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Synonyms

Big data hardware acceleration; Hardware con-
siderations for big data

Definition

How features of general-purpose computer ar-
chitecture impact big-data applications and, con-
versely, how requirements of big data lead to
the emergence of new hardware and architectural
support.

Overview

Computer architecture (Parhami 2005) is a sub-
discipline of computer science and engineering
that is concerned with designing computing
structures to meet application requirements
effectively, economically, reliably, and within
prevailing technological constraints. In this
entry, we discuss how features of general-

purpose computer architecture impacts big-data
applications and, conversely, how requirements
of big data lead to the emergence of new
hardware and architectural support.

Historical Trends in Computer
Architecture

The von Neumann architecture for stored-
program computers, with its single or unified
memory, sometimes referred to as the Princeton
architecture, emerged in 1945 (von Neumann
1945; von Neumann et al. 1947) and went
virtually unchallenged for decades. It dominated
the alternative Harvard architecture with separate
program and data memories (Aiken and Hopper
1946) from the outset as the more efficient and
versatile way of implementing digital computers.

As the workload for general-purpose comput-
ers began to change, adjustments in, and alter-
natives to, von Neumann architecture were pro-
posed. Examples include de-emphasizing arith-
metic operations in favor of data movement prim-
itives, as seen in input/output and stream proces-
sors (Rixner 2001); introducing hardware aids for
frequently used operations, as in graphic process-
ing units or GPUs (Owens et al. 2008; Singer
2013); and adding special instructions for im-
proved performance on multimedia workloads
(Lee 1995; Yoon et al. 2001).
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Recently, data-intensive applications ne-
cessitated another reassessment of the match
between prevalent architectures and application
requirements. The performance penalty of data
having to be brought into the processor and
sent back to memory through relatively narrow
transfer channels was variously dubbed the “von
Neumann bottleneck” (Markgraf 2007) and
the “memory wall” (McKee 2004; Wulf and
McKee 1995). Memory data transfer rates are
measured in GB/s in modern machines, whereas
the processing rates can be three or more decimal
orders of magnitude higher.

The term “non-von” (Shaw 1982) was coined
to characterize a large category of machines that
relaxed one or more of the defining features of
the von Neumann architecture, so as to alleviate
some of the perceived problems. Use of cache
memories (Smith 1982), often in multiple levels,
eased the von Neumann bottleneck for a while,
but the bottleneck reemerged, as the higher cache
data transfer bandwidth became inadequate and
applications that lacked or had relatively limited
locality of reference emerged. Memory inter-
leaving and memory-access pipelining, pioneered
by IBM (Smotherman 2010) and later used ex-
tensively in Cray supercomputers, was the next
logical step.

Extrapolating a bit from Fig. 1 (which covers
the period 1985–2010), and using round num-
bers, the total effect of architectural innovations
has been a 100-fold gain in performance, on
top of another factor-of-100 improvement due to
faster gates and circuits (Danowitz et al. 2012).
Both growth rates in Fig. 1 show signs of slow-
ing down, so that future gains to support the
rising processing need of big data will have to
come, at least in part, from other sources. In the
technology arena, use of emerging technologies
will provide some boost for specific applica-
tions. An intriguing option is resurrecting hybrid
digital/analog computing, which was sidelined
long ago in favor of all-digital systems. Archi-
tecturally, specialization is one possible avenue
for maintaining the performance growth rate, as
are massively parallel and in-memory or near-
memory computing.

How Big Data Affects Computer
Architecture

The current age of big data (Chen and Zhang
2014; Hu et al. 2014) has once again exposed
the von Neumann bottleneck, forcing computer
architects to seek new solutions to the age-old
problem, which has become much more serious.
Processing speed continues to rise exponentially,
while memory bandwidth increases at a much
slower pace.

It is by now understood that big data is differ-
ent from “lots of data.” It is sometimes defined
in terms of the attributes of volume, variety,
velocity, and veracity, known as the “4Vs” (or
“5 Vs,” if we also include value). Dealing with
big data requires big storage, big-data processing
capability, and big communication bandwidth.
The first two (storage and data processing) di-
rectly affect the architecture of the nodes holding
and processing the data. The part of communi-
cation that is internode is separately considered
in this encyclopedia. However, there is also the
issue of intranode communication represented in
buses and networks-on-chip that belong to our
architectural discussion here.

In addition to data volume, the type of data to
be handled is also changing from structured data,
as reflected, for example, in relational databases,
to semi-structured and unstructured data. While
this change has some negative effects in terms of
making traditional and well-understood database
technologies obsolete, it also opens up the pos-
sibility of using scalable processing platforms
made of commodity hardware as part of the
cloud-computing infrastructure. Massive unstruc-
tured data sets can be stored in distributed file
systems, such as the ones designed in connection
with Hadoop (Shafer et al. 2010) or SQL/noSQL
(Cattell 2011).

In addition to the challenges associated with
rising storage requirements and data access band-
width, the processing load grows with data vol-
ume because of various needs. These are:

• Encryption and decryption
• Compression and decompression
• Sampling and summarization
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Computer Architecture for Big Data, Fig. 1 Technology advances and architectural innovations each contributed a
factor of �100 improvement in processor performance over three decades. (Danowitz et al. 2012)

• Visualization and graphing
• Sorting and searching
• Indexing and query processing
• Classification and data mining
• Deduction and learning

The first four items above, which are different
forms of data translation, are discussed in the next
section. The other items, viz., data transforma-
tions, will be discussed subsequently.

Architectural Aids to Data
Translations

Many important data translations are handled
by endowing a general-purpose architecture with
suitable accelerator units deployed as coproces-
sors. Such accelerators are ideally custom inte-
grated circuits, whose designs are fully optimized
for their intended functions. However, in view
of rapid advances in capabilities, performance,
and energy efficiency of field-programmable gate
arrays (Kuon et al. 2008), a vast majority of
modern accelerators reported in the literature are
built on FPGA circuits.

Accelerators for encryption and decryption
algorithms have a long history (Bossuet et al.

2013). The binary choice of custom-designed
VLSI or general-purpose processing for crypto-
graphic computations has expanded to include a
variety of intermediate solutions which include
the use of FPGAs and GPUs. The best solution
for an application domain depends not only on
the required data rates and the crypto scheme, but
also on power, area, and reliability requirements.

Data compression (Storer 1988) allows us to
trade processing time and resources for savings in
storage requirements. While any type of data can
be compressed (e.g., text compression), massive
sizes of video files make them a prime target for
compression. With the emergence of video com-
pression standards (Le Gall 1991), much effort
has been expended to implement the standards
on special-purpose hardware (Pirsch et al. 1995),
offering orders of magnitude speed improvement
over general-purpose programmed implementa-
tions.

Both sampling and summarization aim to re-
duce data volume while still allowing the opera-
tions of interest to be performed with reasonable
precision. An alternative to post-collection reduc-
tion of data volume is to apply compression dur-
ing data collection, an approach that in the case of
sensor data collection is known as compressive
sensing (Baraniuk 2007). Compressive sensing,
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when applicable, not only saves on processing
time but also reduces transmission bandwidth
and storage requirements. There are some math-
ematical underpinnings common to compressive
sensing techniques, but at the implementation
level, the methods and algorithms are by and
large application-dependent.

Data visualization (Ward et al. 2010) refers to
the production of graphical representation of data
for better understanding of hidden structures and
relationships. It may provide the only reasonable
hope for understanding massive amounts of data,
although machine learning is a complementary
and competing method of late. Several visualiza-
tion accelerators were implemented in the late
1990s (e.g., Scott et al. 1998), but the modern
trend is to use FPGA and cluster-based methods.

Architectural Aids to Data
Transformations

Sorting is an extremely important primitive that
is time-consuming for large data sets. It is used
in a wide array of contexts, which includes facil-
itating subsequent searching operations. It can be
accelerated in a variety of ways, from building
more efficient data paths and memory access
schemes, in order to make conventional sorting
algorithms run faster, to the extreme of using
hardware sorting networks (Mueller et al. 2012;
Parhami 1999).

Indexing is one of the most important oper-
ations for large data sets, such as those main-
tained and processed by Google. Indexing and
query processing have been targeted for accel-
eration within large-scale database implementa-
tions (Casper and Olukotun 2014; Govindaraju
et al. 2004). Given the dominance of relational
databases in numerous application contexts, a va-
riety of acceleration methods have been proposed
for operations on such databases (e.g., Bandi et
al. 2004). Hardware components used in realizing
such accelerators include both FPGAs and GPUs.

Hardware aids for classification are as diverse
as classification algorithms and their underly-
ing applications. A prime example in Internet
routing is packet classification (Taylor 2005),

which is needed when various kinds of packets,
arriving at extremely high rates, must be sep-
arated for appropriate handling. Modern hard-
ware aids for packet classification use custom
arrays for pipelined network processing, content-
addressable memories (Liu et al. 2010), GPUs
(Owens et al. 2008), or tensor processing units
(Sato et al. 2017). Data mining, the process of
generating new information by examining large
data sets, has also been targeted for acceleration
(Sklyarov et al. 2015), and it can benefit from
similar highly parallel processing approaches.
Also falling under such acceleration schemes are
aids and accelerators for processing large graphs
(Lee et al. 2017).

The earliest form of deduction engines were
theorem provers. An important application of
automatic deduction and proof is in hardware ver-
ification (Cyrluk et al. 1995). In recent years, ma-
chine learning has emerged as an important tool
for improving the performance of conventional
systems and for developing novel methods of
tackling conceptually difficult problems. Game-
playing systems (Chen 2016) constitute impor-
tant testbeds for evaluating various approaches to
machine learning and their associated hardware
acceleration mechanisms. This is a field that has
just started its meteoric rise and bears watching
for future applications.

Memory, Processing,
and Interconnects

In both general-purpose and special-purpose sys-
tems interacting with big data, the three intercon-
nected challenges of providing adequate mem-
ory capacity, supplying the requisite processing
power, and enabling high-bandwidth data move-
ments between the various data-handling nodes
must be tackled (Hilbert and Lopez 2011).

The memory problem can be approached
using a combination of established and novel
technologies, including nonvolatile RAM, 3D
stacking of memory cells, processing in memory,
content-addressable memory, and a variety of
novel (nanoelectronics or biologically inspired)
technologies. We won’t dwell on the memory
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architecture in this entry, because the memory
challenge is addressed in other articles (see the
Cross-References).

Many established methods exist for increasing
the data-handling capability of a processing
node. The architectural nomenclature includes
superscalar and VLIW organizations, collectively
known as instruction-level parallelism (Rau and
Fisher 1993), hardware multithreading (Eggers
et al. 1997), multicore parallelism (Gepner
and Kowalik 2006), domain-specific hardware
accelerators (examples cited earlier in this entry),
transactional memory (Herlihy and Moss 1993),
and SIMD/vector architectural or instruction-
set extensions (Lee 1995; Yoon et al. 2001).
A complete discussion of all these methods
is beyond the scope of this entry, but much
pertinent information can be found elsewhere
in this encyclopedia.

Intranode communication is achieved through
high-bandwidth bus systems (Hall et al. 2000)
and, increasingly, for multicore processors and
systems-on-chip, by means of on-chip networks
(Benini and De Micheli 2002). Interconnection
bandwidth and latency rank high, along with
memory bandwidth, among hardware capabilities
needed for effective handling of big-data applica-
tions, which are increasingly implemented using
parallel and distributed processing. Considera-
tions in this domain are discussed in the entry
“Parallel Processing for Big Data.”

Future Directions

The field of computer architecture has advanced
for several decades along the mainstream line
of analyzing general applications and making
hardware faster and more efficient in handling
the common case while being less concerned
with rare cases which have limited impact on
performance. Big data both validates and chal-
lenges this assumption. It validates it in the sense
that certain data-handling primitives arise in all
contexts, regardless of the nature of the data or
its volume. It challenges the assumption by virtue
of the von-Neumann bottleneck or memory-wall
notions discussed earlier. The age of big data

will speed up the process of trickling down of
architectural innovations from supercomputers,
which have always led the way, into servers or
even personal computers, which now benefit from
parallel processing and, in some cases, massive
parallelism.

Several studies have been performed about the
direction of computer architecture in view of new
application domains and technological develop-
ments in the twenty-first century (e.g., Ceze et al.
2016; Stanford 2012). Since much of the process-
ing schemes for big data will be provided through
the cloud, directions of cloud computing and
associated hardware acceleration mechanisms be-
come relevant to our discussion here (Caulfield
et al. 2016). Advanced graphics processors (e.g.,
Nvidia 2016) will continue to play a key role in
providing the needed computational capabilities
for data-intensive applications requiring heavy
numerical calculations. Application-specific ac-
celerators for machine learning (Sato et al. 2017),
and, more generally, various forms of special-
ization, constitute another important avenue of
architectural advances for the big-data universe.

Cross-References

�Energy Implications of Big Data
� Parallel Processing with Big Data
� Storage Hierarchies for Big Data
� Storage Technologies for Big Data
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