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Abstract— Many early parallel processing breakthroughs 
emerged from the quest for faster and higher-throughput 
arithmetic operations. Additionally, the influence of arithmetic 
techniques on parallel computer performance can be seen in 
diverse areas such the bit-serial arithmetic units of early 
massively parallel SIMD computers, pipelining and pipeline-
chaining in vector machines, design of floating-point standards to 
ensure the accuracy and portability of numerically-intensive 
programs, and prominence of GPUs in today’s top-of-the-line 
supercomputers. This paper contains a few representative 
samples of the many interactions and cross-fertilizations between 
computer-arithmetic and parallel-computation communities by 
presenting historical perspectives, case studies of state of art and 
practice, and directions for further collaboration. 
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I. INTRODUCTION 

This paper revolves around the notion of parallelism, so 
a precise definition of the word in the context of computer 
arithmetic is called for. At one extreme, given that 
computer arithmetic, at least up until now, has dealt with 
binary or binary-encoded operands, and considering that 
fundamental circuit operations are performed at the bit 
level, any circuit that manipulates multiple bits at once is 
parallel. At this extreme, a half-adder that produces its 
carry and sum outputs independently, using an AND gate 
and an XOR gate, is viewed as doing parallel processing. 
This definition of parallelism is clearly counterproductive. 
At the other extreme, parallelism is viewed as being 
entirely outside the circuit realm, requiring concurrency at 
the level of large functional units (ALUs, CPUs, GPUs). 
This view, too, excludes some interesting and important 
examples in the domain of computer arithmetic.  

I take an expansive view that parallel processing exists 
at all three levels of circuits, function units, and compute 
nodes, using these three varieties of parallelism to present 
my examples of technology transfer and cross-fertilization 
between computer arithmetic and parallel systems research 
in Sections II, III, and IV of the paper. Section V concludes 
the paper and points to possible future work. 

II. CIRCUIT-LEVEL PARALLELISM 

Circuit designs for adders and multipliers, the two main 
workhorses in numerical computation, show many signs of 
cross-fertilization with parallel-computing research. I outline 
only the parallel-prefix approach to addition in this section and 
will cover recursive multiplication in Section III, although the 
latter idea has circuit-level embodiments as well. 

Parallel-prefix computation (PPC) refers to simultaneous 
evaluation of x0, x0  x1, x0  x1  x2, … , x0  x1  …  xk–1, 
which form prefixes of the expression x0  x1  …  xk–1, 
where  is an associative binary operator. This computation is 
a very useful building-block in constructing parallel algorithms 
and leads to many practical applications with different 
instantiations of the objects xi and operator . For example, 
indexing/labeling the 1 elements in a bit-vector corresponds to 
a parallel-prefix-sums computation on the vector elements. 

PPC was first studied by Ladner and Fisher [1], who 
presented a divide-and-conquer scheme that solved the 
problem with optimal O(log n) latency and O(n log n) circuit 
cost, and also showed how the circuit cost can be reduced to 
the optimal O(n). Being theoretical computer scientists, Ladner 
and Fisher considered the problem solved when they produced 
a design that was both time- and cost-optimal, and they did not 
devote any effort to VLSI considerations such as fan-out.  

Before outlining methods for dealing with wiring and fan-
out problems, let me define the instance of PPC that 
corresponds to an adder’s carry network. The addition of two 
radix-r operands ak–1…a1a0 and bk–1…b1b0 to determine their 
sum sk–1…s1s0 entails the determination of intermediate carries 
c1, c2, … , ck–1; for simplicity, we will assume c0 = cin = 0 and 
ignore the need for producing ck = cout. Using the auxiliary 
generate gi = (ai + bi  r) and propagate pi = (ai + bi = r – 1) 
binary signals, and defining the carry operator  on auxiliary 
signal pairs (gi, pi) as (g, p)  (g, p) = (g  gp, pp),      
the intermediate carries can be computed based on ci = g0:i–1, 
where (g0:i–1, p0:i–1), i  [1, k – 1], are prefixes of the expression 
(g0, p0)  (g1, p1)  (g2, p2)   …  (gk–2, pk–2). Once the 
intermediate carries are known, the sum digits can be 
computed easily from si = (ai + bi + ci) mod r. 



The task of adapting PPC-based addition to the constraints 
of VLSI design fell to Brent and Kung, who outlined their 
approach in a 1979 CMU tech report, later published in early 
1982 [2]. They stated that previous work on addition had 
focused on the goal of reducing the number of logic gates but 
paid little attention to the problem of connecting the gates. 
Their design sacrificed some speed, increasing the latency from 
log2 k carry-operator levels to 2 log2 k – 2 levels, in the interest 
of reducing the wiring complexity and the attendant area 
requirements. Their PPC network, later dubbed the Brent-Kung 
design, inspired much subsequent research, leading, among 
others, to an adaptation of Kogge’s and Stone’s parallel 
algorithm [3] to what became known as Kogge-Stone carry 
networks and a number of hybrid BK-KS designs [4], later 
dubbed Han-Carlson designs [5]. To these, one must add the 
parameterized designs of Knowles [6] and those based on the 
high-valency prefix cells of Beaumont-Smith and Lim [7]. 

Many studies on the tradeoffs between latency, VLSI area, 
and, later, energy consumption ensued [8]. One direction of 
research was to relax the extreme fan-out restriction of the 
Brent-Kung scheme to take advantage of small, constant fan-
outs that are quite manageable in modern circuit design. 
Subsequent combination of the carry-lookahead scheme with 
the carry-select idea led to even more efficient hybrid VLSI 
adders. Modern adder designs are predominantly hybrid, taking 
advantage of the strengths of various schemes to shape designs 
that are optimal for the particular set of usage requirements. 

I end this section with a particularly useful taxonomy of 
PPC-adders, shown in Fig. 1 assuming a word width of k = 16, 
in the 3D space of logic levels (beyond the minimum log2 k), 
wire tracks (power of 2), and fan-out (power of 2, plus 1), due 
to Harris [9]. We see that the previously-discussed designs 
occupy certain points in the 3D space of the taxonomy, hinting 
at other designs that occupy other points.  

 

 
Fig. 1. Taxonomy of parallel-prefix networks, due to Harris [9]. 

III. FUNCTION-LEVEL PARALLELISM 

Many arithmetic computations are based on repeated 
invocation of basic building-block operations in time and/or 
space. Concurrency among the multiple invocations leads to 
pipelined and parallel implementations. A good example of 
function-level parallelism in terms of interaction and cross-
fertilization with the parallel computing community is provided 
by recursive multiplication. 

Recursive or divide-and-conquer multiplication [8] can be 
implemented in a variety of ways. For concreteness and 
simplicity, we focus on 2-way splitting, with power-of-2 
operand widths. To compute the product xy, we split each of 
the two operands into high and low halves, resulting in x = 
2k/2xH + xL and y = 2k/2yH + yL. The product xy can then be 
computed from the outputs of four half-width multipliers via: 

xy = (2k/2xH + xL)(2k/2yH + yL) = 2kxHyH + 2k/2(xHyL + xLyH) + xLyL 

Designating the results of the four multiplications, from left to 
right in the expression above as p1, p2, p3, and p4, we have 

xy = 2kp1 + 2k/2(p2 + p3) + p4 

which implies 3 additions and 2 shifts to complete the process.  

 Time and area complexities of this recursive algorithm are 
provided by the following recurrences, assuming sequential 
computation of the four half-width products using a single half-
width multiplier and counting bit-level operations: 

T(k) = 4T(k/2) + (log k) = (k2) 

A(k) = A(k/2) + (k) = (k) 

With concurrent generation of the four partial products, using 
four half-width multipliers, as well as parallel operations 
throughout the process, the recurrences become: 

T(k) = T(k/2) + (log k) = (log k) 

A(k) = 4A(k/2) + (k) = (k2) 

Both schemes are better than the naïve pencil-and-paper or 
brute-force algorithm, and both are suboptimal with respect to 
the AT and AT2 lower bounds (k3/2) and (k2), derived by 
Brent and Kung [10]. 

Here is an improvement to the preceding recursive 
multiplication scheme, due to Karatsuba and Ofman [11]. 
Instead of forming p2 and p3 in the formulation above, form p5 
= (xH –  xL)(yH – yL). Then, compute the product xy from:  

xy = 2kp1 + 2k/2(p1 + p4 – p5) + p4 

 With the Karatsuba-Ofman trick and still counting bit-level 
operations, the area recurrence becomes 

A(k) = 3A(k/2) + (k) = (k1.585) 

where the exponent 1.585 is log2 3. Even though, in practice, 
the advantage of Karatsuba-Ofman multiplication algorithm 
does not kick in until k goes into 100s of bits, it provides major 
speedup for multiplying large numbers of the kinds needed in 
certain encryption schemes. Long multiplications are usually 
performed modulo-m, for some large integer m, creating the 
need for modular multiplication algorithms [12] [13]. 



 After the reduction from O(k2) to O(k1.585) discussed above, 
the exponent was reduced through further tricks, including 
those devised by Toom and cleaned up by Cook [14] [15] 
(1.465, 1.404, 1 + ) during the 1960s, later leading to the 1971 
result of (k log k log log k) by Schonhage and Strassen [16] 
and another, thus far the best, theoretical result by Furer [17]. 
Whether the bit-level complexity of multiplication can be 
reduced to that of addition, that is, (k), is an open question at 
this time. The improvements just discussed are partially 
graphed in Fig. 2 [18], where the “Toom” line corresponds to 
the first (n1.465)-time Toom-Cook algorithm. The graph is 
meant to illustrate only the general trends and crossover points; 
more precise comparisons with different assumptions may 
yield somewhat different results. 

So, where is the connection of all this to the parallel 
computing community? The name “Strassen” in the preceding 
paragraph provides a hint. Strassen is credited with a matrix 
multiplication algorithm [19], which reduces the count of 
arithmetic operations in the multiplication of two n  n 
matrices from (n3) to (n2.807), where 2.807 is log2 7, via a 
similar technique of avoiding some multiplications at the 
expense of introducing more additions.  

It is interesting to ponder the question of why Strassen’s 
method leads to relatively smaller savings in run-time 
compared with the Karatsuba-Ofman method. An intuitive 
explanation goes as follows. Strassen’s method avoids 1 of 8 
multiplications, versus Karatsuba-Ofman’s 1 of 4. Also, 
looking beyond asymptotic complexities, while both integer 
addition and matrix addition are simpler than corresponding 
multiplication operations, the ratio O(k2)/O(k) of complexities 
for integer operations is larger than the O(n3)/O(n2) for matrix 
operations, the problem size being k in the first case and n2 in 
the second one. So, lurking behind asymptotic results is 
another potentially significant difference, when attempting to 
implement such recursive schemes. 

 

 
Fig. 2. Run-times of various multiplication algorithms for wide words [18]. 

Because the publication of Karatsuba-Ofman multiplication 
method pre-dates that of Strassen’s matrix multiplication 
method by some 7 years, influencing, if it occurred, was in the 
direction opposite that of the PPC-addition of Section I. Given 
that Strassen later contributed to the theoretical study of the 
complexity of integer multiplication, it is safe to assume that he 
was inspired by Karatsuba’s and Ofman’s work in devising his 
matrix multiplication method [19]. 

IV. SYSTEM-LEVEL PARALLELISM 

Parallelism at the system level takes the form of multiple 
independent or interacting arithmetic computation streams. 
Very early examples include arithmetic (often floating-point) 
co-processors that relieved the main CPU by performing 
arithmetic operations on demand and sending the results back 
to the CPU or to memory [20]. The modern embodiments of 
arithmetic co-processors are graphic processing units, or GPUs, 
that are optimized for carrying out a large number of arithmetic 
operations at high speed, without the overheads and unneeded 
“features” of a conventional CPU [21] [22] [23].  

Let us take the computation of an n-point DFT as an 
example [24]. Given an n-element vector x as input, the output 
of DFT computation is the n-element vector y, such that 

yi = j=0:n–1 n
ijxj      

where n, a complex number, is a primitive nth root of unity. 
Straightforward computation of the yis requires (n2) 
arithmetic operations (n sums, each involving n multiplications 
and n additions, with the powers of n pre-computed and 
stored in a table). The contribution of the parallel algorithms 
community to the efficient computation of DFT is the Cooley-
Tukey fast Fourier transform, or FFT, algorithm [25] [26], 
which takes advantage of the special structure of the 
computation, using divide-and-conquer to reduce the number 
of arithmetic operations from (n2) to (n log n). 

As for hardware implementation, the processors in this 
example are much simpler than full-blown GPUs, because all 
they do is a butterfly operation: Receive inputs a and b, 
compute a + b and a – b, and, finally, perform a multiplication 
by some constant c to form c(a – b). A straightforward 
mapping of the computation to hardware leads to n log n 
butterfly processors, each of which performs a single butterfly 
operation [24]. Computer arithmetic and VLSI researchers 
have devised methods to save on the number of processors, 
while making each processor simpler and faster.  

Let us first look inside each butterfly processor. There are 
two key savings that result from computer arithmetic research. 
The first is merged computation of the add and subtract 
operations, a + b and a – b, using less hardware and energy 
compared with having two separate adders. The second is 
devising special methods for multiplication by constants [8], 
which entail less hardware (and, thus, less power) and increase 
the speed of forming c(a – b), which is on the critical path 
within each processor. When the processors are shared, so that 
each processor needs to multiply by different constants in the 
course of its engagement, methods of multiplication by 
multiple constants can help reduce the complexity relative to 
the use of a full-blown multiplier. 



 
Fig. 3. A butterfly network and its projections onto n and log n processors. 

Now, for the number of processors. The straightforward 
method of using n log n processors, interconnected into a 
somewhat trimmed butterfly network with n rows and log n 
columns [24], as in the top-left panel of Fig. 3, can be used as a 
basis for deriving reduced-cost implementations. Projecting the 
said graph in the horizontal direction allows us to use a single 
processor to do the jobs of all processors in the same row, 
reducing the processor count by a factor of log n, without a 
significant increase in computation delay, given that the 
columns of a butterfly network do not work at the same time. 
An extreme reduction in hardware is achieved if the butterfly 
network is projected in the vertical direction, leading to log n 
processors, each of which does the job of n processors 
appearing in the same column. In this case, computation time 
does increase substantially. Quite a few other intermediate 
realizations, ranging in hardware complexity between the just-
mentioned extremes of n log n and log n, are possible.  

Given the central importance of DFT in a wide array of 
applications [27] and its special structure admitting the 
application of many design tricks and optimizations, diverse 
hardware implementations, for different values of n and with 
different optimality criteria, have been proposed over the years, 
adding many new design points to those in Bergland’s early 
survey [28]. It is virtually impossible to cite all contributions in 
this domain (a Google Scholar search for “FFT hardware 
implementation” returns 173,000 hits, with many additional 
hits reported if we replace FFT with DFT in the search phrase).  

A key notion connects the discussions of FFT (Section III) 
and multiplication (Section II). Some of the asymptotically 
fastest multiplication algorithms for large numbers are FFT-
based [29]. Besides DFT, several other transforms have been 
proposed, analyzed, and implemented over the years. Notable 
examples with high-speed implementations include Walsh-
Hadamard, generalized, discrete orthogonal, arithmetic, and 
number-theoretic transforms [30].    

V. CONCLUSION 

In this paper, we have scratched the surface and presented 
just a few examples of the many interactions and cross-
fertilizations that occur between designers of arithmetic 
algorithms and their hardware embodiments on one side and 
the parallel computation community on the other. It is hoped 
that this study can be extended to produce a catalog of 
important areas of overlap and technology transfer. A possible 
methodology for discovering pertinent examples is to examine 
cross-citations between the main conferences and journals 
where the two communities publish their work. 

Th rise of interest in GPUs as essential components of large 
supercomputers, in order to achieve high computational power 
at low hardware and energy costs, has put computer arithmetic 
in the forefront of efforts to achieve the next performance 
milestone, that is, exascale machines capable of executing a 
peak of 1018 floating-point operations per second. Such 
systems are generally thought to be 3-4 years away. Modern 
GPUs will soon achieve a performance on the order of 100 
gigaflops per watt, making an exascale system possible with 
only 10 MW of power for its computing nodes (memory and 
communication power must be accounted for separately). It is 
thus not surprising that computers at the leading edge of the 
Top-500 list [31] of world’s most powerful machines are 
predominantly GPU-based in their designs. 

Because such supercomputers are designed and built by 
several different computer vendors and research organizations, 
and they use diverse hardware components in their processing 
nodes, program portability and results reproducibility among 
them hinges upon adherence to standard representation formats 
and the attendant consistency of representation and 
computation errors. The IEEE 754 binary floating-point 
standard [32], first issued in 1985, was revised in 2008, and is 
now undergoing final deliberations for its 2018 version. Design 
of algorithms and computational frameworks to reduce 
floating-point errors is being actively pursued by both the 
computer-arithmetic and parallel-computing communities, as 
are scheme for computing with little or no error or with the 
provision of guaranteed error bounds. 
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