick, thus saving 
computation time and energy. Consider a k-bit operand x 
divided into a few of its most-significant bits, xu, a few 
middle bits, xm, and the rest of the bits xr. We can 
approximate f(x) as the sum g(xu, xm) + h(xu, xr). The 
decomposition of x into xu, xm, and xr creates intervals 
corresponding to different values of xu and subintervals 
associated with different values of xm. Function values are 
stored for each subinterval in the table g(xu, xm). Instead 
of storing slopes for the various subintervals, as in 
interpolating memory, a common slope for each interval 
is stored (Fig. 3), allowing the multiplication of the slope 
s(xu) and the displacement xr to be performed by the 
second lookup table, yielding the value h(xu, xr).  
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Fig. 3   The bipartite table-lookup concept. 
 

Selection of the number u of bits comprising xu and m 
forming xm offers various tradeoffs in precision and table 
size, allowing the designer to choose an optimal scheme, 
given application requirements. Ignoring the second-order 
effect of different table widths on cost, and focusing only 
on the number of table entries, the bipartite table lookup 
method reduces the naïve table size of 2k to 2u+m + 2k–m, 
which is, very roughly speaking a factor of 2m smaller. 
Much additional work has been done on optimizing 
bipartite tables (e.g., [9]) and on extending the concept to 
multipartite tables [10]. 

Both interpolating memory and bipartite tables use two 
different tables in their computation scheme. A different 
way of using two tables is to have one table feed the other 
one, instead of the two being accessed in parallel. Many 
configurations, with and without pre-, mid-, and post-
processing, are possible [11]. A simple example is shown 
in Fig. 4. The level-1 table provides the approximate sum 
of x and y by considering only the upper u bits of each 
operand. This approximate sum can be refined by the 
level-2 table, which also considers the next m bits of the 
operands. Compared with a single table of size 22(u+m) for 
considering the said bits at once, the 2-level architecture 
requires a total table size of 22u + 2u+2m, which is, in very 
rough terms, a factor of 2u smaller.  

By adding a multiplexer to the design, as shown at the 
bottom of Fig. 4, the 2-level tabular scheme just discussed 
can become a dual-precision adder in which the level-2 
table is circumvented when the precision of the level-1 
table alone would do, thus saving time and energy. 

 

 

 
 

Fig. 4   Two-level lookup table for approximate sum. 

5. Other Implementation Options 
 

Here is a brief listing of several other methods and 
refinements to methods already discussed. 

Nonuniform segmentation: The interpolating memory 
scheme of Section 3 divides the function evaluation 
domain into uniform segments, defined by the number h 
of high-order operand bits used to address the tables. Pre-
processing can be used to divide the said domain into 
nonuniform segments [12], the idea being that we need 
fewer segments in regions where the function varies 
slowly or smoothly and more segments where the 
function is ill-behaved and exhibits rapid changes. This 
approach reduces the required table size, while also 
increasing computational accuracy. 

Distributed arithmetic: Linear functions of the form 
a1x1 + a2x2 + … + anxn, involving the constants ai are 
known constants, can be evaluated via bit-serial table-
lookup [13]. As the ith bits of the inputs x1, x2, … , xn 
arrive in turn, beginning with the least-significant bit, the 
n input bits are used as index into a 2n-entry table that 
stores the sum x1(i)a1 + x2(i)a2 + … + xn(i)an. The value 
read out is combined with a right-shifted running sum. 
Thus, with k-bit input operands, distributed arithmetic 
entails k computation cycles, each consisting of a table 
access followed by a shift-add operation. 

Bit-level optimization: Rather than viewing each 
operand in the argument vector x of f(x) as an indivisible 
entity, we can decompose the arguments into their 
constituent bits and endeavor to devise an evaluation 
method that is optimized at the bit level. Distributed 
arithmetic, just discussed, is one instance of this 
approach. Other examples exist [14]. 

Iterative refinement: Many functions can be computed 
iteratively, beginning with a reasonably close estimate, 
which may be read out from a table. For example, given 
an estimate for z with an error no greater than 2–a, a new 
estimate with the much smaller error bound of 2–2a can be 
obtained from the recurrence: x(j+1) = (x(j) + z/x(j))/2. So, 
beginning with an estimate having an error of at most 1/2, 
the error can be reduced successively to 2–2, 2–4, 2–8, and 
so on, reaching k bits of precision in log2 k iterations. 
Because division is a more complex operation than 
multiplication, division-free versions of the refinement 
recurrence have been proposed (e.g., [15]). 

Approximate computing: Even though approximate 
computing represents a class of applications, not one 
specific method, its affinity with tabular calculation make 
it worth a mention here [16]. 

Mux 
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6. Evaluation and Comparisons 
 

When we go from high-precision to lower-precision 
computing, circuit complexity tends to decrease 
polynomially as a function of the data-path width, 
whereas table size shrinks exponentially, thus making the 
tabular scheme more attractive below a certain precision. 
The exact crossover point is highly technology-dependent 
and not much can be deduced in general.  

We thus focus on the particular implementation of a 
function-evaluation unit, depicted in Fig. 5 [16], as a case 
study, and present a parametrized evaluation that provides 
insight via ranges for the various improvement factors of 
interest. The approximate function evaluator of Fig. 5 
monitors computation errors in a unit that is situated off 
the critical path, in order not to slow down the maim 
operation. One can view the circuit as having two modes 
of operation. In normal, approximate mode, the unit 
operates at high speed and low energy. Should higher 
precision be needed, at the cost of slower operation and 
greater energy consumption, the evaluator can be brought 
in. One important feature of the design is its ability to 
offer directional rounding [17], using the error-direction 
bit, a functionality that is quite difficult to provide in 
circuit-based approximation schemes. 

The error-monitoring unit can decide automatically 
whether the error tolerance limit has been exceeded and to 
effect switching to higher-precision computation. The 
scheme of Fig. 5 is a simple form of adaptive-precision 
arithmetic [18], which has found applications when 
floating-point errors much be kept in check. It is also 
related to the notion of lazy arithmetic [19], an approach 
to expending as little time and energy to a computation as 
possible, keeping a tab on result quality, and backtracking 
and re-evaluating, if needed. 

 

 

Fig. 5   Tabular scheme for approximate computing. 

Let us take a memory cell to be equivalent to g NANDs 
in terms of chip area usage and energy consumption. This 
parameter varies for different kinds of memories as well 
as implementation technologies. It has been reported that 
one SRAM cell needs area equal to 0.5 gate. Perhaps one 
should pessimistically use g = 1 to account for address 
decoding and other peripheral/overhead circuity.  

Let us take integer square-rooting for word widths up to 
16 bits as a simple example. A pure table-lookup scheme 
requires tables of sizes 284 (complexity ~1K gates), 
2126 (~25K), and 2168 (~524K), for 8-, 12-, and 16-bit 
inputs, respectively. For 8- and 12-bit inputs, these 
numbers compare favorably with the best reported results 
for FPGA realizations, as shown in Tables 1 and 2.  

The reference for Table 1 [20] reports on 8- and 16-bit 
implementations of non-restoring array square-rooting (it 
also covers 32- and 64-bit operands, which are unsuitable 
for pure tabular realization). The implementations use a 
Xilinx Virtex E FPGA, with 1200 CLBs, 2400 LUTs, and 
2M system gates. The 12-bit input entry has been derived 
by means of interpolation, based on supplied results 
(quadratic rise in hardware complexity, linear increase in 
latency, with word width k). Gate-equivalent estimates for 
hardware complexity are obtained from percentage 
utilization of FPGA resources cited by the authors and the 
total number of system gates. 

The reference for Table 2 [21] offers a variety of 
methods with a range of cost-performance outcomes, 
when implemented on Xilinx Spartan E (with 0.5M 
system gates, 1164 slices, and 4-input LUTs), so I have 
quoted the paper’s best results, which correspond to a 
non-restoring algorithm. Again, interpolation is used for 
12-bit input. In this case, obtaining the gate-equivalent 
estimates was more difficult due to incomplete data, so 
the gate estimates cited must be used with care. The two 
sets of data are similar and serve to confirm each other. 

 
Table 1   FPGA-based integer square-rooters [20]. 

 Bits CLBs LUTs Gates Delay 
 8 12 21 ~18K 15 ns 
 12 25 40 ~37K 22 ns 
 16 42 73 ~63K 40 ns 
 

Table 2   FPGA-based integer square-rooters [21]. 

 Bits CLBs LUTs Gates Delay 
 8 10 17 ~12K 9 ns 
 12 22 39 ~26K 20 ns 
 16 39 71 ~47K 37 ns 

Approximate value +  
Error bound 
 or  Exact value 
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7. Conclusion 
 

Before the ubiquity of digital aids to computation, we 
used tables, published in reference books, to directly read 
out a reasonably accurate value for a function of interest, 
with additional precision obtainable through interpolation. 
The availability of cheap, high-speed digital circuits 
removed the need for the tables. But now, with energy 
consumption a primary concern and the proliferation of 
applications in which approximate values of functions 
will do, combined with the availability of inexpensive 
memories, table-based computing is both viable and 
useful [22]. One advantage of table-based approach to 
approximate computing is that the exact error for a table 
entry is knowable, whereas in a circuit-based method, 
often a bound on the error is the best we can provide. 
Tabular computation, particularly at low precisions, leads 
to speed, cost, and energy economy benefits. 

A couple of final notes are in order: Throughout our 
discussion, we have assumed table access via what is 
sometimes referred to as “trivial hashing,” that is, operand 
bits or simple transformations thereof (via pre-processing) 
are used as an index or address into the table(s). Clearly, 
more sophisticated hashing can be used to reduce the 
table size, when accesses to the table(s) are expected to be 
sparse. Additionally, if the table entry for f(x) is stored 
along with input parameters as x, f(x) in an associative 
memory [23], already used successfully in packet routing 
and several other applications, significant storage savings 
can be achieved in the case of sparse accesses. 
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