
A Case for Table-Based Approximate Computing 1 Ninth IEEE Info. Tech., Electronics & Mobile Commun. Conf.
Behrooz Parhami, September 23, 2018 Vancouver, Canada, November 1-3, 2018

A Case for Table-Based Approximate Computing

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

parhami@ece.ucsb.edu

Abstract—The plummeting cost and rising density of memory
units is leading to a resurgence of interest in tabular computing,
already popular in the context of FPGA circuits. Use of tables
offers a natural framework for bimodal or multimodal schemes
that combine a quick, direct readout of approximate values with
a refinement mechanism for improved precision when needed.
In this paper, after reviewing ideas and methods relevant to the
two domains of table-based and approximate computing, we
discuss key benefits of using tables to realize the latter. We also
point out how the covered methods are connected with related
notions of adaptive-precision arithmetic and lazy computation.

Keywords— Approximation; Arithmetic; Interpolating memory;
Memory technology; Multi-level table; Multipartite table

I. INTRODUCTION

As an undergraduate engineering student, I remember
using precomputed tables of useful functions, published in
mathematical handbooks [1]. Compact, affordable digital
calculators didn’t become available until my graduate-
student days in the early 1970s. We are now used to
computing any value on-the-fly as needed, given the
availability of inexpensive and lightning-fast hardware.
However, computing complicated functions can be time-
and energy-intensive, resources that are at a premium in
many application domains. Time and energy waste become
even more daunting when the same function values tend to
be recomputed over and over again.

Having been dismissed, table-based computing returned
in two main forms in the 1990s: to speed up normal, circuit-
based computations by providing an initial estimate that
would then be refined, and to reduce complexity and
power consumption [2]. In an encyclopedia article [3] and a
companion paper [4], I have argued that the age of big data,
combined with advances in memory technology that have
led to significant reduction in cost and incorporation of
desirable features such as non-volatility, has brought table-
based computing back into the spotlight.

As for memory cost reduction [5], the six decades since
the 1950s have seen the price of memory decrease from
many dollars to a few micro-cents per byte, a scaling of 109.
Regarding density [6], memory chips that used to contain a
few kilobytes now offer terabytes, another scaling of 109.
Here, I argue that approximate computing [7], brought
about by the need for fast, energy-efficient computation in
application domains with no need for high precision,
provides an additional motivating factor for using tables.

II. TABULAR COMPUTING: A CAPSULE REVIEW

Consider computing the function y = f(x), where x is a
vector representing the arguments (total of u bits) and the
v-bit result y is the function value. A naïve lookup table for
evaluating this function will be of size 2u v bits, accessed
by a u-bit address and delivering a v-bit word as output.
This is quite practical when there are a fairly small number
of low-precision arguments to deal with (u is small), thus
the method’s affinity with approximate computing. This
naïve approach has limited applicability.

Reducing the required table size is accomplished by
subjecting the u input bits to some pre-processing steps or
allowing the v-bit output to be post-processed. A well-
known example is that of multiplication of k-bit numbers,
that is, computing f(a, b) = ab, with u = v = 2k, leading to the
table size 22k+1k. From the identity ab = [(a + b)2 – (a – b)2]/4,
we see that by computing the two (k + 1)-bit values a + b
and a – b in the pre-processing stage, accessing a squaring
table of size 2k+2(k + 1) twice, or two tables in parallel, and
finally doing an addition and a 2-bit right-shift in the post-
processing stage, extensive table-size reduction is possible.
For example, the table size is reduced by a factor of 1890
(945, if two parallel tables are used for higher speed) in 12-
bit multiplication. Additional optimizations can be applied
to this method [8]. Such trade-offs between the circuit- and
time-complexity of pre- and post-processing steps and the
table size are commonly encountered.

In the rest of this section, I present brief discussions of
some of the main ideas in the field of tabular computation.
For more details, the reader is referred to the author’s
textbook on computer arithmetic and encyclopedia article
on tabular computation [2] [3].

Interpolating memory: To compute f(a), where a falls
between two consecutive table entries (xi < a < xi+1), we can
use f(a) = f(xi) + (a – xi) f (xi), in which f (xi) is the derivative
or slope of the function at xi. Taking xi to be several most-
significant bits of a and a – xi to be the remaining bits, and
reading out f(xi) and f (xi) from tables, the interpolating
memory scheme [9] needs two post-processing operations:
one multiplication and one addition.

Nonuniform segmentation: The interpolating memory
scheme of the preceding paragraph divides the function-
evaluation domain into equal-width segments. By using
non-uniform segments, the table size can be reduced at the
expense of more complex pre-processing [10].

A Case for Table-Based Approximate Computing 2 Ninth IEEE Info. Tech., Electronics & Mobile Commun. Conf.
Behrooz Parhami, September 23, 2018 Vancouver, Canada, November 1-3, 2018

Distributed arithmetic: Evaluation of linear functions of
the form a1x1 + a2x2 + … + anxn, where the ais are known
constants, can be performed via bit-serial table-lookup [11].
As the ith bits of the inputs x1, x2, … , xn arrive in turn,
beginning with the least-significant bit, the n bits are used
as index into a 2n-entry table that stores the sum x1(i)a1 +
x2(i)a2 + … + xn(i)an. The value read out is combined with a
running total, after shifting the latter to the right by 1 bit.
Thus, with k-bit input operands, distributed arithmetic
entails k computation cycles, each consisting of a table
access followed by a shift-add operation.

Bit-level optimization: Rather than viewing each operand
in the argument vector x of f(x) as an indivisible entity, we
can decompose the arguments into their constituent bits
and come up with an evaluation method that is optimized
at the bit level. Distributed arithmetic, just discussed, is one
instance of this approach. Other examples exist [12].

Iterative refinement: Most functions of interest can be
computed iteratively, beginning with a reasonably close
estimate, which may be read out from a table. For example,
given an estimate for z with max error no greater than 2–a,
a new estimate with the much smaller error bound of 2–2a
can be obtained from the recurrence: x(j+1) = (x(j) + z/x(j))/2.
So, beginning with an estimate having an error no greater
than 2–1 = 1/2, the error can be reduced quadratically to 2–2,
2–4, 2–8, and so on, reaching k bits of precision in log2 k
iterations. Because division is a more complex operation
than multiplication, division-free versions of the refinement
recurrence have been proposed (e.g., [13]).

Multi-level tables: For certain functions, it is possible to
devise a multi-table scheme, in which each table receives
chunks of the input as well as bits from other tables, with
the final table in the chain, or some specially designed post-
processing circuit, producing the output [14]. The design
and optimization schemes are application-dependent.

Bipartite tables: To avoid the latency, cost, and energy
requirements of multiplication implied by interpolating
memory, multiplier-less methods [15] have been proposed.
Bipartite tables [16] offer one such scheme. Consider a k-bit
operand divided into a few of its most-significant bits, xu, a
few middle bits, xm, and the rest of the bits xr. We can
approximate f(x) as the sum g(xu, xm) + h(xu, xr). Essentially,
the decomposition of x creates intervals corresponding to xu
values and subintervals corresponding to xm values.
Function values are stored for each subinterval in the table
g(xu, xm). The ingenuity of the method is that instead of
storing slopes for the various subintervals, as in
interpolating memory, a common slope for each interval is
stored, allowing the multiplication of the slope s(xu) and the
displacement xr to be performed by the second lookup table
which yields the value h(xu, xr). Selection of the number of
bits in xu and xm offers tradeoffs in precision and table size.
Various optimizations and improvements to the basic
scheme above have been offered (e.g., [17], [18]).

Multipartite tables: Extension of the notion of bipartite
tables to tripartite [19] and multipartite tables [20], [21] are
quite natural to contemplate.

III. KEY CHALLENGES OF APPROXIMATE COMPUTING

One of the requirements of arithmetic operations,
whether approximate or with regular precision, is reducing
errors to the bare minimum and providing estimates for
average-case and worst-case errors [22]. Standard floating-
point arithmetic requires that the error in each arithmetic
operation be limited to a single rounding error, that is, 1/2
ulp (half unit in least-significant position) [23]. Such results
are referred to as correctly or properly rounded [24]. Even
so, the direction of the error is often unknown. This
property is rather expensive to ascertain, particularly in
computing functions such as sine and log, so we often settle
for an error of no more than 1 ulp (faithfully-rounded
results), with corresponding time, cost, and energy savings.
Approximate computing takes this notion further by
tolerating multi-ulp error bounds for additional savings.

A wide array of specific designs and design frameworks
have been proposed for arithmetic circuits that trade off
precision for speed and energy economy, beginning with
the two fundamental arithmetic building blocks: Adders
(e.g., [25]) and multipliers (e.g., [26]). Evaluation of an
approximate computing scheme is often done in the context
of particular applications, based on the quality of outcomes
compared with those based on regular computations.

So as to provide the readers with a complete example of
how the trade-offs implied by approximate computing are
provided, we describe the adder design cited above [25].
Each of the four sub-adders in Fig. 1 computes the sum of
the corresponding operand segments, either with a
predicted/estimated carry-in or with the actual carry-in
from the preceding segment, the former resulting in faster
operation but with results that are potentially imprecise. In
addition to the trade-off just noted, we also have trade-offs
in designing the carry predictors, with higher accuracy
requiring more complex circuitry and, thus, greater VLSI
area requirement and power consumption.

Maximum benefits of approximate computing accrue
when an adaptive scheme is used to adjust the precision to
application requirements, thus keeping the precision and
the attendant hardware resources used to a bare minimum.
Under such an adaptive scheme, a light-weight, quality-
monitoring process is required, (which may be invoked
sparingly; say, once per m invocations of the approximation
scheme) to keep a tab on errors and to adjust the available
parameters if the error becomes unacceptable. Design of
such monitoring schemes is a great challenge. Furthermore,
any error-bound estimates or guarantees will suffer as a
result of periodic, rather than continuous, quality checks.

Fig. 1. A configurable approximate-adder design [25].

A Case for Table-Based Approximate Computing 3 Ninth IEEE Info. Tech., Electronics & Mobile Commun. Conf.
Behrooz Parhami, September 23, 2018 Vancouver, Canada, November 1-3, 2018

IV. BASIC BENEFITS OF USING TABLES

We can rigorously analyze the error implied by a given
approximate-computation scheme, such as the adder
depicted in Fig. 1. Usually, however, the best we can do is
to provide error bounds, perhaps with an accompanying
probability distribution. For any particular set of input
parameters, the actual error may be significantly less than
what the analysis suggests. This can lead to error over-
estimation and an associated over-design to taper the effect
of such worst-case errors.

When we obtain approximate values from a table, the
actual error in each table entry is known. So, it is quite
feasible to store in the table the direction of the error (1 bit)
and a tight, low-precision upper bound for it (several bits,
depending on need), as in Fig. 2. The error-direction field,
which tells us whether the table entry has been rounded up
or down, would allow us to easily obtain directionally
rounded values [23] if needed. The tight error upper-bound
would enable the derivation of a more precise result via an
adjustment process, if needed.

The “Adjustment” block may be activated to produce a
higher-quality result according to the computational needs.
Once we have a mechanism to produce higher-precision
results, we can also use it to check the quality of the
approximate result on a periodic basis. As shown in Fig. 2,
the adjusted or higher-precision result may be sent to a
quality-monitoring unit which renders judgment on the
result quality, without increasing the critical-path delay.

The scheme depicted in Fig. 2 is a simple form of
adaptive-precision arithmetic [27], which has been found
desirable in computational geometry to keep floating-point
errors in check. It is also related to the notion of lazy
arithmetic [28], a scheme that entails expending as little
effort on computational steps as possible, correcting any
problems from low-quality results by backtracking and/or
re-doing the affected computations.

Certain exotic number representation schemes already
use tabular computation extensively, with excellent results.
Residue number system (RNS) arithmetic [29], e.g., benefits
from tables for both arithmetic operations as well as for I/O
conversion and reconversion processes. Another example is
logarithmic number system (LNS) arithmetic [30], which
provides an attractive alternative to floating-point when
precision requirements are not very high.

Fig. 2. Table-lookup scheme for approximate computing.

V. VARIATIONS AND OPTIMIZATIONS

The basic benefits discussed in Section IV can be
expanded by combining simple table-lookup with general
and application-specific optimizations and design tricks.
We already have a wide collection of pre- and post-
processing methods to help reduce the table size, as
mentioned near the beginning of Section II. Reducing
binary arithmetic operations to intermediate or auxiliary
unary operations [2] greatly reduces the table size. Bit- or
digit-serial operations, a la distributed arithmetic, is
another generally applicable strategy.

Other techniques reviewed in Section II must be studied
with regard to relevance to and impact on approximate
computing. An example is depicted in Fig. 3, which shows
a possible adaptation of multi-level tables to approximate
addition. The k-bit x and y operands are divided into u-bit
upper parts, m-bit middle parts, and (k – u – m)-bit
remainder or tail parts. A direct table for addition would
need 22k entries. The scheme shown in Fig. 3 requires a
level-1 table of size 22u and a level-2 table with 2u+2m entries,
which are collectively much smaller. As is the case for
nearly all tabular function-evaluation schemes, pre-, mid-,
and post-processing logic can be inserted on various data
paths of Fig. 3 in an effort to further reduce the table size or
to optimize the resulting accuracy.

Lookup-table entries need not be filled at the outset,
making the computational tables behave like caches. The
first use of each table entry would lead to a miss, which
invokes a computation to fill the entry. In this way, only the
table entries actually used are ever filled, leading to
potential resource savings. This would be helpful in the
case of large tables that are sparsely used. Going a step
further, there may not be a need to set aside table entries
for all possible input parameter values. Each time f(x) is
computed, the table entry <x, f(x)> is stored in a cache-like
structure. The resulting scheme will then resemble memo-
caches used in speculative execution methods [31] [32].

Our discussion in this paper has been almost exclusively
in terms of hardware implementation. To provide a more
complete picture, we need to touch upon the roles played
by software and algorithms in approximate computing in
general, and table-based methods in particular. Beginning
with characteristics that make certain applications in AI
and other domains inherently error-resilient, algorithm and
software designers can devise computation scheme that
lead to higher speed and lower energy consumption.
Special hardware assists may or may not be required, but
as usual, the greatest benefits are accrued when hardware
and software strengths are combined.

Fig. 3. A possible 2-level tabular scheme for approximate addition.

xu xm xr yu ym yr

Level-1 Table

Level-2 Table

Error
Direction

Adjustment

Error
Bound

Approximate
Value

Mux
Off-Critical-Path

Periodic
Quality Monitoring

A Case for Table-Based Approximate Computing 4 Ninth IEEE Info. Tech., Electronics & Mobile Commun. Conf.
Behrooz Parhami, September 23, 2018 Vancouver, Canada, November 1-3, 2018

VI. CONCLUSION

There has been much work on approximate computing
as a way to rein in the excessive complexity and waste of
chip real estate and energy resources for providing extra
precision where it is not needed. We have argued that
tabular computation has a natural affinity with the aims of
approximate computing, offering benefits in hardware
speed, complexity, and energy consumption.

Research can continue in several directions. First, we
should endeavor to assess the applicability of the notions
enumerated at the end of Section II to making approximate
computing more cost- and energy-efficient. A possible use
of 2-level table-lookup was discussed in Section V. We are
now working on nonuniform segmentation, distributed
arithmetic, bit-level optimization, iterative refinement,
bipartite and multipartite tables, and other schemes to
come up with design strategies and assessing the resulting
cost and energy benefits.

Some work can be carried out based on computational
efficiencies in general, but deeper studies that take the
requirements of specific application domains into account
are needed to advance the state of the art. Of particular
interest are applying the methods enumerated in Section II
to the design of various kinds of neural networks.

We are also contemplating the use of mixed analog-
digital representations [33] that combine the benefits of
simple, low-energy analog processing with high precision
of digital representations, to be invoked when needed. Two
such representations are candidates for consideration:
Continuous-digit number systems [34] [35] and residue
number representations with analog digits [36].

REFERENCES
[1] CRC Standard Mathematical Tables and Formulae, now in its 33rd ed.,

CRC Press, 2018.

[2] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
Oxford, 2nd ed., 2010.

[3] B. Parhami, “Tabular Computation,” Encyclopedia of Big Data
Technologies, S. Sakr and A. Zomaya (eds.), Springer, 2019.

[4] B. Parhami, “The Return of Table-Based Computing,” Proc. 52nd
Asilomar Conf. Signals, Systems, and Computres, October 2018, to
appear in early 2019.

[5] J. C. McCallum, “Graph of Memory Prices Decreasing with Time
(1957-2017),” www.jcmit.net/mem2015.htm

[6] C. A. Mack, “Fifty Years of Moore’s Law,” IEEE Trans. Semiconductor
Manufacturing, Vol. 24, No. 2, pp. 202-207, May 2011.

[7] S. Mittal, “A Survey of Techniques for Approximate Computing,” ACM
Computing Surveys, Vol. 48, No. 4, p. 62, 2016

[8] B. Vinnakota, “Implementing Multiplication with Split Read-Only
Memory,” IEEE Trans. Computers, Vol. 44, pp. 1352-1356, 1995.

[9] A. S. Noetzel, “An Interpolating Memory Unit for Function Evaluation:
Analysis and Design,” IEEE Trans. Computers, Vol. 38, No. 3, pp. 377-
384, 1989.

[10] D. U. Lee, W. Luk, J. Villasenor, and P. Y. K. Cheung, “Nonuniform
Segmentation for Hardware Function Evaluation,” Proc. 13th Int’l Conf.
Field-Programmable Logic and Applications, LNCS, Vol. 2778,
Springer, pp 796-807, 2003.

[11] S. A. White, “Application of Distributed Arithmetic to Digital Signal
Processing: A Tutorial Review,” IEEE Trans. Acoustics, Speech, and
Signal Processing, Vol. 6, No. 3, pp. 4-19, 1989.

[12] B. Parhami and C. Y. Hung, “Optimal Table Lookup Schemes for VLSI
Implementation of Input/Output Conversions and Other Residue
Number Operations,” Proc. IEEE Workshop VLSI Signal Processing,
pp. 470-481, 1994.

[13] Cray Research, “Cray 2 Computer System Functional Description
Manual,” Cray documentation, 1989.

[14] B. Parhami, “Modular Reduction by Multi-Level Table Lookup,” Proc.
40th Midwest Symp. Circuits and Systems, Vol. 1, pp. 381-384, 1997.

[15] O. Gustafsson and K. Johanson, “Multiplierless Piecewise Linear
Approximation of Elementary Functions,” Proc. 40th Asilomar Conf.
Signals, Systems, and Computers, pp. 1678-1681, 2006.

[16] D. Das Sarma and D. W. Matula, “Faithful Bipartite ROM Reciprocal
Tables,” Proc. 12th IEEE Symp. Computer Arithmetic, pp. 17-28, 1995.

[17] M. J. Schulte and J. E. Stine, “Approximating Elementary Functions
with Symmetric Bipartite Tables,” IEEE Trans. Computers, Vol. 48, No.
8, pp. 842-847, 1999.

[18] J. E. Stine and M. J. Schulte, “The Symmetric Table Addition Method
for Accurate Function Approximation,” J. VLSI Signal Processing, Vol.
21, pp. 167-177, 1999.

[19] J.-M. Muller, “A Few Results on Table-Based Methods,” Reliable
Computing, Vol. 5, No. 3, pp. 279-288, 1999.

[20] F. De Dinechin and A. Tisserand, “Multipartite Table Methods,” IEEE
Trans. Computers, Vol. 54, No. 3, pp. 319-330, 2005.

[21] P. Kornerup and D. W. Matula, “Single Precision Reciprocals by
Multipartite Table Lookup,” Proc. 17th IEEE Symp. Computer
Arithmetic, pp 240-248, 2005.

[22] P. T. P. Tang, “Table-Lookup Algorithms for Elementary Functions and
Their Error Analysis,” Proc. 10th IEEE Symp. Computer Arithmetic, pp.
232-236, 1991

[23] IEEE Standard for Floating-Point Arithmetic, IEEE-754-2008 (currently
in final stages of evaluation for an updated 2018 version).

[24] V. Lefevre and J.-M. Muller, “Correctly Rounded Functions for Better
Arithmetic,” Proc. 34th Asilomar Conf. Signals, Systems, and
Computers, pp. 875-878, 2000.

[25] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On Reconfiguration-
Oriented Approximate Adder Design and Its Application,” Proc.
IEEE/ACM Conf. Computer-Aided Design, pp. 48-54, 2013.

[26] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading Accuracy for Power
with an Underdesigned Multiplier Architecture,” Proc. IEEE Int’l Conf.
VLSI Design, pp. 346-351, 2011.

[27] J. R. Shewchuk, “Robust Adaptive Floating-Point Geometric
Predicates,” Proc. 12th ACM Symp. Computational Geometry, pp. 141-
150, 1996.

[28] D. Michelucci and J. M. Moreau, “Lazy Arithmetic,” IEEE Trans.
Computers, Vol. 46, No. 9, pp. 961-975, 1997.

[29] A. R. Omondi and B. Premkumar, Residue Number Systems: Theory and
Implementation, World Scientific, 2007.

[30] M. Chugh and B. Parhami, “Logarithmic Arithmetic as an Alternative to
Floating-Point: A Review,” Proc. 47th Asilomar Conf. Signals, Systems,
and Computers, pp. 1139-1143, 2013.

[31] F. Gabbay and A. Mendelson, “Using Value Prediction to Increase the
Power of Speculative Execution Hardware,” ACM Trans. Computer
Systems, Vol. 16, No. 3, pp. 234-270, 1998.

[32] G. Tziantzioulis, N. Hardavellas, and S. Campanoni, “Temporal
Approximate Function Memoization,” IEEE Micro, Vol. 38, No. 4, pp.
60-70, July/August 2018.

[33] B. Parhami, “Analog Representations in Digital Arithmetic: A Review,”
Proc. 52nd Asilomar Conf. Signals, Systems, and Computers, 2018.

[34] A. Saed, M. Ahmadi, and G. A. Jullien, “A Number System with
Continuous Valued Digits and Modulo Arithmetic,” IEEE Trans.
Computers, Vol. 51, No. 11, pp. 1294-1305, 2002.

[35] M. Mirhassani, M. Ahmadi, and G. A. Jullien, G.A., “Digital
Multiplication Using Continuous Valued Digits,” Proc. Int’l Symp.
Circuits and Systems, pp. 3263-3266, 2007.

[36] B. Parhami, “Digital Arithmetic in Nature: Continuous-Digit RNS,”
Computer J., Vol. 58, No. 5, pp. 1214-1223, May 2015.

