

T h e R e t u r n o f T a b l e - B a s e d C o m p u t i n g 1 52nd Asilomar Conf. Signals, Systems, and Computers
Behrooz Parhami, September 22, 2018 Pacific Grove, CA, October 28-31, 2018

The Return of Table-Based Computing

Behrooz Parhami

Dept. of Electrical and Computer Engr., Univ. of California, Santa Barbara, USA; parhami@ece.ucsb.edu

Abstract

Tabular computing, quite common in the pre-electronic-
computer days, is regaining importance, given substantial
reduction in the cost of memory and higher computational
requirements in the age of big data. An added bonus of
table-based computing is greater control over the error
characteristics of the results, which favors the use of
tables over alternative modes of approximate computing.
After presenting examples of architectural schemes and
applications for table-based computing, we conclude with
an assessment of cost, performance, and energy benefits.

Keywords––Approximation; Bipartite/multipartite table;
Computer arithmetic; Interpolation; Memory technology;
Multi-level table; Residue number system.

1. Introduction

Until the 1970s, when compact and affordable digital
scientific calculators became available, we relied on
published pre-calculated tables of important functions [1].
For example, base-10 logarithm of values from 1 to 10, at
increments of 0.01, might have been given in a 900-entry
table, allowing direct read-out of values if low-precision
was acceptable or use of linear interpolation to obtain
greater precision. To compute log 35.419, say, one notes
that it is 1 + log 3.5419 = 1 + log 3.54 + r, where log 3.54
is read out from the said table and r is derived based on
the small residual 0.0019 using some sort of
approximation or interpolation. The use of tables fell out
of favor, once everyone became equipped with a
sophisticated calculator and, later, with a computer.

Table-based computation returned in at least two
different forms in the 1990s. One was to speed up normal,
circuit-based computations by providing an initial
estimate that would then be refined. The other was to
reduce complexity and power consumption [2].

2. Essentials of Tabular Computation

 Simultaneously with the exponential growth of data
production rates, bringing about the age of big data [3],
we have been experiencing an exponential reduction in
memory cost, as depicted in Fig. 1 [4]. This trend has
rendered big-data applications feasible, while also
enabling new categories of applications, which would not
even be contemplated were it not for inexpensive storage.
One such area is increased reliance on large-scale tables
for performing or facilitating computation.

Computing a function f(x), where x is the parameter
vector, requires time and other resources, such as energy.
If a particular function value is needed many times in the
course of different computations, it makes sense to store
the computed value and use it when needed. Storage can
be accomplished via conventional tables that are accessed
by operand values used as index into the table or may
entail some form of cache structure that is consulted
before triggering the requisite calculations to fill the
needed entry in the event of a cache miss.

Fig. 1 Exponentially declining memory cost [4].

T h e R e t u r n o f T a b l e - B a s e d C o m p u t i n g 2 52nd Asilomar Conf. Signals, Systems, and Computers
Behrooz Parhami, September 22, 2018 Pacific Grove, CA, October 28-31, 2018

Table size can be reduced by subjecting the operands to
some pre-processing or by allowing some post-processing
of the value(s) read out from the table(s). This kind of
indirect table lookup provides a range of trade-offs
between pure table-lookup and pure computational or
circuit-based approach. For example, the two-operand
multiplication operation p(a, b) = ab can be performed via
two accesses to a smaller squaring table, using the
formula ab = [(a + b)2 – (a – b)2]/4, whose use entails two
additions in the pre-processing phase, and one addition
along with a 2-bit right-shift in the post-processing stage.

Reading stored values requires less energy than
recomputing them, particularly with emerging non-
volatile memory technologies [5], and reading may also
be faster, particularly for a computationally complex
function. Because table size grows exponentially with the
number of bits in the input operand(s), table lookup is
particularly efficient for low-precision data, although
continual increase in size and reduction in cost of memory
is expanding the method’s applicability.

Low-precision computation, as embodied in the rapidly
expanding field of approximate computing [6], is an
increasingly important part of the workload in modern
computing. One advantage of table-based approximate
computing is that the exact error for each table entry is
knowable, whereas in a circuit-based approach, often a
bound on the error is the best we can provide.

3. Multi-Table Interpolating Memory

The interpolating memory scheme [7] represents a
hardware realization of the standard interpolation method
for computing the value of the function f(x), for a < x < b,
given the values of f(a) and f(b). The scheme can be
optimized to require less hardware, while offering desired
error characteristics. Linear interpolation requires using 2
tables (function value and slope) along with a multiplier
and an adder, while quadratic interpolation needs 3 tables,
a squarer, two multipliers, and two adders.

Trade-offs exist between data-path widths and cost,
error, and latency. Consider the computation of y = log2 x,
where h upper bits of x, that is xk–1:k–h, are used as an
index into 2h-entry tables, reading out yapprox, which is
then refined using 1st-, 2nd-, or 3rd-degree interpolation.
Error curves shown in Fig. 2 indicate that it is rarely
advantageous to go beyond linear interpolation for
achieving an overall error of 10–7, say. The table size
reduction from 210 to 26 or 24 wouldn’t offset the added
hardware needed for higher-degree interpolation.

6 8 10

9

W
o

rs
t-

ca
se

 a
b

so
lu

te
 e

rr
o

r

Number of bits (h)

Linear

0 2 4
10

6
10

3
10

8
10

5
10

2
10

7
10

4
10

1
10

Second-
order

Third-
order

Fig. 2 Lookup table accuracy-cost trade-offs [7].

The curves for other functions of common interest are

quite similar to those shown in Fig. 2 for y = log2 x, save
small upward or downward shifting. In most cases, the
required data-path width is within 1 of that needed for
the logarithm function, making it quite feasible to design
a general-purpose interpolating memory unit, which can
be customized for needed functions by plugging in ROMs
with the required contents or by dynamically loading its
RAM tables as appropriate.

4. Two Other Multi-Table Methods

In the three decades following the formulation of the
interpolating memory concept discussed in Section 3, new
methods and variations for tabular function evaluation
have been proposed. In this section, we review two other
classes of methods based on using multiple tables. In
Section 5, we briefly review a few other methods.

Bipartite tables [8] obviate the need for a multiplier in
linear interpolation through a clever trick, thus saving
computation time and energy. Consider a k-bit operand x
divided into a few of its most-significant bits, xu, a few
middle bits, xm, and the rest of the bits xr. We can
approximate f(x) as the sum g(xu, xm) + h(xu, xr). The
decomposition of x into xu, xm, and xr creates intervals
corresponding to different values of xu and subintervals
associated with different values of xm. Function values are
stored for each subinterval in the table g(xu, xm). Instead
of storing slopes for the various subintervals, as in
interpolating memory, a common slope for each interval
is stored (Fig. 3), allowing the multiplication of the slope
s(xu) and the displacement xr to be performed by the
second lookup table, yielding the value h(xu, xr).

T h e R e t u r n o f T a b l e - B a s e d C o m p u t i n g 3 52nd Asilomar Conf. Signals, Systems, and Computers
Behrooz Parhami, September 22, 2018 Pacific Grove, CA, October 28-31, 2018

Fig. 3 The bipartite table-lookup concept.

Selection of the number u of bits comprising xu and m
forming xm offers various tradeoffs in precision and table
size, allowing the designer to choose an optimal scheme,
given application requirements. Ignoring the second-order
effect of different table widths on cost, and focusing only
on the number of table entries, the bipartite table lookup
method reduces the naïve table size of 2k to 2u+m + 2k–m,
which is, very roughly speaking a factor of 2m smaller.
Much additional work has been done on optimizing
bipartite tables (e.g., [9]) and on extending the concept to
multipartite tables [10].

Both interpolating memory and bipartite tables use two
different tables in their computation scheme. A different
way of using two tables is to have one table feed the other
one, instead of the two being accessed in parallel. Many
configurations, with and without pre-, mid-, and post-
processing, are possible [11]. A simple example is shown
in Fig. 4. The level-1 table provides the approximate sum
of x and y by considering only the upper u bits of each
operand. This approximate sum can be refined by the
level-2 table, which also considers the next m bits of the
operands. Compared with a single table of size 22(u+m) for
considering the said bits at once, the 2-level architecture
requires a total table size of 22u + 2u+2m, which is, in very
rough terms, a factor of 2u smaller.

By adding a multiplexer to the design, as shown at the
bottom of Fig. 4, the 2-level tabular scheme just discussed
can become a dual-precision adder in which the level-2
table is circumvented when the precision of the level-1
table alone would do, thus saving time and energy.

Fig. 4 Two-level lookup table for approximate sum.

5. Other Implementation Options

Here is a brief listing of several other methods and
refinements to methods already discussed.

Nonuniform segmentation: The interpolating memory
scheme of Section 3 divides the function evaluation
domain into uniform segments, defined by the number h
of high-order operand bits used to address the tables. Pre-
processing can be used to divide the said domain into
nonuniform segments [12], the idea being that we need
fewer segments in regions where the function varies
slowly or smoothly and more segments where the
function is ill-behaved and exhibits rapid changes. This
approach reduces the required table size, while also
increasing computational accuracy.

Distributed arithmetic: Linear functions of the form
a1x1 + a2x2 + … + anxn, involving the constants ai are
known constants, can be evaluated via bit-serial table-
lookup [13]. As the ith bits of the inputs x1, x2, … , xn
arrive in turn, beginning with the least-significant bit, the
n input bits are used as index into a 2n-entry table that
stores the sum x1(i)a1 + x2(i)a2 + … + xn(i)an. The value
read out is combined with a right-shifted running sum.
Thus, with k-bit input operands, distributed arithmetic
entails k computation cycles, each consisting of a table
access followed by a shift-add operation.

Bit-level optimization: Rather than viewing each
operand in the argument vector x of f(x) as an indivisible
entity, we can decompose the arguments into their
constituent bits and endeavor to devise an evaluation
method that is optimized at the bit level. Distributed
arithmetic, just discussed, is one instance of this
approach. Other examples exist [14].

Iterative refinement: Many functions can be computed
iteratively, beginning with a reasonably close estimate,
which may be read out from a table. For example, given
an estimate for z with an error no greater than 2–a, a new
estimate with the much smaller error bound of 2–2a can be
obtained from the recurrence: x(j+1) = (x(j) + z/x(j))/2. So,
beginning with an estimate having an error of at most 1/2,
the error can be reduced successively to 2–2, 2–4, 2–8, and
so on, reaching k bits of precision in log2 k iterations.
Because division is a more complex operation than
multiplication, division-free versions of the refinement
recurrence have been proposed (e.g., [15]).

Approximate computing: Even though approximate
computing represents a class of applications, not one
specific method, its affinity with tabular calculation make
it worth a mention here [16].

Mux

T h e R e t u r n o f T a b l e - B a s e d C o m p u t i n g 4 52nd Asilomar Conf. Signals, Systems, and Computers
Behrooz Parhami, September 22, 2018 Pacific Grove, CA, October 28-31, 2018

6. Evaluation and Comparisons

When we go from high-precision to lower-precision
computing, circuit complexity tends to decrease
polynomially as a function of the data-path width,
whereas table size shrinks exponentially, thus making the
tabular scheme more attractive below a certain precision.
The exact crossover point is highly technology-dependent
and not much can be deduced in general.

We thus focus on the particular implementation of a
function-evaluation unit, depicted in Fig. 5 [16], as a case
study, and present a parametrized evaluation that provides
insight via ranges for the various improvement factors of
interest. The approximate function evaluator of Fig. 5
monitors computation errors in a unit that is situated off
the critical path, in order not to slow down the maim
operation. One can view the circuit as having two modes
of operation. In normal, approximate mode, the unit
operates at high speed and low energy. Should higher
precision be needed, at the cost of slower operation and
greater energy consumption, the evaluator can be brought
in. One important feature of the design is its ability to
offer directional rounding [17], using the error-direction
bit, a functionality that is quite difficult to provide in
circuit-based approximation schemes.

The error-monitoring unit can decide automatically
whether the error tolerance limit has been exceeded and to
effect switching to higher-precision computation. The
scheme of Fig. 5 is a simple form of adaptive-precision
arithmetic [18], which has found applications when
floating-point errors much be kept in check. It is also
related to the notion of lazy arithmetic [19], an approach
to expending as little time and energy to a computation as
possible, keeping a tab on result quality, and backtracking
and re-evaluating, if needed.

Fig. 5 Tabular scheme for approximate computing.

Let us take a memory cell to be equivalent to g NANDs
in terms of chip area usage and energy consumption. This
parameter varies for different kinds of memories as well
as implementation technologies. It has been reported that
one SRAM cell needs area equal to 0.5 gate. Perhaps one
should pessimistically use g = 1 to account for address
decoding and other peripheral/overhead circuity.

Let us take integer square-rooting for word widths up to
16 bits as a simple example. A pure table-lookup scheme
requires tables of sizes 284 (complexity ~1K gates),
2126 (~25K), and 2168 (~524K), for 8-, 12-, and 16-bit
inputs, respectively. For 8- and 12-bit inputs, these
numbers compare favorably with the best reported results
for FPGA realizations, as shown in Tables 1 and 2.

The reference for Table 1 [20] reports on 8- and 16-bit
implementations of non-restoring array square-rooting (it
also covers 32- and 64-bit operands, which are unsuitable
for pure tabular realization). The implementations use a
Xilinx Virtex E FPGA, with 1200 CLBs, 2400 LUTs, and
2M system gates. The 12-bit input entry has been derived
by means of interpolation, based on supplied results
(quadratic rise in hardware complexity, linear increase in
latency, with word width k). Gate-equivalent estimates for
hardware complexity are obtained from percentage
utilization of FPGA resources cited by the authors and the
total number of system gates.

The reference for Table 2 [21] offers a variety of
methods with a range of cost-performance outcomes,
when implemented on Xilinx Spartan E (with 0.5M
system gates, 1164 slices, and 4-input LUTs), so I have
quoted the paper’s best results, which correspond to a
non-restoring algorithm. Again, interpolation is used for
12-bit input. In this case, obtaining the gate-equivalent
estimates was more difficult due to incomplete data, so
the gate estimates cited must be used with care. The two
sets of data are similar and serve to confirm each other.

Table 1 FPGA-based integer square-rooters [20].

 Bits CLBs LUTs Gates Delay
 8 12 21 ~18K 15 ns
 12 25 40 ~37K 22 ns
 16 42 73 ~63K 40 ns

Table 2 FPGA-based integer square-rooters [21].

 Bits CLBs LUTs Gates Delay
 8 10 17 ~12K 9 ns
 12 22 39 ~26K 20 ns
 16 39 71 ~47K 37 ns

Approximate value +
Error bound
 or  Exact value

T h e R e t u r n o f T a b l e - B a s e d C o m p u t i n g 5 52nd Asilomar Conf. Signals, Systems, and Computers
Behrooz Parhami, September 22, 2018 Pacific Grove, CA, October 28-31, 2018

7. Conclusion

Before the ubiquity of digital aids to computation, we
used tables, published in reference books, to directly read
out a reasonably accurate value for a function of interest,
with additional precision obtainable through interpolation.
The availability of cheap, high-speed digital circuits
removed the need for the tables. But now, with energy
consumption a primary concern and the proliferation of
applications in which approximate values of functions
will do, combined with the availability of inexpensive
memories, table-based computing is both viable and
useful [22]. One advantage of table-based approach to
approximate computing is that the exact error for a table
entry is knowable, whereas in a circuit-based method,
often a bound on the error is the best we can provide.
Tabular computation, particularly at low precisions, leads
to speed, cost, and energy economy benefits.

A couple of final notes are in order: Throughout our
discussion, we have assumed table access via what is
sometimes referred to as “trivial hashing,” that is, operand
bits or simple transformations thereof (via pre-processing)
are used as an index or address into the table(s). Clearly,
more sophisticated hashing can be used to reduce the
table size, when accesses to the table(s) are expected to be
sparse. Additionally, if the table entry for f(x) is stored
along with input parameters as x, f(x) in an associative
memory [23], already used successfully in packet routing
and several other applications, significant storage savings
can be achieved in the case of sparse accesses.

References

[1] D. Zwillinger, CRC Standard Mathematical Tables and

Formulae, now in its 33rd ed., CRC Press, 2018.

[2] B. Parhami, Computer Arithmetic: Algorithms and
Hardware Designs, Oxford, 2nd ed., 2010.

[3] C. L. P. Chen and C.-Y. Zhang, “Data-Intensive
Applications, Challenges, Techniques and Technologies:
A Survey on Big Data,” Information Sciences, Vol. 275,
pp. 314-347, 2014.

[4] J. C. McCallum, “Graph of Memory Prices Decreasing
with Time (1957-2017),” www.jcmit.net/mem2015.htm

[5] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng,
“Overview of Emerging Nonvolatile Memory
Technologies,” Nanoscale Research Letters, Vol. 9, No.
1, p. 526, 2014.

[6] S. Mittal, “A Survey of Techniques for Approximate
Computing,” ACM Computing Surveys, Vol. 48, No. 4, p.
62, 2016.

[7] A. S. Noetzel, “An Interpolating Memory Unit for
Function Evaluation: Analysis and Design,” IEEE Trans.
Computers, Vol. 38, No. 3, pp. 377-384, 1989.

[8] D. Das Sarma and D. W. Matula, “Faithful Bipartite ROM
Reciprocal Tables,” Proc. 12th IEEE Symp. Computer
Arithmetic, pp. 17-28, 1995.

[9] M. J. Schulte and J. E. Stine, “Approximating Elementary
Functions with Symmetric Bipartite Tables,” IEEE Trans.
Computers, Vol. 48, No. 8, pp. 842-847, 1999.

[10] F. De Dinechin and A. Tisserand, “Multipartite Table
Methods,” IEEE Trans. Computers, Vol. 54, No. 3, pp.
319-330, 2005.

[11] B. Parhami, “Modular Reduction by Multi-Level Table
Lookup,” Proc. 40th Midwest Symp. Circuits and
Systems, Vol. 1, pp. 381-384, 1997.

[12] D. U. Lee, W. Luk, J. Villasenor, and P. Y. K. Cheung,
“Nonuniform Segmentation for Hardware Function
Evaluation,” Proc. 13th Int’l Conf. Field-Programmable
Logic and Applications, pp. 796-807, 2003.

[13] S. A. White, “Application of Distributed Arithmetic to
Digital Signal Processing,” IEEE Trans. Acoustics,
Speech, and Signal Processing, Vol. 6, pp. 4-19, 1989.

[14] B. Parhami and C. Y. Hung, “Optimal Table Lookup
Schemes for VLSI Implementation of Input/Output
Conversions and Other Residue Number Operations,”
Proc. IEEE Workshop VLSI Signal Processing, 1994.

[15] Cray Research, “Cray 2 Computer System Functional
Description Manual,” Cray documentation, 1989.

[16] B. Parhami, “A Case for Table-Based Approximate
Computing,” Proc. 9th IEEE Information Technology,
Electronics & Mobile Communication Conf., Vancouver,
Canada, November 2018, to appear.

[17] IEEE Standard for Floating-Point Arithmetic, IEEE-754-
2008 (in final stages of revision for an updated version).

[18] J. R. Shewchuk, “Robust Adaptive Floating-Point
Geometric Predicates,” Proc. 12th ACM Symp.
Computational Geometry, pp. 141-150, 1996.

[19] D. Michelucci and J. M. Moreau, “Lazy Arithmetic,”
IEEE Trans. Computers, Vol. 46, pp. 961-975, 1997.

[20] S. Samavi, A. Sadrabadi, and A. Fanian, “Modular Array
Structure for Non-Restoring Square Root Circuit,” J.
Systems Architecture, Vol. 54, No. 10, pp. 957-966, 2008.

[21] A. P. Ramesh and I. J. Kumar, “Implementation of Integer
Square Root,” Int’l J. Engineering Science and Innovative
Technology, Vol. 4, No. 1, pp. 105-113, January 2015.

[22] B. Parhami, “Tabular Computation,” Encyclopedia of Big
Data Technologies, S. Sakr and A. Zomaya (eds.),
Springer, 2019.

[23] K. Pagiamtzis and A. Sheikholeslami, “Content-
Addressable Memory (CAM) Circuits and Architectures:
A Tutorial and Survey,” IEEE J. Solid-State Circuits, Vol.
41, No. 3, pp. 712-727, 2006.

