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Abstract—The plummeting cost and rising density of memory 
units is leading to a resurgence of interest in tabular computing, 
already popular in the context of FPGA circuits. Use of tables 
offers a natural framework for bimodal or multimodal schemes 
that combine a quick, direct readout of approximate values with 
a refinement mechanism for improved precision when needed.    
In this paper, after reviewing ideas and methods relevant to the 
two domains of table-based and approximate computing, we 
discuss key benefits of using tables to realize the latter. We also 
point out how the covered methods are connected with related 
notions of adaptive-precision arithmetic and lazy computation. 
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I. INTRODUCTION 

As an undergraduate engineering student, I remember 
using precomputed tables of useful functions, published in 
mathematical handbooks [1]. Compact, affordable digital 
calculators didn’t become available until my graduate-
student days in the early 1970s. We are now used to 
computing any value on-the-fly as needed, given the 
availability of inexpensive and lightning-fast hardware. 
However, computing complicated functions can be time- 
and energy-intensive, resources that are at a premium in 
many application domains. Time and energy waste become 
even more daunting when the same function values tend to 
be recomputed over and over again. 

Having been dismissed, table-based computing returned 
in two main forms in the 1990s: to speed up normal, circuit-
based computations by providing an initial estimate that 
would then be refined, and to reduce complexity and 
power consumption [2]. In an encyclopedia article [3] and a 
companion paper [4], I have argued that the age of big data, 
combined with advances in memory technology that have 
led to significant reduction in cost and incorporation of 
desirable features such as non-volatility, has brought table-
based computing back into the spotlight. 

As for memory cost reduction [5], the six decades since 
the 1950s have seen the price of memory decrease from 
many dollars to a few micro-cents per byte, a scaling of 109. 
Regarding density [6], memory chips that used to contain a 
few kilobytes now offer terabytes, another scaling of 109. 
Here, I argue that approximate computing [7], brought 
about by the need for fast, energy-efficient computation in 
application domains with no need for high precision, 
provides an additional motivating factor for using tables. 

II. TABULAR COMPUTING: A CAPSULE REVIEW 

Consider computing the function y = f(x), where x is a 
vector representing the arguments (total of u bits) and the 
v-bit result y is the function value. A naïve lookup table for 
evaluating this function will be of size 2u  v bits, accessed 
by a u-bit address and delivering a v-bit word as output. 
This is quite practical when there are a fairly small number 
of low-precision arguments to deal with (u is small), thus 
the method’s affinity with approximate computing. This 
naïve approach has limited applicability. 

Reducing the required table size is accomplished by 
subjecting the u input bits to some pre-processing steps or 
allowing the v-bit output to be post-processed. A well-
known example is that of multiplication of k-bit numbers, 
that is, computing f(a, b) = ab, with u = v = 2k, leading to the 
table size 22k+1k. From the identity ab = [(a + b)2 – (a – b)2]/4, 
we see that by computing the two (k + 1)-bit values a + b 
and a – b in the pre-processing stage, accessing a squaring 
table of size 2k+2(k + 1) twice, or two tables in parallel, and 
finally doing an addition and a 2-bit right-shift in the post-
processing stage, extensive table-size reduction is possible. 
For example, the table size is reduced by a factor of 1890 
(945, if two parallel tables are used for higher speed) in 12-
bit multiplication. Additional optimizations can be applied 
to this method [8]. Such trade-offs between the circuit- and 
time-complexity of pre- and post-processing steps and the 
table size are commonly encountered. 

In the rest of this section, I present brief discussions of 
some of the main ideas in the field of tabular computation. 
For more details, the reader is referred to the author’s 
textbook on computer arithmetic and encyclopedia article 
on tabular computation [2] [3]. 

Interpolating memory: To compute f(a), where a falls 
between two consecutive table entries (xi < a < xi+1), we can 
use f(a) = f(xi) + (a – xi) f (xi), in which f (xi) is the derivative 
or slope of the function at xi. Taking xi to be several most-
significant bits of a and a – xi to be the remaining bits, and 
reading out f(xi) and f (xi) from tables, the interpolating 
memory scheme [9] needs two post-processing operations: 
one multiplication and one addition. 

Nonuniform segmentation: The interpolating memory 
scheme of the preceding paragraph divides the function-
evaluation domain into equal-width segments. By using 
non-uniform segments, the table size can be reduced at the 
expense of more complex pre-processing [10]. 
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Distributed arithmetic: Evaluation of linear functions of 
the form a1x1 + a2x2 + … + anxn, where the ais are known 
constants, can be performed via bit-serial table-lookup [11]. 
As the ith bits of the inputs x1, x2, … , xn arrive in turn, 
beginning with the least-significant bit, the n bits are used 
as index into a 2n-entry table that stores the sum x1(i)a1 + 
x2(i)a2 + … + xn(i)an. The value read out is combined with a 
running total, after shifting the latter to the right by 1 bit. 
Thus, with k-bit input operands, distributed arithmetic 
entails k computation cycles, each consisting of a table 
access followed by a shift-add operation. 

Bit-level optimization: Rather than viewing each operand 
in the argument vector x of f(x) as an indivisible entity, we 
can decompose the arguments into their constituent bits 
and come up with an evaluation method that is optimized 
at the bit level. Distributed arithmetic, just discussed, is one 
instance of this approach. Other examples exist [12]. 

Iterative refinement: Most functions of interest can be 
computed iteratively, beginning with a reasonably close 
estimate, which may be read out from a table. For example, 
given an estimate for z with max error no greater than 2–a, 
a new estimate with the much smaller error bound of 2–2a 
can be obtained from the recurrence: x(j+1) = (x(j) + z/x(j))/2. 
So, beginning with an estimate having an error no greater 
than 2–1 = 1/2, the error can be reduced quadratically to 2–2, 
2–4, 2–8, and so on, reaching k bits of precision in log2 k 
iterations. Because division is a more complex operation 
than multiplication, division-free versions of the refinement 
recurrence have been proposed (e.g., [13]). 

Multi-level tables: For certain functions, it is possible to 
devise a multi-table scheme, in which each table receives 
chunks of the input as well as bits from other tables, with 
the final table in the chain, or some specially designed post-
processing circuit, producing the output [14]. The design 
and optimization schemes are application-dependent. 

Bipartite tables: To avoid the latency, cost, and energy 
requirements of multiplication implied by interpolating 
memory, multiplier-less methods [15] have been proposed. 
Bipartite tables [16] offer one such scheme. Consider a k-bit 
operand divided into a few of its most-significant bits, xu, a 
few middle bits, xm, and the rest of the bits xr. We can 
approximate f(x) as the sum g(xu, xm) + h(xu, xr). Essentially, 
the decomposition of x creates intervals corresponding to xu 
values and subintervals corresponding to xm values. 
Function values are stored for each subinterval in the table 
g(xu, xm). The ingenuity of the method is that instead of 
storing slopes for the various subintervals, as in 
interpolating memory, a common slope for each interval is 
stored, allowing the multiplication of the slope s(xu) and the 
displacement xr to be performed by the second lookup table 
which yields the value h(xu, xr). Selection of the number of 
bits in xu and xm offers tradeoffs in precision and table size. 
Various optimizations and improvements to the basic 
scheme above have been offered (e.g., [17], [18]). 

Multipartite tables: Extension of the notion of bipartite 
tables to tripartite [19] and multipartite tables [20], [21] are 
quite natural to contemplate. 

III. KEY CHALLENGES OF APPROXIMATE COMPUTING 

One of the requirements of arithmetic operations, 
whether approximate or with regular precision, is reducing 
errors to the bare minimum and providing estimates for 
average-case and worst-case errors [22]. Standard floating-
point arithmetic requires that the error in each arithmetic 
operation be limited to a single rounding error, that is, 1/2 
ulp (half unit in least-significant position) [23]. Such results 
are referred to as correctly or properly rounded [24]. Even 
so, the direction of the error is often unknown. This 
property is rather expensive to ascertain, particularly in 
computing functions such as sine and log, so we often settle 
for an error of no more than 1 ulp (faithfully-rounded 
results), with corresponding time, cost, and energy savings. 
Approximate computing takes this notion further by 
tolerating multi-ulp error bounds for additional savings. 

A wide array of specific designs and design frameworks 
have been proposed for arithmetic circuits that trade off 
precision for speed and energy economy, beginning with 
the two fundamental arithmetic building blocks: Adders 
(e.g., [25]) and multipliers (e.g., [26]). Evaluation of an 
approximate computing scheme is often done in the context 
of particular applications, based on the quality of outcomes 
compared with those based on regular computations. 

So as to provide the readers with a complete example of 
how the trade-offs implied by approximate computing are 
provided, we describe the adder design cited above [25]. 
Each of the four sub-adders in Fig. 1 computes the sum of 
the corresponding operand segments, either with a 
predicted/estimated carry-in or with the actual carry-in 
from the preceding segment, the former resulting in faster 
operation but with results that are potentially imprecise. In 
addition to the trade-off just noted, we also have trade-offs 
in designing the carry predictors, with higher accuracy 
requiring more complex circuitry and, thus, greater VLSI 
area requirement and power consumption. 

Maximum benefits of approximate computing accrue 
when an adaptive scheme is used to adjust the precision to 
application requirements, thus keeping the precision and 
the attendant hardware resources used to a bare minimum. 
Under such an adaptive scheme, a light-weight, quality-
monitoring process is required, (which may be invoked 
sparingly; say, once per m invocations of the approximation 
scheme) to keep a tab on errors and to adjust the available 
parameters if the error becomes unacceptable. Design of 
such monitoring schemes is a great challenge. Furthermore, 
any error-bound estimates or guarantees will suffer as a 
result of periodic, rather than continuous, quality checks. 

 

 
Fig. 1. A configurable approximate-adder design [25]. 
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IV. BASIC BENEFITS OF USING TABLES 

We can rigorously analyze the error implied by a given 
approximate-computation scheme, such as the adder 
depicted in Fig. 1. Usually, however, the best we can do is 
to provide error bounds, perhaps with an accompanying 
probability distribution. For any particular set of input 
parameters, the actual error may be significantly less than 
what the analysis suggests. This can lead to error over-
estimation and an associated over-design to taper the effect 
of such worst-case errors. 

When we obtain approximate values from a table, the 
actual error in each table entry is known. So, it is quite 
feasible to store in the table the direction of the error (1 bit) 
and a tight, low-precision upper bound for it (several bits, 
depending on need), as in Fig. 2. The error-direction field, 
which tells us whether the table entry has been rounded up 
or down, would allow us to easily obtain directionally 
rounded values [23] if needed. The tight error upper-bound 
would enable the derivation of a more precise result via an 
adjustment process, if needed. 

The “Adjustment” block may be activated to produce a 
higher-quality result according to the computational needs. 
Once we have a mechanism to produce higher-precision 
results, we can also use it to check the quality of the 
approximate result on a periodic basis. As shown in Fig. 2, 
the adjusted or higher-precision result may be sent to a 
quality-monitoring unit which renders judgment on the 
result quality, without increasing the critical-path delay. 

The scheme depicted in Fig. 2 is a simple form of 
adaptive-precision arithmetic [27], which has been found 
desirable in computational geometry to keep floating-point 
errors in check. It is also related to the notion of lazy 
arithmetic [28], a scheme that entails expending as little 
effort on computational steps as possible, correcting any 
problems from low-quality results by backtracking and/or 
re-doing the affected computations. 

Certain exotic number representation schemes already 
use tabular computation extensively, with excellent results. 
Residue number system (RNS) arithmetic [29], e.g., benefits 
from tables for both arithmetic operations as well as for I/O 
conversion and reconversion processes. Another example is 
logarithmic number system (LNS) arithmetic [30], which 
provides an attractive alternative to floating-point when 
precision requirements are not very high. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Table-lookup scheme for approximate computing. 

V. VARIATIONS AND OPTIMIZATIONS 

The basic benefits discussed in Section IV can be 
expanded by combining simple table-lookup with general 
and application-specific optimizations and design tricks. 
We already have a wide collection of pre- and post-
processing methods to help reduce the table size, as 
mentioned near the beginning of Section II. Reducing 
binary arithmetic operations to intermediate or auxiliary 
unary operations [2] greatly reduces the table size. Bit- or 
digit-serial operations, a la distributed arithmetic, is 
another generally applicable strategy. 

Other techniques reviewed in Section II must be studied 
with regard to relevance to and impact on approximate 
computing. An example is depicted in Fig. 3, which shows 
a possible adaptation of multi-level tables to approximate 
addition. The k-bit x and y operands are divided into u-bit 
upper parts, m-bit middle parts, and (k – u – m)-bit 
remainder or tail parts. A direct table for addition would 
need 22k entries. The scheme shown in Fig. 3 requires a 
level-1 table of size 22u and a level-2 table with 2u+2m entries, 
which are collectively much smaller. As is the case for 
nearly all tabular function-evaluation schemes, pre-, mid-, 
and post-processing logic can be inserted on various data 
paths of Fig. 3 in an effort to further reduce the table size or 
to optimize the resulting accuracy. 

Lookup-table entries need not be filled at the outset, 
making the computational tables behave like caches. The 
first use of each table entry would lead to a miss, which 
invokes a computation to fill the entry. In this way, only the 
table entries actually used are ever filled, leading to 
potential resource savings. This would be helpful in the 
case of large tables that are sparsely used. Going a step 
further, there may not be a need to set aside table entries 
for all possible input parameter values. Each time f(x) is 
computed, the table entry <x, f(x)> is stored in a cache-like 
structure. The resulting scheme will then resemble memo-
caches used in speculative execution methods [31] [32]. 

Our discussion in this paper has been almost exclusively 
in terms of hardware implementation. To provide a more 
complete picture, we need to touch upon the roles played 
by software and algorithms in approximate computing in 
general, and table-based methods in particular. Beginning 
with characteristics that make certain applications in AI 
and other domains inherently error-resilient, algorithm and 
software designers can devise computation scheme that 
lead to higher speed and lower energy consumption. 
Special hardware assists may or may not be required, but 
as usual, the greatest benefits are accrued when hardware 
and software strengths are combined. 

 
 
 
 
 
 
 

Fig. 3. A possible 2-level tabular scheme for approximate addition. 
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VI. CONCLUSION 

There has been much work on approximate computing 
as a way to rein in the excessive complexity and waste of 
chip real estate and energy resources for providing extra 
precision where it is not needed. We have argued that 
tabular computation has a natural affinity with the aims of 
approximate computing, offering benefits in hardware 
speed, complexity, and energy consumption. 

Research can continue in several directions. First, we 
should endeavor to assess the applicability of the notions 
enumerated at the end of Section II to making approximate 
computing more cost- and energy-efficient. A possible use 
of 2-level table-lookup was discussed in Section V. We are 
now working on nonuniform segmentation, distributed 
arithmetic, bit-level optimization, iterative refinement, 
bipartite and multipartite tables, and other schemes to 
come up with design strategies and assessing the resulting 
cost and energy benefits. 

Some work can be carried out based on computational 
efficiencies in general, but deeper studies that take the 
requirements of specific application domains into account 
are needed to advance the state of the art. Of particular 
interest are applying the methods enumerated in Section II 
to the design of various kinds of neural networks. 

We are also contemplating the use of mixed analog-
digital representations [33] that combine the benefits of 
simple, low-energy analog processing with high precision 
of digital representations, to be invoked when needed. Two 
such representations are candidates for consideration: 
Continuous-digit number systems [34] [35] and residue 
number representations with analog digits [36].    
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