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Abstract

To alleviate the computational burden of previous virtual network embedding
(VNE) approaches when the resource network scales up significantly, we pro-
pose an efficient node ranking strategy that considers both global and local
topological characteristics of the substrate network in mapping virtual nodes to
physical nodes. This method ranks the substrate network nodes in two stages.
First, all nodes are ranked globally with respect to the stationary distribution
of the entire network. Then, a connected subset of the ranked substrate nodes,
forming the H-admissible embedding subgraph, is extracted. Finally, the sub-
graph nodes are ranked according to a local node ranking vector derived from a
random-walking scheme. The local rank vector is resolved using discrete Green's
function satisfying the Dirichelet boundary condition. The more accurate asso-
ciation of node demands and resources that our proposed method provides leads
to both better acceptance ratio and lower computational overhead. These claims
have been justified via theoretical and algorithmic presentation of our scheme
and offer experimental results obtained through simulation, to confirm its exe-
cution efficiency and solution quality compared with a couple of previous VNE
proposals.

1 INTRODUCTION

Network virtualization technologies are attracting much attention from the network research community. Internet service
providers (ISPs) equipped with virtualization tools allocate physical network resources to provision virtual resources to
users (see Table 1 for key abbreviations). This function is referred to as virtual network embedding (VNE), mapping,
or provisioning.1 The trend toward broader application of network virtualization results from the fact that it allows the
sharing of physical resources among several virtual networks on a dynamic, as-needed basis and brings about the cost
benefits of deploying standardized, high-volume components. Not surprisingly, the 5G communication network standard
is predicated on extensive use of virtualization. Particularly, it has been reported2 that network virtualization is a potential
solution in 5G wireless networks for supporting multimedia services in a flexible and cost-effective way.

If treating VNE as the problem of node assignment or matching between two graphs, schemes emulating Google's
PageRank can be exploited for dealing with VNE, as done, for example, in the work of Cheng et al.3 Roughly speaking,
current approaches in VNE research are afflicted with high computational overhead in optimization methods and low
acceptance rate in heuristic algorithms.4 Real-time response to user's requirements constitutes a main practical challenge,
given that, for instance, embedding a 50-node virtual network (VN) into 125 physical nodes needs 362.25 seconds if
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TABLE 1 Key abbreviations and acronyms Term Interpretation
AES Admissible embedding subgraph
AR Acceptance ratio
C/R Cost/revenue ratio
ILP Integer linear programming
ISP Internet service provider
NUR Node utilization ratio
SN Substrate network
VN Virtual network
VNE Virtual network embedding
VNR Virtual network request

done via DViNE-SP5 and 23.61 seconds via RW-MM-SP.3 Additional challenges arise from the fact that most heuristic
algorithms suffer from low acceptance rates. For example, an algorithm proposed in the work of Cheng et al3 can lead to
rejected VNR due to node exhaustion in vertex cut set or link exhaustion on edge cut set, even though other peers have
unused resources. Intuitively, when virtual nodes v1 and v2 with link demand 10 attempt to occupy substrate resource u1
and u2 connected only by the path u1xyu2, the inability of the link (x, y) to fulfill link demand on (v1, v2) will cause this
request to be rejected. This implies that topology of physical devices affects the acceptance rate of VNE algorithms.

Solutions of several combinatorial optimization problems,6,7 including node ranking, can be tightly connected to eigen-
solutions of graph-related matrices, such as the adjacency matrix, transition probability matrix of random walk,8,9 and
Laplacian, given that calculating the eigenpair of these matrices consumes far less time than advanced combinatorial
search procedures in large objective spaces. Even greater benefits would result from the avoidance of numerical compu-
tation if one can derive a closed form solution for the Perron vector of the graph adjacency matrix, that is, the eigenvector
corresponding to the maximal eigenvalue. Our motivation in advocating global and local random walking on graphs to
solve the VNE problem arises from the fact that the magnitude and distribution of eigenvalues and eigenvectors of a graph
substantially reflect its geometric properties and randomness characteristics.6-8 This encourages us to exploit the Perron
vector of the transition probability matrices of random walks on substrate network (SN) and VN to deduce the node and
link mapping for VNE task.

The main contribution of this work is to decompose the general iterative convergence process of node ranking vector,
arising from VNE algorithms that use node ranking, into two procedures: rough global ranking and detailed local ranking.
For estimating global SN node ranking, this work exploits the stationary probability of classical random walk. Then,
chooses a node subset from global node ranking to induce the maximal admissible embedding subgraph (AES) in SN. A
candidate node for such a subset has relatively more residual resources than the remaining nodes, short distance to chosen
nodes, and connection to at least one chosen node to ensure connectivity. Then, calculate the stationary probability of local
random walk on induced subgraph to obtain the node ranking vector through solving the discrete Green's function.10-12

Our presentation entails theoretical and algorithmic frameworks, in addition to simulations conducted for a couple of
periods on Hub-Star network with ISP characteristics. The results demonstrate that our algorithm outperforms other
algorithms, in terms of both efficiency and quality, with respect to multiple assessment metrics.

2 RELATED WORK

The considerable volume of work on VNE can be categorized into optimization-based solutions5,13,14 and graph
analysis–based methods found in most heuristic strategies.3,15,16 More details can be found in a recently published
survey.17 Optimization-based VNE proposals formulate VNE as a combinational optimization problem, then solve it
exactly by integer linear programming (ILP). The optimized objects contained in most known VNE schemes involve
parameters of particular interest to users and ISPs, such as maximal provider revenue, highest AR, and minimal embed-
ding cost.1 In addition, concerning other factors, a minimization model of energy-efficient virtual node embedding was
constructed and solved to yield minimal energy dissipation.14 Chowdhury et al5 formulate VNE as a mixed-integer pro-
gram via SN augmentation and devise two online VN embedding algorithms, deterministic D-ViNE and randomized
R-ViNE, for solving the linear program with relaxed integer constraints. Jarray and Karmouch13 decompose an overall
VNE problem into a main problem with constraints on the availability of substrate resources and a pricing problem with
constraints on the embedding of VNRs. In the process, they append an additional column to the constraint matrix of the
primary object using column-generation technology.
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Finding the optimal VNE solution via optimization methods is compute-intensive, as the problem is NP-hard. This
becomes evident when we treat VNE as seeking a p-homomorphism between a weighted graph H and a subgraph of
another weighted graph G. Defining p-homomorphism formally, Fan et al18 have proven that it cannot be computed in
polynomial time. Given the NP-hardness of VNE, increasing effort has been expended on designing heuristic solution
algorithms.3,15,16 Yu et al15 aim for maximal resource utilization in the SN. Hence, the virtual nodes are greedily mapped
to the substrate nodes with maximum available resources, so as to preserve resources at more resource-limited nodes.
Then, each virtual link is mapped to the shortest path between two substrate nodes that embed the two endpoints of the
virtual link.

The correspondence between VN and SN nodes can be established more efficiently if both can be ranked according to
some topology-based measure. Cheng et al3 consider topological properties of SN nodes as an important VNE parameter
in the node-mapping stage. They rank all virtual and substrate nodes according to their relative importance. The relative
importance r(u) of each node u is given by r(u) = r0(u) + rj(u) + rf(u), where r0(u) is the product of node CPU cycle
and the sum of bandwidths on outgoing links, rj(u) (jump probability) reflects the weighted importance of all reachable
nodes, and rf(u) (forward probability) estimates the weighted importance of out-neighbors. Then, virtual and substrate
nodes are sorted separately in nonincreasing order of node ranks. Consequently, higher-ranked virtual nodes have priority
to be mapped to higher-ranked substrate nodes. Mapping of virtual links is done by shortest-path algorithm if there is
no path splitting. Moreover, pertaining to ranking of nodes, Zhang and Gao19 apply a topological potential function to
calculate the topology importance of SN nodes, and then rank them, with mutual influence between a VN node and its
objective nodes taken into account. Cao et al20 consider the network topology attribute and network resource, including
five important network topology attributes and global network resources, and propose a novel node ranking–based VNE
algorithm called VNE-NTANRC to rank all substrate and virtual nodes before VNE process.

Another way to find the topological correspondence of nodes and links between VN and SN is through subgraph
isomorphism. Lischka and Karl16 detect subgraph isomorphism between topologies of VN and SN to discover the corre-
spondence between nodes and links in the same stage. Evaluations show that, compared with two-stage approaches for
solving large-scale VNE problems, use of subgraph isomorphism detection is more efficient.

A widely-applied method of machine learning, that is, pattern matching, has also been advocated for finding the topo-
logical correspondence of nodes and links between VN and SN, as exemplified by the proposal of Cao et al.21 To tackle
the distributed VNE problem, Beck et al22 design a distributed and parallel framework called DPVNE to implement a
VNE, in which several VNE algorithms are run to map VNs into SN in a distributed manner. The VNE strategies with
time-dependent VNRs are investigated by Zhang et al.23 This section foregoes the details of the latter approaches, given
that this paper is primarily interested in VNE approaches based on node ranking.

Wang et al24 propose a VNE algorithm marked as k-core in large-scale network. They use k-core theory, where k-core is
the maximum subgraph with node connectivity at least k, to associate different VN topologies to specific SN component,
and embed VNRs onto different SN components, respectively.

A main difference between algorithm called as GLNR-SP proposed in this paper and the known node ranking
algorithm in the work of Cheng et al3 is that GLNR-SP does not compute the node ranks iteratively, thus improving effi-
ciency by avoiding the convergence of the random walk to a stationary distribution. Furthermore, GLNR-SP generates
higher-quality solutions. One source of efficiency is the fact that GLNR-SP inspects the potentially large number of SN
nodes just once for degree estimation; it then executes all the matrix operations on a subgraph of SN, which has the same
size as the VN to be embedded, generally a much smaller network than SN.

3 PROBLEM FORMULATION

We list the mathematical notations used in our formulation of VNE in Table 2, for ready reference.
The substrate and virtual networks can be abstracted as graphs G = (V(G),E(G)) and H = (V(H),E(H)), respectively,

where V(•) denotes the set of nodes and E(•) the set of links in the graph of interest. Let the term “constraint” describe
the resource or demand of a node or link, depending on whether the described object belongs to the substrate or virtual
network, and let the function c(x) express the constraint at each network entity x. Then, the problem of embedding H into
G can be modeled as finding a mapping 𝜙 ∶ H → G described as the following.

For an arbitrary entity h ∈ H, if h ∈ V(H) then 𝜙 ∶ 𝜙(h) ∈ V(G) defines the virtual node mapping from V(H) to V(G);
else if h = (u, v) ∈ E(H) and 𝜙(u) = x, 𝜙(v) = y then 𝜙 ∶ 𝜙(h) ∈ E(x, y), where E(x, y) denotes the set of links on paths
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TABLE 2 Mathematical notations
G Substrate network graph
H Virtual network graph
S A subgraph of G to embed H
VH(S) Node subset of S for mapping nodes of H
VP(S) Node subset of S for mapping links of H
Δ(v) Set of neighbors linked to node v
𝛿(v) Unweighted node degree at v
E(v) Set of edges incident to node v
r(G)∕r(H) List of (node, rank) pairs in G∕H
r(G)[u] Node-rank pair term indexed by u⌈c(·)⌉∕⌊c(·)⌋ Maximal/minimal constraint in element (node or link) ”·”
𝜑(h) → g Virtual network mapping from virtual entity h to resource entity g; entity refers to node or link.
c(v)∕c(l) Constraints on network node v or link l
c(g → h) Resource in entity g mapped to h
a(g) Resource availability in entity g of G
p(u, v) Shortest path between nodes u and v
E(u, v) Set of links on path p(u, v)
AH∕AG Weighted adjacency matrix of graph H or G
L(G) Laplace matrix of graph G
𝛽 Discrete Green's function with parameter 𝛽
T Transition possibility matrix T of a general random walk on G

(A) (B)

FIGURE 1 An example for our two-level architectural model for VNE, with the correspondence between virtual edge and physical edge
for InP2 omitted to avoid clutter. Numbers next to circles indicate the capacity of routing/switching devices and the ones next to the links
represent transmission bandwidths, in Gbps. Virtual-to-physical node correspondence is represented by distinct colors and edge
correspondence is denoted by line type (dotted or dashed). A, Embedding VNR1 to SN by f1; B, VNR1 embedded to SN by f1

from x to y, defines the virtual link mapping from E(H) to E(G). The mapping 𝜙 from H to G must satisfy the constraint
conditions: ∀h ∈ H, c(h) ≤ c(𝜙(h)).

The “constraint conditions” are essentially that each virtual element is mapped in such a way that its demand is less
than the capacity of the substrate element that it is mapped on. Furthermore, cumulative allocations of the embedding
must be less than the available capacity of each substrate element.

Figure 1 offers an intuitive view of the two-level architectural model for VNE through an example. Figure 1A shows an
example of a VN consisting of nodes v1, v2, v3 and links v1v2, v1v3, which is to be embedded to a SN with nodes u1,u2,u3
and links u1u2,u1u3,u1u4,u4u5, and u4u6. The physical node u1 has resource 16 and the virtual node v1 has demand 16.
The substrate resource in node u1 and the virtual demand in node v1 can be expressed as c(u1) = 16 and c(v1) = 16,
respectively. Likewise, the physical link u1u2 has bandwidth resource 2 and the virtual link v1v2 has bandwidth demand 2.
The substrate resource on link u1u2 and the virtual demand on link v1v2 can be denoted as c(u1u2) = 2 and c(v1v2) = 2,
respectively.
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4 SCHEME PRESENTATION

4.1 Preliminary
To formulate the VNE process, the weighted adjacency matrix of graph G is denoted with AG, representing the weights
distribution of entities on digraph G. Generally, AG can model the communication topology of digraph G with more details
than the commonly used standard adjacency matrix. With a(x, y) denoting the residual available bandwidth on link (x, y),
that is, the capacity constraint of link (x, y) minus the already allocated resource quantity, the (x, y)-entry of matrix AG is
defined as

AG(x, 𝑦) =

{
a(x, 𝑦), if x ∼ 𝑦;
0, else.

For virtual network H, AH is still defined as above, but a(x, y) = c(x, y) represents the quantity of resource demand on
(x, y), regardless of prior allocation.

4.2 The main algorithm
The main algorithm GLNR-SP, reflecting our strategy for embedding virtual networks onto a massive SN, includes two
procedures: GenSubset and LocalRank. The GenSubset procedure finds a subset V(S) of substrate nodes spanning a sub-
graph S of the SN G. Generally, S contains candidates of all virtual nodes, and S has a far smaller scale than V(G) in case of
massive G (see procedure GenSubset for details of generating V(S)). Therefore, S can provide enough available node and
link resources to accommodate H, and embedding H to G can be confined to embedding H to S. This can lead to signifi-
cant complexity reduction when comparing algorithm GLNR-SP with other existing algorithms. Subsequently, procedure
LocalRank in algorithm GLNR-SP is called for ranking all virtual nodes V(H) and substrate candidates V(S) selected out.
In this stage, local ranking (see9,25,26) is performed to rank the nodes of both S and H. Then, all ranked nodes in V(H) are
mapped to the corresponding ranked nodes in V(S) according to the associated weights generated by procedure Local-
Rank (see procedure LocalRank for details of node ranking). In what follows, we provide details for procedures GenSubset
and LocalRank after describing the process of node mapping when procedures GenSubset and LocalRank are success-
fully implemented. Suppose that the process of node ranking on S and H outputs the ranking vectors r(S) and r(H), and
the elements of r(S) and r(H) are pairs of the form (node, rank), that is,

r(S) = [(s1, r(s1)), (s2, r(s2)), … , (s|S|, r(s|S|))], si ∈ V(S);

then, the rank of a node x can be retrieved by r(x).
Algorithm GLNR-SP maps the virtual node v ∈ V(H) to the candidate substrate node s ∈ V(S) according to their ranked

values in r(H) and r(S), as long as the resource of s satisfies the demand of v. Node mapping 𝜙 ∶ V(H) → V(S) can thus be
formalized as the following.

For (v ∈ V↑(H)), s ∈ V↑(S)), if c(v) ≤ (s) then 𝜙(v) = s.

Once node mapping is completed, the variable nodemapping stores the node pair list of virtual and mapped substrate
nodes. Procedure kShortestPathLinkMapping (nodemapping,H, k)maps each virtual link (u, v) onto the shortest substrate
path p(u, v) with length k. Details of algorithm steps are provided in the form of pseudocode for GLNR-SP. In particular,
please note the important line 10: delete(u, r(u)) of the algorithm. Assuming that some reasonable subgraph has been
computed, without line 10: delete(u, r(u)), the main algorithm GLNR-SP will nearly always yield infeasible embeddings,
because for each virtual node, the list of substrate nodes is iterated according to the rank and if the capacity is sufficient,
the virtual node is mapped onto the respective substrate node. However, as nowhere the capacities are reduced, and, by
design, GenSubset only returns substrate nodes capable of hosting any virtual node, all virtual nodes will be mapped onto
a single substrate node. This will lead to exceeding the capacities in any reasonable scenario. This case could be easily
identified a priori by just checking if a substrate node may host all virtual nodes.
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4.3 Generating the H-admittable embedding subgraph of G
Identifying an AES can essentially be resolved into finding a substructure of the substrate graph as close as possible to a
clique of size “number of virtual nodes.” Network elements of such a substructure can be selected by pruning network
elements not supporting the maximal capacity. This is important as finding a clique itself is NP-hard and the process of
“estimating” a substructure close to it should be investigated. Procedure GenSubset attempts to find a subset of substrate
nodes that span a subgraph S of substrate G such that S is smaller than G, but contains candidates of all virtual nodes.
Let p(x, y) be the shortest path between nodes x and y, and E(x, y) denote the set of links on p(x, y). To pick nodes from G
to generate S such that H can be embedded into S with a high probability of success globally, the expected node set V(S)
should contain at least as many as |H| nodes. In addition, nodes and links in S must have sufficient residual resources to
fulfill the corresponding demands from H. In other words, for any VN elements (nodes and links) h ∈ H, c(h) ≤ c(𝜙(h))
must hold. In particular, when 𝜙(h) represents a substrate path, the virtual link h cannot be successfully embedded unless
each link of this path has enough resources available. Thus, it is needed that

c((u, v)) ≤ min{a(l)|l ∈ E(𝜙(u), 𝜙(v))},

where a(•) and c(•) represent the available resource and original constraints (resource capacity for substrate entities and
resource demand for virtual ones) in network entity “•”. Besides, S must be connected to ensure that there is at least one
path for successful link mapping between arbitrary pairs of nodes. Moreover, a highly connected S leads to short paths
for node pairs.

A subgraph S of G with the features discussed above is called as an H-AES of G. For generation of such a subgraph,
procedure GenSubset selects a subset V(S) of V(G) as the vertex set of the expected graph in advance. Procedure GenSubset
sets V(S) as null initially, then gradually adds qualified substrate nodes to V(S). For adding substrate nodes with sufficiently
available resources to V(S), the classical topological sorting algorithm is applied to G to generate the sorted V(G) nodes list
denoted as V↑(G) = {u0,u1, … ,un−1}. To make topological sorting feasible, the substrate graph G should be converted into
a directed graph

−→
G by changing all undirected edges (x, y) to the directed edges

−−−→
(x, 𝑦) if a(y) ≥ a(x), and

−−−→
(𝑦, x) otherwise.

Topological sorting of V(G) into V↑(G) places substrate nodes V(G) into nondescending order in term of available resources
and topological structure. Then, GenSubset picks nodes from V↑(G) and links from E(G) to form S. To accomplish this,
GenSubset traverses all virtual nodes and links, finding the maximal node and bandwidth demands ⌈c(h)⌉ and finding the
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minimal node and bandwidth demands ⌊c(h)⌋. Then, it initializes candidate node set V(S) to enclose the first substrate
node with quantity of available resource greater than the minimal node demand ⌊c(h)⌋, that is,

S = {uk|a(uk) ≥ ⌊c(h)⌋, a(uk−1) ≤ ⌊c(h)⌋}.
Then, procedure GenSubset consecutively selects substrate nodes fulfilling the demand from V↑(G) for S until V(S)
includes all candidates of V(H). For ensuring that nodes and links in S have sufficient residual resource to fulfill the cor-
responding demands from H, candidates added to V(S) are inspected in order in V↑(G) to ensure that they are capable of
fulfilling the maximal demands in node capacity or link bandwidth. The process is formally describe as

if (c(v) ≤ c(u))&&(𝛿(v) ≤ 𝛿(u))&&(max{c(lh)|lh ∈ E(v)} ≤ min{c(lg)|lg ∈ E(g)}),

V(S) = V(S) ∪ {u}.

To ensure connectivity and short paths between node pairs of S, when selecting a new node u from V↑(G) to be added to
V(S), a node u directly linked to at least one node s of V(S) will be chosen first, if node u and link (u, s) provide sufficient
resource. This can be formulated as

u ∼ S&& max{c(lh)|lh ∈ E(v)} ≤ min{c(E(u, S))}, then V(S) = V(S) ∪ {u} and E(S) = E(S) ∪ {(u, s)|s ∈ S}.

If no edges linking node u and nodes of V(S) exist, GenSubset selects the one node of V↑(G), which has the shortest
average path length to nodes of V(S). If the candidate selected for inclusion in V(S) is not linked directly to any node in
V(S), but is connected to some node via a path, GenSubset must also add all nodes on this path to V(S) to guarantee the
connectivity of S. For distinguishing these added path nodes from those that are directly linked, GenSubset separates the
added nodes on path from V(S), and denotes them with VP(S). Denoting the substrate nodes added to V(S) as embedding
candidates rather than path transition as VH(S), it holds that VH(S) = V(S) − VP(S).

If nodes x and y have identical available resource: a(x) = a(y) as well as the same shortest average path length, how
does GenSubset select the next node? The strategy of GenSubset prefers to the node with higher connectivity, thus if node
x has more adjacent nodes in V(S), then x will be preferred for inclusion in V(S) before y. Ultimately, the procedure for
selecting V(S) terminates once V(S) contains all candidates of V(H). Algorithmically, the expected set of nodes V(S) can be
obtained by implementing steps in corresponding procedure GenSubset, listed as executable pseudocode in GenSubset.

In way of elaboration, GenSubset does not have a simpler process for constructing S as the induced subgraph of V(S)in
G because such a simply-produced S may lead to no AES in G. An example follows. The SN∶ V(G) = u1,u2,u3, E(G) =
(u1,u2), (u2,u3), a(u1) = 30, a(u2) = 10, a(u3) = 20, a(u1,u2) = 20, a(u2,u3) = 20. Virtual network: V(H) = u1,u2,
E(H) = u1,u2, c(u1) = 15, c(u2) = 15, c(u1,u2) = 10. The substrate node u2 does not have enough capacity, but the set
{u1,u3} is disconnected. Note that, v1 → u1, v2 → u3, (v1, v2) → (u1,u2), (u2,u3) is a feasible embedding.
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4.4 Local random walk on the H-admittable embedding subgraph of G
Once procedure GenSubset completes successfully, the subset V(S) has been selected from V(G), the H-AES of G can
be assigned as the subgraph S = (V(S),E(S)). To discover a near optimal correspondence between S and H for node
mapping, a natural inclination is to consider this problem as weighed graph matching. Unfortunately, embedding H to S
has differences with graph matching between two graphs having equal number of nodes, given that a virtual link (u, v)
can be embedded onto a substrate path (x, y). Hence, procedure LocalRank associates nodes and links of H with nodes
and links of S, according to the corresponding weight values in the local node raking vectors r(H) and r(S). To locally rank
all substrate nodes V(S), LocalRank arranges them in nonincreasing order according to the local node ranking vector r(S),
which reflects resource availability. The node ranking vectors r(H) and r(S) are solutions of the stationary distribution of
random walks on H and S, in which entry r(x) estimates the potential energy x relative to other nodes. Generally, the VN
has a far smaller scale than that of the SN, which prompts us to calculate r(S) more precisely, that is, by employing more
elaborate topological information of H and S to perform the procedure of local random walk. Next, the general notion of
random walk on graph G will be defined, and then be specialized to S. The node ranking vector r(H) is obtained from a
general random walk on graph H and r(S) from a local random walk on subgraph S. The transition possibility matrix T of
a general random walk on G is defined9 as

T = D−1A(G), (1)

where D denotes the diagonal matrix with entries D(x, x) = d(x), d(x) being the weighted degree of vertex x defined as

d(x) =
∑
𝑦∼x

𝑦∈V(G)

a(𝑦). (2)

A lazy random walk M on G can be defined9,25,26 by M = (I + T)∕2, where I is the identity matrix. Then, utilize
personalized PageRank, generalized to measure the node ranking value r(x) of x, determined from equation

r = 𝛼s + (1 − 𝛼)rM, (3)
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where parameter 𝛼 ≥ 0 is the jumping constant that scales the rate of propagation and b expresses a user-defined initial
probability distribution vector. A vector is understood to be in row form throughout this paper, unless otherwise specified.
The definition above leads to an equivalent description of the recurrence form for r

r = 𝛼

∞∑
k=0

(1 − 𝛼)kMk. (4)

To obtain r from the equation above, resort to the discrete Green's function , which operates as the inverse of the
Laplacian operator on the space orthogonal to the null space of the Laplacian (see the works of Chung et al10-12 for more
details of discrete Green's function). Let 𝛽 be the constant 𝛽 = 2𝛼∕(1 − 𝛼) and L(G) be the Laplacian matrix of graph G.
The discrete Green's function, generalized as 𝛽 by Chung,10-12 is the inverse of 𝛽I + L, expressed as

L = I − T and 𝛽 = (𝛽I + L)−1. (5)

Thereby, the rank vector r defined in Equation (3) can be solved using discrete Green's function 𝛽 through the equation

r = 𝛽s𝛽 . (6)

Unfortunately, obtaining r from Equation (6) generally entails O(n3) time overhead to calculate the inverse of 𝛽I + L,
namely, 𝛽 . Such a time complexity is usually unacceptable in fairly wide range of application domains. Thus, a directed
graph

−→
G can be relaxed to an undirected version to rank the nodes globally, and still treat it as a directed graph in stage of

node ranking on subgraph S. Such a relaxation requires us to rewrite the entity a(x, y) of A(G) as

a(x, 𝑦) = (a(x, 𝑦) + a(𝑦, x))∕2.

Assume that graphs G and H are both strongly connected and that the random walks on G and H are both aperiodic,
which means that the matrix T has only one eigenvalue with absolute value 1. Then, the stationary distribution r of
random walk is the Perron vector of T, namely, the eigenvector of T corresponding to the maximal eigenvalue 1. In this
case, there is a closed form solution for r, given by

r(x) = d(x)∕
∑

𝑦∈V(G)
d(𝑦), (7)

where d(x) is defined by Equation (2).
To commence the local ranking on S, let 𝜕S = {v|v ∉ S ∧ v ∼ u ∈ S} express the set of nodes located at boundary of

S. Then, initialize the vector b, also viewed as a function defined on b ∶ S ∪ 𝜕S → R, to satisfy the Dirichlet boundary
condition,9,25 that is,

x ∈ 𝜕S, b(x) = 0.

When defined as follows, b will meet the Dirichlet boundary condition:

If x ∈ S then s(x) = d(x)∕𝜎(S), else s(x) = 0, where 𝜎(S) =
∑

x∈S
d(x).

A function f satisfying the Dirichlet boundary condition on S ensures that the relevant operators, such as the transition
probability and Laplace matrices, can be represented by their submatrices restricted to vertices of S when these operators
act on f. Such a function would simplify node ranking on graphs. For locally ranking all nodes in V(S), initially, generate
the submatrix A(S) by extracting the rows and columns corresponding to the vertices in S from the adjacency matrix A.
Borrowing the notation of Matlab, this means A(S) = A(S, S). Use the same approach to define the diagonal matrix D(S)
with diagonal entries being vertex degrees, namely,

D(S) = diag{d(x)|x ∈ S}.
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The local transition probability matrix T(S), the local Laplacian L(S), and the local discrete Green's function (S) can
be produced in a similar manner,9,25,26 by using equation

T(S) = D(S)−1A(S).

Eventually, local node ranking vector r(S) can be derived from the equation

r(S) = 𝛽s(S).

Attention to two points with respect to local random walk is necessary. To avoid global operations as much as possible,
one can generate A(S) directly from the subgraph S, which has nodes in V(S) and edges of G with both endpoints in S,
rather than extracting it from A(G). Moreover, compute d(x) for x ∈ S, but remember that the node degree of x ∈ S should
be computed by

d(x) =
∑

𝑦∼x,𝑦∈G
a(𝑦).

In other words, summing over all nodes in G, not only over ones in S, that implies that even if nodes outside of S have
been ignored, they still affect the local random walk on S because the original edges including in E(S, 𝜕S) still contribute
to r(S). The executable pseudocode of procedure LocalRank is as follows.

5 EVALUATION

Results of experiments discussed in this section demonstrate efficiency and quality of our scheme in terms of multiple
representative evaluational metrics such as runtime, acceptance ratio (AR), cost/revenue ratio (C/R), and node utilization
ratio (NUR). All simulations are conducted under the platform consisting of software Eclipse Oxygen IDE running in
64-bit Windows 7 over hardware CPU Intel(R) Core(TM) i5 4590 @3.3 GHz with 16.0GB RAM. In addition, simulations
generate, analyze, and compare the results relying on recently updated simulation software package Alevin 2.2, developed
by Beck et al,27 recognized as a significant simulation framework for evaluating VNE algorithms.

Algorithm GLNR-SP proposed in this paper is realized with Java language within multiple experimental settings.
Experimental results evaluate the performance and quality of GLNR-SP in terms of multiple evaluational metrics.
The experimentation process can be divided into scenario generation, algorithm setting and execution, and algorithm
evaluation, with various experimental configurations. The experimental configurations are further detailed in Table 3.
Subsequently, algorithm GLNR-SP is compared with the representative VNE algorithms: DViNE-SP, GAR-SP, RW-MM-SP
and vnmFlib, that have been cited as the focus of considerable VNE research, and two recently suggested VNE algorithms:
VNE-NTANRC and k-core, in terms of runtime, VNR acceptance ratio, C/R, and NUR, factors recognized as effective
means of assessing VNE algorithms. Finally, the results of comparison have been plotted to reveal the effect of varied
scales of VN and SN on VNE performance and quality.



ZHAO AND PARHAMI 11 of 17

Scale SN size VN size VNs num. Demand Resource
Small-medium 5k 2k 5 [1-10] [1-100]
Massive 1000 2k 5 [1-10] [1-100]

TABLE 3 Experimental parameters of network
generation, k indicating the experimental period

TABLE 4 Experimental algorithms for evaluation

Algorithm Reference Brief description
DViNE-SP Chowdhury et al5 VNE with coordinated strategy in two stages where node mapping

is implemented by mixed integer programming (MIP) and link mapping with
k-shortest paths

GAR-SP Yu et al15 VNE preferentially using available resources for node mapping and
k-shortest paths for link mapping

RW-MM-SP Cheng et al3 VNE ranking nodes with topology properties for node mapping and
k-shortest paths for link mapping

vnmFlib Lischka and Karl16 VNE based on subgraph isomorphism detection with nodes and links
mapping in the same stage

VNE-NTANRC Cao et al20 VNE concerned on network topology attribute and network resource
k-core Wang et al24 VNE for large-scale network using k-core theory

5.1 Scenario generation
When setting up an experimental scenario, network topology consists of randomly generated VN topologies and artificially
configured SN topologies Hub-Star. Random VN topologies are generated with a probability 0.5 of connecting a pair of
nodes. Note that resulting VN could possibly be disconnected. In such a case, network generator inspects the isolated
vertices and randomly add edges until a connected VN is obtained. For generating Hub-Star SN, network generator first
randomly produces a k-vertex graph whose vertices model hub nodes arising in real ISP network, following each step of
k steps, randomly add ri(0 ≤ i ≤ k) of vertices to graph, and connect newly added ri vertices to one hub node hi to
form a hi-centralized star subgraph. Consequently, the resulting Hub-Star SN topology is characterized by a number of
hubs, a high number of nodes is connected to one or more hubs, which have low internodes distance and heavy traffic on
hubs. This approach of SN generation captures the significant topological characteristics of the Star and the hub & spoke
networks,4 and it relatively reliably imitates the most traditional ISP network topologies arising in real communication.
After completion of network topology, CPU and bandwidth resources of SN are generated randomly as real numbers in
the interval [1, 100]; and CPU and bandwidth demands of VN are generated randomly as real numbers in the interval
[1, 10]. The simulation proceeds with varying the network scale with experimental times. Table 3 lists more details of
network generation.

5.2 Algorithm configuration
Four representative VNE algorithms (DViNE-SP, GAR-SP, RW-MM-SP, and vnmFlib) and two recently suggested VNE
algorithms (VNE-NTANRC and k-core) are compared with algorithm GLNR-SP for evaluation of performance and quality,
as proposed in other works3,5,15,16,20,24 and briefly described in Table 4. Consideration for selection of algorithms involves
mainly two factors. First, they have received considerable attention through respectful citations by Google Scholar.* Sec-
ond, they can be realized completely on the software package Alevin 2.2 such that algorithms can be compared in a fairly
impartial environment. All algorithms used for experiments were executed on the same scenarios and parameter configu-
rations. All algorithms chosen for evaluation were run 25 times under identical scenario configurations, while increasing
the sizes of SN and VN. The parameters of CPU node weights and distance were assigned as 1 and 20, respectively, without
consideration of node overload.

5.3 Evaluation results
Experiments have been conducted on small-medium–sized and massive SNs, respectively, with VNE algorithms of state
of art, listed in Table 4. Originating from presentation of the experimental purpose and hypothesis, experimental results
generated by algorithm GLNR-SP are compared with ones derived from other VNE algorithms with respect to embedding
efficiency, quality, and scalability. Moreover, the reason behind such result has been disappeared, which is the main

*https://scholar.google.com

https://scholar.google.com
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(A) (B)

(C) (D)

FIGURE 2 Performance and quality comparisons of GLNR-SP with representative VNE schemes for embedding 2k-sized VN into a
small-medium–sized SN with 5k nodes, 1 ≤ k ≤ 25 indicating the experiment's range. A, Runtime; B, VNR acceptance ratio;
C, Cost/revenue ratio; D, Node utilization ratio

contribution of this work. The results of comparisons with other algorithms in multiple metrics listed above are depicted
in Tables 5 and 6 and in Figures 2 and 3. Tables 5 and 6 illustrate the average values of concerned metrics resulting from
25 rounds of executing the competing algorithms in cases of meso-micro scale SN and massive SN, respectively. Figures 2
and 3 offer the details for the entire period corresponding to Tables 5 and 6, respectively. Note that the invalid results due
to a divide-by-zero exception have not appeared in Tables 5 and 6. Experiments consider algorithm evaluations in three
dimensions: embedding efficiency, embedding quality, and scalability for addressing evaluation results.

5.3.1 Experimental purpose and hypothesis
The process of evaluation focuses on a collection of well-recognized VNE metrics (runtime, VNR acceptance ratio, C/R,
and NUR) for assessing the competitiveness of our proposal. On purpose, algorithm GLNR-SP is expected to perform bet-
ter than competing ones with respect to runtime and AR, given our particular interests in trade-off of embedding efficiency
and quality. Simultaneously, experiments also attempt to prevent degradation in metrics of C/R and NUR. The experi-
mental results confirm that GLNR-SP yields the expected results in runtime and AR metrics, without a cost in quality
degradation in terms of other evaluation metrics. The experimental hypotheses are listed as following H1, H2, and H3.
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(A) (B)

(C) (D)

FIGURE 3 Performance and quality comparisons of GLNR-SP with five representative VNE schemes for embedding into a massive SN
with 1000 nodes. A, Runtime; B, VNR acceptance ratio; C, Cost/revenue ratio; D, Node utilization ratio

Algorithm Runtime(s) Acceptance C/R NUR
GAR-SP 0.07 8.00 1.90 0.40
DViNE-SP 39.57 19.20 1.47 2.69
RW-MM-SP 5.34 17.60 1.56 2.49
vnmFlib 0.38 52.80 1.03 5.36
VNE-NTANRC 35.41 96.80 1.00 5.30
k-core 0.05 58.4 1.00 5.46
GLNR-SP 0.05 96.00 1.00 5.35

TABLE 5 Comparison of the average values of the evaluation
metrics from test iterations executed on small-medium–sized SN

H1: Experiments are particularly focused on shortest-path class VNE approaches, and algorithmic versions with path
splitting have not yet been considered. Furthermore, the link mapping parameter k of mapping a VN link to a
length-k shortest path was set to k = 2.

H2: The numbers n and m of SN and VN nodes increase linearly with the iteration i of experiment according to n =
a × i and m = b × i, where a and b are constant factors controlling the growth of SN and VN, respectively. For
configurations here, they hold values a = 5 and b = 2 and 1 ≤ i ≤ 25) (see Table 3).

H3: The weights on node resource and link bandwidth conform to the uniform distribution in the interval [min,max].
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TABLE 6 Comparison of the average values of the evaluation metrics
from test iterations executed on massive SN (the SN networks are
enlarged to the size of 1000), to demonstrate the scalability of our strategy

Algorithm Runtime Acceptance C/R NUR
GAR-SP 2.03 10.40 1.86 0.61
DViNE-SP 502.94 8.00 1.87 0.48
RW-MM-SP 1788.84 41.60 1.00 5.42
vnmFlib 1.80 52.80 1.03 5.36
VNE-NTANRC 2585.31 96.80 1.00 5.30
k-core 1.05 72 1.00 5.31
GLNR-SP 1.04 96.00 1.00 5.35

5.3.2 Embedding efficiency
Experiments were planned to enlarge the scales of SN from 6 to 1000 to demonstrate the performance strength of proposed
algorithm when the size of SN becomes massive. The largest size of VN is 50, emerging in the 25th iteration. The effort
of testing our algorithm on larger VN was hindered by the excessive running time of the optimization-based scheme
DViNE-SP. When embedding randomly generated VN with 60 nodes to the massive SN in the 30th iteration, algorithm
DViNE-SP encounters efficiency problems, so the optimization package GLPK 4.7 terminates the searching for solutions
due to timeout, as shown in Figure 2. However, even if algorithms are implemented on VN with scale from 2 to 50, there
are apparent performance differences observed in Tables 5 and 6 and in Figures 2A and 3A. The scheme GLNR-SP exhibits
an apparent improvement over the other algorithms (GAR-SP, DViNE-SP, RW-MM-SP, vnmFlib, VNE-NTANRC, and
k-core) in average values with respect to all metrics (Table 5), and the maximal value regarding runtime, VNR acceptance
ratio and C/R, except for the maximal NUR RW-MM-SP (Table 6). The algorithm k-core nearly approaches GLNR-SP in
runtime, but it apparently degrades in AR, as seen in later section.

Algorithm GLNR-SP also demonstrates its overall advantage in process of 25 times embedding (see Figures 2A and 3A).
On randomly generated VN and Hub-Star SN, through a 25-iteration test, GLNR-SP embeds 96% of VNRs within nearly
average runtime 0.05 seconds, which is less than the best one GAR-SP's 0.07 seconds of other algorithms besides k-core.
K-core embeds 58.4% of VNRs in nearly same runtime 0.05 seconds. The strength in runtime of our algorithm increases
alone with enlargement of network scale, and our method manifests its prominence in efficiency particularly in massive
SN, as listed in Table 6, where GLNR-SP embedding the maximal VN with 50 nodes into maximal SN with 1000 within
1.04 seconds. This value is clearly less than GAR-SP's 2.03 seconds, vnmFlib's 1.80 seconds, and k-core's 1.26 seconds. The
other tested algorithms DViNE-SP, RW-MM-SP, and VNE-NTANRC have the runtimes of DViNE-SP's 502.94 seconds,
RW-MM-SP's 1788.84 seconds, and VNE-NTANRC's 2585.31 seconds exhibited poor efficiency, which implies that they
would have an unacceptable computational overhead when the scales of both SN and VN become large.

5.3.3 Embedding quality
The AR, defined as the ratio between the number of accepted VNRs and the total number of VNRs, reflects the success rate
in embedding of virtual networks. The C/R, defined as the sum of the substrate resources allocated to the VNR, represents
the amount of resources used by an embedding. The revenue sums the revenue of the VNRs that were successfully mapped
and the revenue of those that were not mapped. The C/R measures the proportion of cost spent in the SN, taking into
account the revenue that has been mapped, the lower the C/R, the better the mapping quality. The node utilization of
SN is calculated as the ratio of used CPU cycles to the number of nodes in it. It reflects the proportion of resources being
utilized to meet the currently accepted VNRs. The GLNR-SP generates an average VNR acceptance ratio 96%, average
C/R around 1.00, and the NUR around 5.35, higher than those of the other algorithms in small and medium-sized SN, as
seen in Table 5. The GLNR-SP sustains these evaluation metrics relatively stable when the size of SN achieve to 1000 as
seen in Table 6.

Figures 2 and 3 demonstrate more details that GLNR-SP produces more competitive values with regard to five embed-
ding quality metrics than the other approaches. The average value 96.0% and maximal value 100% in AR, the average and
maximal value 1.0% in C/R, and the average value 5.35% in node utilization demonstrate the best quality score in all tested
algorithms, except that GLNR-SP has the average value 5.35% in node utilization lower than both RW-MM-SP's 5.42 and
vnmFlib's 5.36 in a test suite of 25. Overall, evaluation demonstrates that GLNR-SP is superior to other approaches with
regard to qualitative metrics.

5.3.4 Scalability
For evaluating VNE algorithms in massive networks, the sizes of SN and VN vary in an extensive range from 2 to 50 for
VN and 5 to 125 for small-medium–sized SN, 1000 for massive SN. Further enlargement of networks has been attempted,
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as mentioned before. When the scale of VN is set at 60 (arising in 30th iteration), the algorithm DViNE-SP terminates
to search for the optimal solution due to timeout. This limits the number of iterations to 25 for evaluations. It can be
observed from Figures 2 and 3 that the advantages of approach GLNR-SP grow for larger network sizes, that is, it exhibits
a lower runtime growth with increasing VN and SN sizes. In case of embedding VN with 50 nodes to SN with 1000 nodes,
when the networks reach their respective maximal sizes, GLNR-SP's runtime is around 1.04 seconds, compared with
around 2.03 seconds, 502.94 seconds, 1788.84 seconds, 1.80 seconds, 2585.31 seconds, and 1.04 seconds for its counterparts
GAR-SP, DViNE-SP, RW-MM-SP, vnmFlib, VNE-NTANRC, and k-core, respectively. Comparison of embedding quality
leads to similar results, as listed in Table 6 and depicted in Figure 3. The results are indicative of proposed method's
suitability for application to scenarios in which SN is large-scale.

5.3.5 Explanation of experimental results
In summary, experimental results presented in this section indicate that algorithm GLNR-SP might efficiently implement
scalable VNE with enhanced quality in terms of the main evaluational metrics, particularly in case of the massive SN. It
can be observed that among four metrics of evaluating VNE algorithms, namely, runtime, VNR acceptance ratio, C/R,
and NUR, GLNR-SP has earned a significant promotion in runtime when SN becomes massive. Such an improvement
originates from that procedure GenSubset was implemented with low computational overhead to pick out a subgraph S
prior to performing the procedure LocalRank, and generally S is far smaller than G and capable of fulfilling the embed-
ding of H with a high probability. Relative to GLNR-SP, its counterparts for comparison execute combinatorial search
or iteration convergence on SN to choose the nodes and links that fulfill the demands from H, which usually consumes
the most of time overhead. Moreover, GLNR-SP brings on a high VNR acceptance ratio because it associates virtual and
substrate nodes more accurately when performing LocalRank procedure. Moreover, by algorithm GLNR-SP, no evident
degradation emerges in the rest of metrics: C/R, and NUR because the resource available and topological association have
been taken into account in stage of generating S. Exceptionally, optimization-based method DViNE-SP cannot compete
the task of embedding for SNs larger than 1000, given that it already reaches their computational limits before the end of
the simulation range.

Experimental results are obtained under preconditions that hypotheses H1, H2, and H3 have been accepted. Namely,
first of all, a VN link is mapped to a length-2 at most shortest path. Then, the numbers of SN and VN nodes increase
according to n = 5 × i and m = 2 × i, respectively. Finally, node resource and link width of SN and VN are subject to
the uniform distribution. Acceptance/rejection of these hypotheses imposes an impact to experimental results mainly on
two evaluational metrics: runtime and AR. If hypothesis H1 is rejected, that means path splitting should be considered,
the link mapping generally requires extra runtime to estimate the residual bandwidth between substrate node pairs. In
addition, if hypothesis H2 is rejected, the scales of SN and VN may grow more rapidly with the iteration i of experiment.
If both H1 and H2 are rejected, the runtime of all algorithms will increase significantly. In case of rejecting H3, more VN
requirements will be rejected due to nonuniform resource distribution in interval [min,max], which generally leads to a
lower AR.

Approach in this research relies heavily on techniques of local random walking on substrate graph to associate virtual
nodes to substrate nodes. There is significant difference between GLNR-SP and previously known graph matching algo-
rithms, because the VNE problem requires a correspondence between nodes, but a link in VN can be mapped to a path
in SN, this being a one-to-multiple relation that is not strictly a mathematically defined “mapping.” A direct application
of known methods for node mapping might lead to a low computational efficiency and a poor VNR acceptance ratio,
such as the GAR-SP greedily provisioning available resource, the vnmFlib based on graph matching, the RW-MM-SP and
VNE-NTANRC ranking nodes with topology properties. The low computational efficiency of previously known heuristic
VNE methods is mainly caused by that they experience a process of either combinatorial search (DViNE-SP) or iterative
convergence (RW-MM-SP and VNE-NTANRC). A key advantage of the scheme proposed in this paper, compared with
previously known heuristic VNE methods, is that it is not iterative. This will avoid the process of random walk converging
to the stationary distribution such that a better balance between efficiency and quality has been achieved.

6 CONCLUSION

As a substantial component in network virtualization technology, VNE has received considerable attention from the
research community and communication industry. Heuristic algorithms are increasingly sought for overcoming the com-
putational intractability of optimization-based approaches. However, it is an extremely challenging goal to achieve a
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solution that is acceptable to both users and providers, which usually means short response time and high quality. This
goal becomes even more critical when SN scales to large sizes. In this case, the term “acceptance” means not only that
a VNR can be technically fulfilled but also users agree with the embedding efficiency and quality, which implies that
efficiency should be an even more essential factor to affect user's decision in the current user-centered environment.

This work addresses the problem of massive VNE by decomposing of the general process of node ranking into two
procedures: global and local node ranking using local random walk based on discrete Green's function. The proposed
scheme has been presented both theoretically and algorithmically, and a series of simulations has been conducted to
confirm the theory-based intuition that the proposed scheme offers benefits in runtime and embedding quality for a
general VNE task.

The fact that experimental work is conducted on Hub-Star network limits the applicability of the experimental verifica-
tion. The authors plan to extend the experimental scenarios to other kinds of topologies, including real world networks.
Theoretically, the authors are also interested in exploring more accurate strategies for global node ranking in extremely
large-scale VN and SN.
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