
Parallelism in Computer Arithmetic:
A Historical Perspective

(Invited Paper)

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

parhami@ece.ucsb.edu

Abstract— Many early parallel processing breakthroughs
emerged from the quest for faster and higher-throughput
arithmetic operations. Additionally, the influence of arithmetic
techniques on parallel computer performance can be seen in
diverse areas such the bit-serial arithmetic units of early
massively parallel SIMD computers, pipelining and pipeline-
chaining in vector machines, design of floating-point standards to
ensure the accuracy and portability of numerically-intensive
programs, and prominence of GPUs in today’s top-of-the-line
supercomputers. This paper contains a few representative
samples of the many interactions and cross-fertilizations between
computer-arithmetic and parallel-computation communities by
presenting historical perspectives, case studies of state of art and
practice, and directions for further collaboration.

Keywords— Arithmetic algorithms, DSP, Graphic processors,
Parallelism, Pipelining, Recursive circuits, Residue arithmetic

I. INTRODUCTION

This paper revolves around the notion of parallelism, so
a precise definition of the word in the context of computer
arithmetic is called for. At one extreme, given that
computer arithmetic, at least up until now, has dealt with
binary or binary-encoded operands, and considering that
fundamental circuit operations are performed at the bit
level, any circuit that manipulates multiple bits at once is
parallel. At this extreme, a half-adder that produces its
carry and sum outputs independently, using an AND gate
and an XOR gate, is viewed as doing parallel processing.
This definition of parallelism is clearly counterproductive.
At the other extreme, parallelism is viewed as being
entirely outside the circuit realm, requiring concurrency at
the level of large functional units (ALUs, CPUs, GPUs).
This view, too, excludes some interesting and important
examples in the domain of computer arithmetic.

I take an expansive view that parallel processing exists
at all three levels of circuits, function units, and compute
nodes, using these three varieties of parallelism to present
my examples of technology transfer and cross-fertilization
between computer arithmetic and parallel systems research
in Sections II, III, and IV of the paper. Section V concludes
the paper and points to possible future work.

II. CIRCUIT-LEVEL PARALLELISM

Circuit designs for adders and multipliers, the two main
workhorses in numerical computation, show many signs of
cross-fertilization with parallel-computing research. I outline
only the parallel-prefix approach to addition in this section and
will cover recursive multiplication in Section III, although the
latter idea has circuit-level embodiments as well.

Parallel-prefix computation (PPC) refers to simultaneous
evaluation of x0, x0  x1, x0  x1  x2, … , x0  x1  …  xk–1,
which form prefixes of the expression x0  x1  …  xk–1,
where  is an associative binary operator. This computation is
a very useful building-block in constructing parallel algorithms
and leads to many practical applications with different
instantiations of the objects xi and operator . For example,
indexing/labeling the 1 elements in a bit-vector corresponds to
a parallel-prefix-sums computation on the vector elements.

PPC was first studied by Ladner and Fisher [1], who
presented a divide-and-conquer scheme that solved the
problem with optimal O(log n) latency and O(n log n) circuit
cost, and also showed how the circuit cost can be reduced to
the optimal O(n). Being theoretical computer scientists, Ladner
and Fisher considered the problem solved when they produced
a design that was both time- and cost-optimal, and they did not
devote any effort to VLSI considerations such as fan-out.

Before outlining methods for dealing with wiring and fan-
out problems, let me define the instance of PPC that
corresponds to an adder’s carry network. The addition of two
radix-r operands ak–1…a1a0 and bk–1…b1b0 to determine their
sum sk–1…s1s0 entails the determination of intermediate carries
c1, c2, … , ck–1; for simplicity, we will assume c0 = cin = 0 and
ignore the need for producing ck = cout. Using the auxiliary
generate gi = (ai + bi  r) and propagate pi = (ai + bi = r – 1)
binary signals, and defining the carry operator  on auxiliary
signal pairs (gi, pi) as (g, p)  (g, p) = (g  gp, pp),
the intermediate carries can be computed based on ci = g0:i–1,
where (g0:i–1, p0:i–1), i  [1, k – 1], are prefixes of the expression
(g0, p0)  (g1, p1)  (g2, p2)  …  (gk–2, pk–2). Once the
intermediate carries are known, the sum digits can be
computed easily from si = (ai + bi + ci) mod r.

The task of adapting PPC-based addition to the constraints
of VLSI design fell to Brent and Kung, who outlined their
approach in a 1979 CMU tech report, later published in early
1982 [2]. They stated that previous work on addition had
focused on the goal of reducing the number of logic gates but
paid little attention to the problem of connecting the gates.
Their design sacrificed some speed, increasing the latency from
log2 k carry-operator levels to 2 log2 k – 2 levels, in the interest
of reducing the wiring complexity and the attendant area
requirements. Their PPC network, later dubbed the Brent-Kung
design, inspired much subsequent research, leading, among
others, to an adaptation of Kogge’s and Stone’s parallel
algorithm [3] to what became known as Kogge-Stone carry
networks and a number of hybrid BK-KS designs [4], later
dubbed Han-Carlson designs [5]. To these, one must add the
parameterized designs of Knowles [6] and those based on the
high-valency prefix cells of Beaumont-Smith and Lim [7].

Many studies on the tradeoffs between latency, VLSI area,
and, later, energy consumption ensued [8]. One direction of
research was to relax the extreme fan-out restriction of the
Brent-Kung scheme to take advantage of small, constant fan-
outs that are quite manageable in modern circuit design.
Subsequent combination of the carry-lookahead scheme with
the carry-select idea led to even more efficient hybrid VLSI
adders. Modern adder designs are predominantly hybrid, taking
advantage of the strengths of various schemes to shape designs
that are optimal for the particular set of usage requirements.

I end this section with a particularly useful taxonomy of
PPC-adders, shown in Fig. 1 assuming a word width of k = 16,
in the 3D space of logic levels (beyond the minimum log2 k),
wire tracks (power of 2), and fan-out (power of 2, plus 1), due
to Harris [9]. We see that the previously-discussed designs
occupy certain points in the 3D space of the taxonomy, hinting
at other designs that occupy other points.

Fig. 1. Taxonomy of parallel-prefix networks, due to Harris [9].

III. FUNCTION-LEVEL PARALLELISM

Many arithmetic computations are based on repeated
invocation of basic building-block operations in time and/or
space. Concurrency among the multiple invocations leads to
pipelined and parallel implementations. A good example of
function-level parallelism in terms of interaction and cross-
fertilization with the parallel computing community is provided
by recursive multiplication.

Recursive or divide-and-conquer multiplication [8] can be
implemented in a variety of ways. For concreteness and
simplicity, we focus on 2-way splitting, with power-of-2
operand widths. To compute the product xy, we split each of
the two operands into high and low halves, resulting in x =
2k/2xH + xL and y = 2k/2yH + yL. The product xy can then be
computed from the outputs of four half-width multipliers via:

xy = (2k/2xH + xL)(2k/2yH + yL) = 2kxHyH + 2k/2(xHyL + xLyH) + xLyL

Designating the results of the four multiplications, from left to
right in the expression above as p1, p2, p3, and p4, we have

xy = 2kp1 + 2k/2(p2 + p3) + p4

which implies 3 additions and 2 shifts to complete the process.

 Time and area complexities of this recursive algorithm are
provided by the following recurrences, assuming sequential
computation of the four half-width products using a single half-
width multiplier and counting bit-level operations:

T(k) = 4T(k/2) + (log k) = (k2)

A(k) = A(k/2) + (k) = (k)

With concurrent generation of the four partial products, using
four half-width multipliers, as well as parallel operations
throughout the process, the recurrences become:

T(k) = T(k/2) + (log k) = (log k)

A(k) = 4A(k/2) + (k) = (k2)

Both schemes are better than the naïve pencil-and-paper or
brute-force algorithm, and both are suboptimal with respect to
the AT and AT2 lower bounds (k3/2) and (k2), derived by
Brent and Kung [10].

Here is an improvement to the preceding recursive
multiplication scheme, due to Karatsuba and Ofman [11].
Instead of forming p2 and p3 in the formulation above, form p5
= (xH – xL)(yH – yL). Then, compute the product xy from:

xy = 2kp1 + 2k/2(p1 + p4 – p5) + p4

 With the Karatsuba-Ofman trick and still counting bit-level
operations, the area recurrence becomes

A(k) = 3A(k/2) + (k) = (k1.585)

where the exponent 1.585 is log2 3. Even though, in practice,
the advantage of Karatsuba-Ofman multiplication algorithm
does not kick in until k goes into 100s of bits, it provides major
speedup for multiplying large numbers of the kinds needed in
certain encryption schemes. Long multiplications are usually
performed modulo-m, for some large integer m, creating the
need for modular multiplication algorithms [12] [13].

 After the reduction from O(k2) to O(k1.585) discussed above,
the exponent was reduced through further tricks, including
those devised by Toom and cleaned up by Cook [14] [15]
(1.465, 1.404, 1 + ) during the 1960s, later leading to the 1971
result of (k log k log log k) by Schonhage and Strassen [16]
and another, thus far the best, theoretical result by Furer [17].
Whether the bit-level complexity of multiplication can be
reduced to that of addition, that is, (k), is an open question at
this time. The improvements just discussed are partially
graphed in Fig. 2 [18], where the “Toom” line corresponds to
the first (n1.465)-time Toom-Cook algorithm. The graph is
meant to illustrate only the general trends and crossover points;
more precise comparisons with different assumptions may
yield somewhat different results.

So, where is the connection of all this to the parallel
computing community? The name “Strassen” in the preceding
paragraph provides a hint. Strassen is credited with a matrix
multiplication algorithm [19], which reduces the count of
arithmetic operations in the multiplication of two n  n
matrices from (n3) to (n2.807), where 2.807 is log2 7, via a
similar technique of avoiding some multiplications at the
expense of introducing more additions.

It is interesting to ponder the question of why Strassen’s
method leads to relatively smaller savings in run-time
compared with the Karatsuba-Ofman method. An intuitive
explanation goes as follows. Strassen’s method avoids 1 of 8
multiplications, versus Karatsuba-Ofman’s 1 of 4. Also,
looking beyond asymptotic complexities, while both integer
addition and matrix addition are simpler than corresponding
multiplication operations, the ratio O(k2)/O(k) of complexities
for integer operations is larger than the O(n3)/O(n2) for matrix
operations, the problem size being k in the first case and n2 in
the second one. So, lurking behind asymptotic results is
another potentially significant difference, when attempting to
implement such recursive schemes.

Fig. 2. Run-times of various multiplication algorithms for wide words [18].

Because the publication of Karatsuba-Ofman multiplication
method pre-dates that of Strassen’s matrix multiplication
method by some 7 years, influencing, if it occurred, was in the
direction opposite that of the PPC-addition of Section I. Given
that Strassen later contributed to the theoretical study of the
complexity of integer multiplication, it is safe to assume that he
was inspired by Karatsuba’s and Ofman’s work in devising his
matrix multiplication method [19].

IV. SYSTEM-LEVEL PARALLELISM

Parallelism at the system level takes the form of multiple
independent or interacting arithmetic computation streams.
Very early examples include arithmetic (often floating-point)
co-processors that relieved the main CPU by performing
arithmetic operations on demand and sending the results back
to the CPU or to memory [20]. The modern embodiments of
arithmetic co-processors are graphic processing units, or GPUs,
that are optimized for carrying out a large number of arithmetic
operations at high speed, without the overheads and unneeded
“features” of a conventional CPU [21] [22] [23].

Let us take the computation of an n-point DFT as an
example [24]. Given an n-element vector x as input, the output
of DFT computation is the n-element vector y, such that

yi = j=0:n–1 n
ijxj 

where n, a complex number, is a primitive nth root of unity.
Straightforward computation of the yis requires (n2)
arithmetic operations (n sums, each involving n multiplications
and n additions, with the powers of n pre-computed and
stored in a table). The contribution of the parallel algorithms
community to the efficient computation of DFT is the Cooley-
Tukey fast Fourier transform, or FFT, algorithm [25] [26],
which takes advantage of the special structure of the
computation, using divide-and-conquer to reduce the number
of arithmetic operations from (n2) to (n log n).

As for hardware implementation, the processors in this
example are much simpler than full-blown GPUs, because all
they do is a butterfly operation: Receive inputs a and b,
compute a + b and a – b, and, finally, perform a multiplication
by some constant c to form c(a – b). A straightforward
mapping of the computation to hardware leads to n log n
butterfly processors, each of which performs a single butterfly
operation [24]. Computer arithmetic and VLSI researchers
have devised methods to save on the number of processors,
while making each processor simpler and faster.

Let us first look inside each butterfly processor. There are
two key savings that result from computer arithmetic research.
The first is merged computation of the add and subtract
operations, a + b and a – b, using less hardware and energy
compared with having two separate adders. The second is
devising special methods for multiplication by constants [8],
which entail less hardware (and, thus, less power) and increase
the speed of forming c(a – b), which is on the critical path
within each processor. When the processors are shared, so that
each processor needs to multiply by different constants in the
course of its engagement, methods of multiplication by
multiple constants can help reduce the complexity relative to
the use of a full-blown multiplier.

Fig. 3. A butterfly network and its projections onto n and log n processors.

Now, for the number of processors. The straightforward
method of using n log n processors, interconnected into a
somewhat trimmed butterfly network with n rows and log n
columns [24], as in the top-left panel of Fig. 3, can be used as a
basis for deriving reduced-cost implementations. Projecting the
said graph in the horizontal direction allows us to use a single
processor to do the jobs of all processors in the same row,
reducing the processor count by a factor of log n, without a
significant increase in computation delay, given that the
columns of a butterfly network do not work at the same time.
An extreme reduction in hardware is achieved if the butterfly
network is projected in the vertical direction, leading to log n
processors, each of which does the job of n processors
appearing in the same column. In this case, computation time
does increase substantially. Quite a few other intermediate
realizations, ranging in hardware complexity between the just-
mentioned extremes of n log n and log n, are possible.

Given the central importance of DFT in a wide array of
applications [27] and its special structure admitting the
application of many design tricks and optimizations, diverse
hardware implementations, for different values of n and with
different optimality criteria, have been proposed over the years,
adding many new design points to those in Bergland’s early
survey [28]. It is virtually impossible to cite all contributions in
this domain (a Google Scholar search for “FFT hardware
implementation” returns 173,000 hits, with many additional
hits reported if we replace FFT with DFT in the search phrase).

A key notion connects the discussions of FFT (Section III)
and multiplication (Section II). Some of the asymptotically
fastest multiplication algorithms for large numbers are FFT-
based [29]. Besides DFT, several other transforms have been
proposed, analyzed, and implemented over the years. Notable
examples with high-speed implementations include Walsh-
Hadamard, generalized, discrete orthogonal, arithmetic, and
number-theoretic transforms [30].

V. CONCLUSION

In this paper, we have scratched the surface and presented
just a few examples of the many interactions and cross-
fertilizations that occur between designers of arithmetic
algorithms and their hardware embodiments on one side and
the parallel computation community on the other. It is hoped
that this study can be extended to produce a catalog of
important areas of overlap and technology transfer. A possible
methodology for discovering pertinent examples is to examine
cross-citations between the main conferences and journals
where the two communities publish their work.

Th rise of interest in GPUs as essential components of large
supercomputers, in order to achieve high computational power
at low hardware and energy costs, has put computer arithmetic
in the forefront of efforts to achieve the next performance
milestone, that is, exascale machines capable of executing a
peak of 1018 floating-point operations per second. Such
systems are generally thought to be 3-4 years away. Modern
GPUs will soon achieve a performance on the order of 100
gigaflops per watt, making an exascale system possible with
only 10 MW of power for its computing nodes (memory and
communication power must be accounted for separately). It is
thus not surprising that computers at the leading edge of the
Top-500 list [31] of world’s most powerful machines are
predominantly GPU-based in their designs.

Because such supercomputers are designed and built by
several different computer vendors and research organizations,
and they use diverse hardware components in their processing
nodes, program portability and results reproducibility among
them hinges upon adherence to standard representation formats
and the attendant consistency of representation and
computation errors. The IEEE 754 binary floating-point
standard [32], first issued in 1985, was revised in 2008, and is
now undergoing final deliberations for its 2018 version. Design
of algorithms and computational frameworks to reduce
floating-point errors is being actively pursued by both the
computer-arithmetic and parallel-computing communities, as
are scheme for computing with little or no error or with the
provision of guaranteed error bounds.

REFERENCES
[1] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,

Vol. 27, No. 4, pp. 831-838, 1980.

[2] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Trans. Computers, Vol. 31, No. 3, pp. 260-264, 1982.

[3] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrences,” IEEE Trans. Computers, Vol.
22, No. 8, pp. 786-793, 1973.

[4] B. Sugla and D. A. Carlson, “Extreme area-time tradeoffs in VLSI,”
IEEE Trans. VLSI Systems, Vol. 39, No. 2, pp. 251-257, 1990.

[5] T. Han and D. A. Carlson, “Fast area-efficient adders,” Proc. 8th IEEE
Symp. Computer Arithmetic, Como, Italy, pp. 49-56, 1987.

[6] S. Knowles, “A family of adders,” Proc. 14th IEEE Symp. Computer
Arithmetic, pp. 277-281, Adelaide, Australia, 1999.

[7] A. Beaumont-Smith and C. C. Lim, “Parallel prefix adder design,” Proc.
15th IEEE Symp. Computer Arithmetic, Vail, CO, pp. 218-225, 2001.

[8] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
Oxford, 2nd ed., 2010.

Butterfly Processors

[9] D. Harris, “A taxonomy of parallel prefix networks,” Proc. 37th
Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA,
Vol. 2, pp. 2213-2217, 2003.

[10] R. P. Brent and H. T. Kung, “The area-time complexity of binary
multiplication,” J. ACM, Vol. 28, No. 3, pp. 521-534, 1981.

[11] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers
by automatic computers,” Physics-Doklady, Vol. 7, pp. 595-596, 1963

[12] N. Nedjah and L. de Macedo Mourelle, “A review of modular
multiplication methods and respective hardware implementation,”
Informatica, Vol. 30, No. 1, pp. 111-129, 2006.

[13] P. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, Vol. 44, No. 170, pp. 519–521, 1985.

[14] A. L. Toom, “The complexity of a scheme of functional elements
realizing the multiplication of integers,” Soviet Mathematics, Vol. 4,
No. 3, pp. 714-716, 1963.

[15] S. A. Cook, “Positive results,” Chapter 3 in PhD thesis entitled “On the
minimum computation time of functions,” Harvard University, 1966.

[16] A. Schonhage and V. Strassen, “Schnelle multiplikation großer zahlen,”
Computing, Vol. 7, Nos. 3-4, pp. 281-292, 1971.

[17] M. Furer, “Faster integer multiplication,” SIAM J. Computation, Vol.
39, No. 3, pp. 979-1005, 2009.

[18] T. Kortekaas, “Multiplying large numbers and the Schonhage-Strassen
algorithm,” online document, accessed on May 31, 2018:
https://tonjanee.home.xs4all.nl/SSAdescription.pdf

[19] V. Strassen, “Gaussian elimination is not optimal,” Numerische
Mathematik, Vol. 13, pp. 354-356, 1969.

[20] J. F. Palmer, “The Intel 8087 numeric data processor,” Proc. AFIPS
National Computer Conf., Anaheim, CA, May 1980, pp. 887-893.

[21] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
a unified graphics and computing architecture,” IEEE Micro, Vol. 26,
No. 2, pp. 39-55, 2008.

[22] J. Nickolls and W. Dally, “The GPU computing era,” IEEE Micro, Vol.
30, No. 2, pp. 56-69, 2010.

[23] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing, IEEE Micro, Vol. 31, No.
5, pp. 7-17, 2011.

[24] B. Parhami, Introduction to Parallel Processing: Algorithms and
Architectures, Plenum, 1999.

[25] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Mathematics of Computation,
Vol. 19, No. 90, pp. 297-301, 1965.

[26] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “Historical notes on the
fast Fourier transform,” Proceedings of the IEEE, Vol. 55, No. 10, pp.
1675-1677, 1967.

[27] E. O. Brigham, The Fast Fourier Transform and Its Applications,
Prentice Hall, 1988.

[28] G. Bergland, “Fast Fourier transform hardware implementations—a
survey,” IEEE Trans. Audio and Electroacoustics, Vol. 17, No. 2, pp.
109-119, 1969.

[29] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974, pp. 270-274.

[30] D. F. Elliott and K. R. Rao, Fast Transforms: Algorithms, Analyses,
Applications, Elsevier, 1983.

[31] List of World’s Top 500 Supercomputers, updated twice per year:
http://www.top500.org

[32] IEEE Standard for Binary Floating-Point Arithmetic P754, Std 754-
2008, approved 12 June, IEEE Press, 2008.

