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Abstract—The average internode distance for a network is 
fairly difficult to derive. There is often no closed-form formula 
for this parameter, leading to the need for simulation-based 
derivation methods. Network diameter, by contrast, is relatively 
easier to determine and, for many networks of common interest, 
we have closed-form formulas for it. The bounds established in 
this paper show that the two parameters are usually not totally 
independent and that, from a practical standpoint, network 
diameter can be used in lieu of average internode distance for the 
evaluation of message-routing algorithms and assessment or 
comparison of communication performance, particularly for 
symmetric networks that are prevalent in many parallel systems. 
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I. INTRODUCTION 

A great many interconnection architectures have been 
proposed for linking bare-bone processing elements or full-
fledged, independently-operating computers in parallel 
and distributed systems [4], [7], [11], [15]. Comparing such 
networks with respect to their suitability for a particular 
application domain is often difficult [8], given the 
multitude of static attributes (diameter, average distance, 
bisection width, VLSI layout area) and dynamic properties 
(routing algorithms, deadlock prevention, traffic balance, 
fault tolerance) that must be taken into consideration. Thus, 
introduction of new interconnection networks, while 
enriching the repertoire of parallel computer designers, also 
adds to the selection difficulty. 

In this paper, we focus on two of the static attributes of a 
network, its diameter D and average internode distance , 
and show that for practical networks that tend to be regular 
(node-symmetric), the two parameters are not totally 
independent of each other. We prove formally that for a 
regular, degree-d network, the two parameters D and  are 
within a factor of at most 2 from each other. Thus, worst-
case communication latency, dictated by network diameter, 
and expected latency, which is a function of average 
distance, are also interdependent. Furthermore, we show 
that even for certain non-regular networks that are widely 
used in practice, namely meshes and binary trees, the 
average distance and diameter remain related, although not 
always satisfying the factor-of-2 relationship. 

We take the average internode distance as the expected 
distance from a randomly chosen node to other nodes in 
the network, including the node itself. This inclusion of null 
paths, that is counting paths from each node to itself in 
computing the average distance, leads to cleaner results in 
most cases and has negligible effect on our conclusions. 

A final note about terminology: We are interested in 
lower- and upper-bound on a parameter x, denoted by lb(x) 
and ub(x), when the actual value of x is unknown and/or 
difficult to derive. We have x  ub(x) and lb(x)  x. The 
upper bound x  ub(x) or lower bound lb(x)  x is said to be 
tight when equality is possible in at least one instance of the 
cases under consideration. 

II. AVERAGE DISTANCE IN MESHES AND BINARY TREES 

Exact formulas for the average internode distance  have 
not been published for many useful networks, including 
the two most-widely used ones: q-dimensional meshes and 
complete binary trees. In this section, we aim to correct this 
deficiency [12] and will later use the results to draw general 
conclusions about the relationship between D and . 

The shortest-path length in a q-dimensional mesh can be 
found by adding the distances of the destination node from 
the source node along each of the q dimensions. Thus, all 
that is required for finding an exact formula for  is to have 
an exact formula for the average distance in a p-node linear 
array, also known as a p-path. 

p-path = (1/p2)0jp–1[0ij(j – i) + jip–1(i – j)]         (1) 

Recall that we include the 0-length path from each node 
to itself in calculating the average, hence the normalizing 
term 1/p2 in the expression above, in lieu of 1/[p(p – 1)]. 
The two sums in the square brackets are sums of distances 
from node j to all to nodes to its left and right, respectively. 
Using the formulas for the sums of consecutive integers 
and their second powers, we obtain for p  3: 

p-path = (1/p2)0jp–1[j(j + 1) – j(j + 1)/2           (2) 
    + (p – j)(p – 1 + j)/2 – j(p – j)] = (1/3)(p – 1/p) 

 
Fig. 1. Linear array with p nodes (a p-path). 
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The average internode distance in a q-dimensional n1  
n2  …  nq mesh is thus: 

qD-mesh = (1/3)[1iq(ni – 1/ni)]           (3) 

When the dimensions ni are large, the average internode 
distance in (3) is roughly one-third of the diameter in (4): 

DqD-mesh = 1iqni – q            (4) 

The average internode distance and diameter for a p-ring 
are similarly derived in (5) and (6), again assuming p  3, 
leading to the average internode distance and diameter for 
a q-dimensional n1  n2  …  nq torus in (7) and (8): 

p-ring = (1/4)[p – (p mod 2)/p]           (5) 
Dp-ring = (1/2)[p – (p mod 2)/p]           (6) 
qD-torus = (1/4)1iq[ni – (ni mod 2)/ni]          (7) 
DqD-torus = (1/2)1iq[ni – (ni mod 2)/ni]          (8) 

Deriving an exact formula for the average distance of a 
binary tree is much harder. We characterize an n-node 
complete binary tree with the parameter m = n + 1 = 2l; we 
say that the tree has l levels, numbered from 1, for the root, 
up to l, for the leaves. So, Tm, m = 2l  2, refers to an (m – 1)-
node complete binary tree. 

First, some observations. The diameter of Tm is: 

Dbinary-tree = 2l – 2 = 2 log2m – 2           (9) 

We begin by calculating the sum (Tm) of the lengths of the 
paths from the root r to every node in Tm. 

      (Tm) = 121 + 222 + … + (l – 1)2l–1 = (l – 2)2l + 2      (10) 
    = m log2m – 2m + 2 

Now Tm can be viewed as consisting of three parts: The root 
node r, the left subtree L, which is a Tm/2 with root node rL, 
and the right subtree R, also a Tm/2 with root rR (see Fig. 2). 
To find the sum S(Tm) of the lengths of all paths in Tm, we 
note that each such path must begin and end in one of the 3 
parts, creating a total of 8 cases (ignoring the ninth case of a 
path from r to r), which entail symmetries. 

S(L, L) = S(R, R) = S(Tm/2)           (11) 
S(r, L) = S(r, R) = S(L, r) = S(R, r) = m/2 – 1 + (m/2)    (12) 
S(L,R) = S(R,L) = (m/2–1)2[2 + 2(m/2)/(m/2–1)]         (13) 

   = (m – 2)(m/2) + (m – 2)2/2 

In (12), each of the m/2 – 1 paths is one hop longer than 
a corresponding path beginning at a subtree root. In (13), 
each of the (m/2 – 1)2 paths is 2 hops longer than the sum of 
two paths, one beginning at each of the subtree roots. 

 
Fig. 2. Complete binary tree, with root r, left subtree L, and right subtree R. 

Substituting (m/2) = (m log2m)/2 – 3m/2 + 2 in S(Tm) = 
2S(L, L) + 4S(r, L) + 2S(L, R) and simplifying, we arrive at 
the recurrence: 

S(Tm) = 2S(Tm/2) + m2 log2m – 2m2 + 2m          (14) 

The recurrence in (14) has a solution of the form: 

S(Tm) = am2 log2m + bm2 + cm log2m + dm + e         (15) 

Substituting in (14) and solving for the unknowns, we 
get a = 2, b = –6, c = 2, and e = 0, leading to: 

S(Tm) = 2m2 log2m – 6m2 + 2m log2m + dm         (16) 

Finally, from (16), d = 6 follows based on the initial 
condition S(T2) = 0. Thus, we arrive at the solution (17) and 
average internode distance (18): 

S(Tm) = 2m2 log2m – 6m2 + 2m log2m + 6m         (17) 
(Tm) = (2m2 log2m – 6m2 + 2m log2m + 6m )/(m – 1)2      (18) 
   = 2 log2m – 6 + 2(3m log2m – 3m – log2m + 3)/(m – 1)2 

Note that for very large m, the average internode 
distance for the (m – 1)-node complete binary tree Tm 
asymptotically approaches 2 log2m – 6, that is, 4 hops less 
than the diameter in (9); a rather counterintuitive result. 
Table 1 provides numerical values for  and D, as well as 
the ratio /D, all numerically verified by direct calculation, 
for small complete binary trees. 

So far, we have focused exclusively on complete binary 
trees. We have also studied balanced binary trees and 
obtained tight bounds for their diameters and average 
internode distances. Unbalanced binary trees need not be 
considered, as they offer no benefits. 

Theorem 1: In an incomplete binary tree with more than 
one incomplete level, removing a node from an incomplete 
level k and adding a node to an incomplete level k – j (j > 0) 
does not increase the diameter and always reduces the 
average internode distance. ■ 

Thus, we focus on incomplete balanced binary trees, in 
which all missing nodes are in the last level l. The diameter 
of such a tree is either 2l or 2l – 1. As for average distance, 
Theorem 2 shows that it is best if the leaves are compressed 
on one side or the other, bunched together horizontally. 

Theorem 2: In a balanced binary tree, with the final level 
l containing missing nodes in both subtrees, removing a 
node from a side with equal or fewer nodes and adding a 
node to the other side decreases the average internode 
distance, with no increase in diameter. ■ 

Based on these theorems, any incomplete binary tree can 
be transformed to a canonical balanced form that has the 
least average internode distance for its number of nodes. 

Table 1. Average distance, diameter, and /D for trees with  6 levels. 

 m n l  D /D 
 2 1 1 0 0   --- 
 4 3 2 0.889 = 8/9 2 0.444 
 8 7 3 1.959 = 96/49 4 0.490 
 16 15 4 3.271 = 736/225 6 0.545 
 32 31 5 4.795 = 4608/961 8 0.599 
 64 63 6 6.482 = 25,728/3969 10 0.648 
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III. RELATING AVERAGE DISTANCE AND DIAMETER 

Clearly, the average distance in a graph is never greater 
than its diameter (  D). Other than this obvious 
relationship, the two parameters are unrelated, in the sense 
that for any m, we can construct a graph whose diameter is 
about m times as large as its average internode distance. 
Referring to Fig. 3, assume that the n-node complete graph 
Kn is augmented with an m-node path (linear array) Pm 
emanating from its node v to form the overall graph G. The 
resulting graph G has diameter DG = m and the average 
internode distance. 

G = [n2 + m(m2–1)/3 + 2(n–1)(2+3+…+m)]/(n+m–1)2    (19) 

The first term inside the square brackets, n2, is the sum 
of distances within Kn; the second term, m(m2 – 1)/3, is the 
sum of distances within Pm, from (2). The third term is the 
sum of distances between a node in Pm and one in Kn, 
excluding v as a source or destination. It is readily verified 
that for a suitably large value of n, such that m2 = o(n), the 
average internode distance G will be O(1), making the 
diameter DG = m a factor O(m) larger than the average 
internode distance. In fact, G can be made as close to 1 as 
we wish, making the ratio DG/G nearly equal to m. 

Worst-case graphs such as G of Fig. 3 are not used in 
practice for interconnecting nodes in a parallel computer. 
So, a natural question that arises relates to the worst-case 
ratio of diameter to average distance in practical networks. 
A vast majority of practical networks of interest in parallel 
processing are node-symmetric. For such networks, we can 
prove the following general result, establishing the fact that 
the diameter and internode average distance are within a 
factor of at most 2 of each other. 

Theorem 3 [13]: Given a node-symmetric network with 
node degree d, diameter D, and average internode distance 
, we have D/2    D. ■ 

Both the lower and upper bounds of Theorem 3 are 
tight. The upper bound for  is attained by the complete 
graph Kn, which has  = D = 1. The lower bound for  is 
attained by any ring or torus network, as discussed in 
Section II, in connection with equations (5) and (7). If we 
exclude the 0 distance of each node to itself in computing 
the average distance, then the inequalities in the statement 
of Theorem 3 become strict: D/2 <  < D. However, even in 
this case we can get arbitrarily close to the bounds for 
sufficiently large networks. Binary n-dimensional 
hypercube [5] almost matches the lower bound, while n-
dimensional radix-r generalized hypercubes [1], with non-
constant n and r, have  = D – o(D). 

 
Fig. 3. Graph G composed of the n-node Kn and the m-node path Pm. 

Theorem 3 [13] is new, and it is unrelated to previously 
reported work on the degree-diameter problem [10] or 
exploring the relationship between  and D (see, e.g., [14]). 
One other context in which the average distance has been 
studied is that of random, complex networks, but these 
results are both approximate (probabilistic, asymptotic) and 
pertain only to certain natural or human-made large-scale 
networks (see, e.g., [6]). 

IV. SOME PRACTICAL IMPLICATIONS 

Let us take the number C of links or channels in an n-
node network as a rough measure of its cost. This is a first-
order approximation, because it ignores the actual 
connectivity pattern that affects the area cost of on-chip and 
on-board connections and the backplane and cabling 
accommodations for connecting modules, racks, and 
cabinets. Given a fixed cost C, we would prefer network 
topologies that minimize D (if worst-case performance is 
paramount) or  (when the average message latency is to be 
optimized). Because  and D are intimately related 
according to Theorem 3, and given that average 
performance is a more representative figure of merit, from 
now on we will use  as an indicator of message latency. 

It is easy to see that average message latency is 
proportional to  when we use a store-and-forward protocol 
and the network is carrying light traffic, so that the effects of 
conflicts and waits are negligible. The same can be said 
about wormhole-routed messages that are fairly short, 
because the overall message latency is dominated by the 
routing time of the header flit. We now show that , and 
hence D, is an important figure of merit even when we use 
wormhole switching with long messages, whose latencies 
are erroneously believed to be insensitive to internode 
distance, or when the network is heavily loaded. 

We begin with a qualitative observation, which we then 
proceed to quantify. The number of links tied up by a long 
wormhole message is on average , making the maximum 
number of in-transit messages no greater than C/ (it 
would generally be much less, given routing restrictions, 
path conflicts, and so on). So, a reduction in  would lead 
to greater aggregate network bandwidth or fewer conflicts 
with the same overall traffic. 

We focus on oblivious routing, which is much more 
common in practice [3]. With oblivious routing, the path 
chosen to route a message from node i to node j is 
dependent only on the indices i and j and not on any other 
parameter or network state. Similar arguments can be 
applied to adaptive routing, but the quantification process 
is much more involved. 

We want to compare two networks that have the same 
number C of links but different average internode distances 
 and . The number C of links is a very rough measure of 
cost and it makes sense to compare equal-cost networks. 
Even though, as stated earlier, other aspects of a network, 
such as VLSI layout area and the length of the longest wire 
affect its cost and per-hop latency, these cannot be taken 
into account in an architecture-independent discussion. 

  Kn Pm v 
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     Table 2. Probability of being able to establish an ith routing path. 

    i 2 3 5 7 10 
 1 0.990 0.980 0.960 0.940 0.910 
 2 0.960 0.921 0.846 0.773 0.671 
 3 0.912 0.829 0.679 0.548 0.385 
 4 0.847 0.713 0.492 0.327 0.162 
 5 0.770 0.584 0.319 0.161 0.046 
 6 0.683 0.455 0.183 0.063 0.008 
 7 0.592 0.336 0.092 0.019 0.001 
 8 0.500 0.234 0.040 0.004 0.000 
 9 0.395 0.154 0.014 0.001 0.000 
 10 0.310 0.095 0.004 0.000 0.000 

 
We make one more simplifying assumption: That all 

routing paths have the average length . Consider the 
probability pi of being able to establish an ith routing path, 
given that i – 1 paths are already in place. This requires that 
all the required  links in the new path be available. Hence: 

 

           
(20)

  
For most values of , the probability pi is a sharply 

decreasing function of i. To get a feel for the numbers 
involved, let’s take C = 100 and compute pi for different 
values of i and  (Table 2). We see that the expected 
number of routing paths that can be established before 
conflicts make additional paths impossible is rather small. 

The foregoing observations are basically the routing 
counterpart to the “birthdays” paradox [2]: That a relatively 
small number of people (23 to be exact) is needed in a room 
before there is a more than even chance for at least two of 
them to share a birthday. Here, as in the birthdays paradox, 
the probability of an event’s occurrence, namely that of 
multiple paths requiring the use of the same link, is much 
larger than intuition would lead us to believe. Furthermore, 
D and  play important roles in increasing or decreasing 
the probability of conflicts. 

V. CONCLUSION 

We have shown that the two parameters  and D, that is, 
average distance and diameter, are closely related in regular 
networks, each being within a factor of 2 of the other. 
Networks do not have this property in general, but many 
recursive and semi-regular networks come close. We 
demonstrated that the relationship D/3 <  < D holds for 
mesh networks and that, given any arbitrarily small value , 
the relationship (1 – )D <  < D holds for all but a finite 
number h() of complete binary trees. 

Research can continue in several directions. (1) Look for 
special classes of regular networks that lead to tighter 
bounds. Given that there are many Cayley graphs for 
which  can be as low as D/2, we suspect that the bounds 
of Theorem 3 are the best we can hope for, but we have no 
proof as yet. (2) Perform more detailed analytical and 
simulation studies to quantify the impact of  and D on 
communication performance more precisely. (3) Derive 

formulas for average distance in other nonregular and 
semi-regular networks to gain additional insights on how 
the two parameters are related. (4) Investigate the impact of 
routing algorithms, particularly dynamic or fault-tolerant 
variants, on our conclusions. 

We close by reiterating that network diameter and other 
topological properties are not as unimportant as some 
researchers have claimed. The space of possibilities for 
network architectures and associated routing algorithms is 
vast; the choice is not limited to low- versus high-
dimensional mesh/torus networks and variations on 
wormhole switching [9], although these choices have been 
dominant in the recent past. Furthermore, it is quite 
dangerous to generalize from a small number of high-level 
studies. It is even more dangerous to base the evaluation of 
research papers and proposals on industrial practices that 
may have been derived from nontechnical considerations. 
If a similar mentality prevailed in operating systems, for 
example, only research on Microsoft Windows, and 
perhaps Linux, would be deemed appropriate. 
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