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Abstract—Recursive synthesis of digital circuits leads to 

systematic design methods, reuse of building blocks, and clean 
mathematical models for circuit cost and delay. Recursive integer 
and matrix multiplications, and Fourier transform, are familiar 
examples. In this paper, we show that threshold voters, including 
the important special case of majority voters, can be synthesized 
from smaller networks of the same kind in a simple and easily 
analyzable way. At the end of the recursion, we get to readily-
available AND & OR gates, 3-input counters (or full-adders), and 
majority circuits, which are realizable in a variety of platforms, 
including emerging atomic-scale digital technologies.  

Keywords— Majority gate, nanoelectronics, parallel counter, 
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I. INTRODUCTION 

This paper relates to a previous study of building large 
majority and plurality voting circuits [1]. At the time of the 
previous study, interest in voters with large numbers of inputs 
was mostly theoretical, as practical voters had 3-5 inputs. Today, 
we need larger voters, owing to imperfection, and thus extreme 
error rates, in nanoelectronic circuits. Redundancy factors of 
several-dozen have already been proposed and even higher 
redundancy may be needed with further circuit shrinkage and 
the accompanying variabilities and uncertainties [2] [3]. 
Reliability problems are also front-and-center in quantum 
computing [4] [5], but it is unclear at this time whether they will 
be eventually overcome by massive replication or through 
domain-specific methods of encoded computation. 

At the same time, the emergence of majority-friendly 
technologies motivates the majority-gate-based synthesis of 
logic functions, thus rekindling interest in the field of threshold 
logic [6], [7]. Any symmetric function of n logical variables can 
be implemented by first counting the number of 1s among the 
inputs and then using the count to form the output. 

Recursive design methods allow testing and verification to 
be pursued even in the early stages of design, a boon for safety-
critical and high-stakes applications such as medical monitoring 
and aerospace [8]. Furthermore, recursive designs, for both 
hardware and algorithms, tend to be simple and clean, easy to 
reason about or prove correct, and subject to major overall 
enhancement with a small improvement in each recursion stage. 
Examples include recursive realizations of integer & matrix 
multiplication [9] [10] and Fourier transform [11], that have led, 
to Karatsuba-Ofman integer multiplication [12], Strassen’s 
matrix multiplication [13], and Cooley-Tuckey FFT [14]. 
Recursive designs also facilitate the derivation of latency and 

circuit-complexity formulas and simplify comparison and trade-
off studies via rigorous mathematical analysis. 

The main contributions of this paper relative to existing 
designs and published research are as follows: 

 We propose a recursive method for counting-based 
realization of symmetric functions, a class of digital circuits 
that includes majority and minority voters. 

 We investigate the characteristics of different gate structures 
for use in implementing our designs in order to transfer the 
design benefits to actual circuit parameters. 

This paper discusses preliminary ideas that are being refined and 
extended in several different directions, about which we will 
report in multiple planned papers. 

 

II. PRIOR WORK AND MOTIVATION 

A. History and Significance 

Voting networks, or voters for short, which determine the 
majority value, if it exists, among n inputs, have a long history. 
Because of their practical significance, voters have been the 
subjects of many research studies and implementations. Triple-
modular redundancy with three-way voting has been used for 
many decades in various applications [15] [16]. Safety-critical 
systems are just beginning to use CMOS voters with 5 or more 
inputs [17] [18]. Voters with larger numbers of inputs have also 
been proposed for quantum-dot cellular automata [19]. 

Voters are key components in today’s advanced circuit 
designs. Examples of such applications can be found in storage 
devices, where RAID algorithms are used alongside voter 
circuits for data recovery after a disk failure [20]. Moreover, the 
need for weight-checkers arises in authentication circuits for 
certain error-detecting and error-correcting codes and in 
network communications where packets are verified using 
signature approval [21]. Use of replication and voting to 
recover from single-event upsets and other disruptions due to 
device-level physical damage caused by high-energy particles 
is another area of application [22]. 

Critical applications in domains such as aerospace, nuclear 
power generation, electrical grids, banking & financial systems, 
and industrial control & automation usually incorporate 
physical redundancy to ensure a specific degree of fault 
tolerance for successfully overcoming faults or malfunctions in 
various function units. While the degree of redundancy has 



been fairly limited in the past, it is on the rise, as additional 
critical applications are automated and less-reliable 
nanoelectronic devices are deployed [23]. Recursive designs, 
discussed later in this paper are well-suited to such systems, 
owing to their high testability and reliability. 

We have found only two prior attempts at recursive synthesis 
of voters. One goes only as far as a single level of recursion (it 
should thus be called unrolling, not recursion) to design voters 
with more than 3 inputs [24]. In the other [1], designs referred 
to as mux-based are shown to be superior to a number of other 
designs for majority voting with the then-practical smallish 
values of n. Here, we extend the design methods and 
assessments to an arbitrary number of inputs. 

B. Pros and Cons of Recursive Design 

There is some tendency to equate recursive algorithms with 
inefficiency. This is a remanent from early days of digital 
computers when computing power was expensive and thus in 
short supply. Programmers would spend much time converting 
a recursive algorithm to a non-recursive one through unrolling. 
The same would apply to replacing procedure calls with in-line 
code to save on a few call- and return-instructions. Things have 
changed since then. Computer architects now provide 
substantial support for efficient procedure calls and recursion. 

For hardware, a similar pre-judgment exists, except that the 
concerns are even less relevant here. Recursively-defined 
hardware is always implemented with partial or even full 
unrolling. For example, an n-input FFT network is built as a 
combinational system for small-to-moderate n. For large n, 
partial unrolling may be utilized for reducing the cost through 
hardware time-sharing. Even in the latter case, the overhead 
will be limited to the cost and delay of storage elements, of the 
same kind routinely used between pipeline stages. 

VLSI design considerations sometimes work against 
asymptotically-optimal designs, favoring instead designs with 
regularity, short interconnects, and balanced delay paths. After 
decades of research, it was proven in 2019 that the 
multiplication of n-digit numbers is an 𝑂(𝑛 log 𝑛) operation in 
terms of circuit cost [25], but in many practical settings, naive 
𝑂(𝑛 ) designs or Karatsuba-Ofman’s 𝑂(𝑛 . ) realization still 
prevail over the impractical 𝑂(𝑛 log 𝑛)  scheme, or its 
𝑂(𝑛 log 𝑛 log(log 𝑛)) predecessors.  

Furthermore, whereas in mass-produced circuits speed and 
power consumption play outsize roles, thus making domain-
specific designs highly desirable, in the case of limited-
production circuits, the latter may take a back seat to the 
attributes of regularity, testability, and rapid realizability (viz., 
short time-to-market). In these domains, recursive design 
algorithms, by virtue of simplifying the design and analysis 
processes, provide useful tools in the designers’ repertoire. 

 

III. RECURSIVE THRESHOLD COUNTERS 

In this section, we discuss the design of ordinary  ≥ 𝑙/𝑛 and 
inverse < 𝑚/𝑛  threshold counters. The notation ≥ 𝑙/𝑛 
represents the fact that the circuit determines whether at least l 
of its n inputs are 1s. 

A. Ordinary Threshold Counters 

A majority voting network realizes the ℎ -out-of−(2ℎ –  1) 
function, which assumes the value 1 when at least h of the 
2ℎ –  1  inputs are 1s. Let’s generalize a tad and focus on 
realizing 𝑙-out-of-𝑛 threshold networks, that produce a 1 output 
when at least 𝑙 of the 𝑛 inputs are 1s, where 𝑛 isn’t necessarily 
2𝑙 − 1 or another odd number.  

Our method begins by isolating the last input xn. If xn = 0, 
then to satisfy the ≥ 𝑙/𝑛  output condition, the number of 1s 
among the remaining n – 1 inputs must be at least l. If xn = 1, 
then the number of 1s among the remaining inputs should be at 
least l – 1. Unrolling the recursion, we will eventually arrive at 
the familiar building blocks of ≥ 1/ℎ  (OR), ≥ ℎ/ℎ  (AND), 
and ≥ 2/3  (basic majority). Circuit implementation of an 
example ≥ 3/5  voting network, derived from two levels of 
recursion, is depicted in Fig. 1. 

Clearly, we do not need to restrict ourselves to the use of 2-
input multiplexers. For example, the two mux levels in Fig. 1 
can be replaced with a 4-to-1 mux. The use of an 8-input mux 
for building a ≥ 4/7 voting network is illustrated in Fig. 2. The 
use of larger muxes just discussed is also applicable to the 
designs that follow in the rest of the paper. 

 

 
Fig. 1. Recursive synthesis result for a 3-out-of-5 threshold circuit, using two 
levels of unrolling that leads to two levels of multiplexers. An h-level binary 
tree of 2-input muxes can be replaced by a 2h-input mux, if desired. In this 
diagram, we can use a 4-input mux in the last two circuit levels. 

 

 
Fig. 2. Using an 8-input & two 2-input muxes to synthesize a 4-out-of-7 voter. 
The 5-sided box in the middle of the column of gates is a 2-out-of-3 majority 
gate, which can be synthesized from ordinary gates if not directly available. 



B. Cost and Delay Analysis 

Focusing on the recursive implementation with 2-way 
muxes, we can readily derive cost and delay formulas, 
assuming unit-cost and unit-delay 2-way muxes. 

𝐵(≥ 𝑙/𝑛) = 1 + 𝐵(≥ 𝑙/(𝑛– 1)) + 𝐵(≥ (𝑙– 1)/(𝑛– 1))  
         –  𝐵(≥ (𝑘– 1)/(𝑛– 1)) 

𝐵(≥ 𝑙 𝑛⁄ ) = 1 + 2 + ⋯ + (𝑛 − 𝑙 − 1) + (𝑛 − 𝑙)  [𝑛 − 𝑙 terms] 
+(𝑛 − 𝑙) + ⋯ + (𝑛 − 𝑙)             [2𝑙– 𝑛– 1 terms] 
+(𝑛 − 𝑙 − 1) + ⋯ + 3 + 2            [𝑛– 𝑙– 2 terms] 

             = (𝑛 − 𝑙)(𝑙 − 1) − 1 

Here are two numerical examples to test the formula for the 
number of muxes in the design: 

𝐵(≥ 5 9⁄ ) = 1 + 𝐵(≥ 5 8⁄ ) + 𝐵(≥ 4 8⁄ ) − 𝐵(≥ 4 7⁄ ) 
              = 1 + 11 + 11 − 8 = 15 

𝐵(≥ 6 11⁄ ) = 𝐵(≥ 6 10⁄ ) + 𝐵(≥ 5 10⁄ ) − 𝐵(≥ 5 9⁄ ) 
                = 1 + 19 + 19 − 15 = 24 

To the result 𝐵(≥ 𝑙/𝑛) above, we must add the cost of AND 
and OR gates at the periphery to find the total cost C: 

𝐶(≥ 𝑙 𝑛⁄ ) = 𝐵(≥ 𝑙 𝑛⁄ ) + Σ , 𝐶 (𝑖) + Σ , 𝐶 (𝑗) 
+𝐶  

For delay, we have: 

𝐷(≥ 𝑙 𝑛⁄ ) = 1 + 𝑚𝑎𝑥[𝐷(≥ 𝑙/(𝑛 − 1)), 𝐷(≥ (𝑙 − 1)/(𝑛 − 1))] 

𝐷(≥ 𝑙 𝑛⁄ ) = 𝑛 − 3 + max (𝐷 (3), 𝐷 (3), 𝐷 ) 

The example network of Fig. 3 is a ≥ 3/6 threshold circuit, 
with 5 multiplexers and 3 mux levels. The ≥ 6/8  threshold 
circuit example of Fig. 4 uses 9 muxes in 5 levels. 

Were we not using majority elements as basic building 
blocks, the unrolling would continue for one more step: 

𝐷(≥ 2 3⁄ ) = 1 + max (𝐷 (2), 𝐷 (2)) 

Similarly, for cost: 

𝐶(≥ 2 3⁄ ) = 1 + 𝐶 (2) + 𝐶 (2) 

The net result is the addition of 1 mux and two 2-input gates 
to network cost and 1 unit to network delay. But with our target 
implementation technologies [8], majority elements tend to be 
both faster than 3 gate-delays (counting 2 for a mux) and 
simpler than 5 gate-costs (counting 3 for a mux). 
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Fig. 3. An example threshold circuit, represented with our simplified notation. 
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C. Inverse Threshold Counters 

An ordinary ≥ 𝑙/𝑛 threshold counter has its output asserted 
whenever at least l of its n inputs are 1s. We can also define an 
inverse threshold circuit, or < 𝑚/𝑛  counter, whose output is 
asserted if fewer than m of its n inputs are 1s. Clearly, a < 𝑚/𝑛 
inverse threshold circuit can be built by simply inverting the 
output of a ≥ 𝑚/𝑛 circuit. However, as the example of Fig. 5 
confirms, when compared to Fig. 4, direct realization of an 
inverse threshold circuit using the techniques previously 
outlined can lead to a simpler design. 

To confirm the observation above analytically, we write the 
expression for the number of muxes in a < 𝑚/𝑛  circuit for 
values of 𝑚 in the range 2 ≤ 𝑚 ≤ 𝑛/2: 

𝐵(< 𝑚 𝑛⁄ ) = 1 + 2 + ⋯ + (𝑚 − 2) + (𝑚 − 1) [𝑚 − 1 terms] 
       +(𝑚 − 1) + ⋯ + (𝑚 − 1)       [𝑛 − 2𝑚 terms] 

  +(𝑚 − 1) + ⋯ + 3 + 2              [𝑚 − 2 terms] 
               = (𝑛 − 𝑚)(𝑚 − 1) − 1 

Comparing the latter expression with our expression for 𝐵(≥
𝑙/𝑛) = (𝑛 –  𝑙)(𝑙 –  1)– 1, after replacing 𝑙 with  𝑛 – 𝑚 to get 
𝑚(𝑛– 𝑚– 1)– 1, we see that 𝐵(< 𝑚/𝑛) < 𝐵(≥ (𝑛– 𝑚)/𝑛) for 
all 𝑚 ≤ 𝑛/2. The number of edge gates is comparable for both 
designs. So, the direct realization of a < 𝑚/𝑛  counter is 
beneficial for 2 ≤ 𝑚 ≤ 𝑛/2. Both designs require 𝑛 – 3 mux 
levels, plus one level of gates on the left edge. 
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Fig. 5. Example of inverse threshold circuit that determines whether fewer 
than 2 of the 8 inputs are 1s. This circuit's output is the complement of the 
output of the threshold circuit ≥ 2/8. 



D. The Important Special Case of Voting 

A simple majority voter, or simply voter, is a ≥ ⌈𝑛/2⌉/𝑛 
counter with an odd number 𝑛 of inputs. This special case is of 
immense importance in the design of fault-tolerant systems 
relying on multi-channel computation and majority-based 
decisions to choose highly-reliable outputs. To convey the 
complexity & latency of an 11-input majority voter, we provide 
a ≥ 6/11 example in Fig. 6. Simple voter layouts have vertical 
symmetry and, with the exception of the rightmost mux, 
horizontal symmetry, leading to more efficient layouts. 

Majority voting need not be limited to an odd number of 
inputs. For example, a ≥ 4/6  majority voter may be used to 
build a multi-channel computation scheme with greater 
reliability than one based on ≥ 3/5 voting, without incurring 
the added cost of going to the higher redundancy level of a ≥
4/7 scheme. A simple majority voter with an even number 𝑛 of 
inputs is 𝑎 ≥ (𝑛/2 + 1)/𝑛 counter.  

Also, we do not have to limit voters to a simple majority. 
When more than a majority of inputs are required to be 1s for 
the output to be 1, we have a super-majority scheme, although 
super-majority is sometimes reserved for 2/3  agreement 
among the inputs. Either way, using super-majority, which 
requires broader agreement among the input values, is 
appropriate for certain safety-critical systems, in which the 
output of 1 may be unsafe whereas 0 is safe. A ≥ 6/9  two-
thirds majority circuit is depicted in Fig. 7. 
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Fig. 6. An 11-input simple majority voter. 
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Fig. 7. Super-majority voter with 9 inputs. 
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Fig. 8. Three possible structures for a 2-input multiplexer: (a) Ordinary 
CMOS; (b) Bypass transistor; (c) Transmission gate. 

 

IV. IMPLEMENTATIONS AND COMPARISONS 

In this section, we present preliminary circuit realizations and 
compare them to alternate designs, after discussing the 
technology platform used and associated components. More 
detailed implementation studies are underway. 

A. Technology and Components 

Considering our recursive design approach, it can be seen 
that a major portion of the circuitry consists of muxes. 
Therefore, selecting a suitable mux structure can greatly impact 
the speed, cost, and power requirements of our final designs. 
The muxes in our recursive designs are faster than muxes in 
typical designs, because the selection input to each mux is 
always ready before the data inputs arrive. 

Three possible mux structures, based on ordinary CMOS, 
bypass transistors, and transmission gates, are given in Fig. 8. 
These are simulated in our evaluations, using the FinFET 7nm 
technology file [26]. 

Our simulation and timing studies have shown that using the 
bypass transistor structure is best for our recursive designs due 
to lower preset delay & power consumption, and smaller area 
overhead. The only shortcomings of the bypass structure are 
non-full-swing output voltage and low drive strength; problems 
that can be mitigated by using buffers after every few serial 
stages of bypass transistors [27]. The last stage of the circuit 
must also be followed by a buffer or it can be designed using an 
ordinary CMOS structure to resolve voltage-swing and drive-
strength issues. 

B. Comparative Analysis 

To evaluate our proposed method and compare it with 
alternative designs, we synthesized five different circuits using 
our proposed recursive method and three existing alternatives: 
Two-stage schemes beginning with parallel-counter or parallel-
compressor [9], followed by a comparator, and a third scheme 
with input-capacitances, which uses analog summing instead of 
digital counting (thus, limiting the design's scaling potential). 
The simulated circuits are a <2/8 inverse threshold counter 
(deciding whether there is at most a single 1 among the 8 
inputs), an = 4/8  weight checker (e.g., for a 4-out-of-8 



constant-weight code), ≥ 5/9  and ≥ 6/11  simple majority 
voters, and a ≥ 6/9  super-majority voter. In our evaluations, 
we considered room-temperature environment, operation 
frequency of 100MHz, and supply voltage of 0.7V. FinFET 
parameters are obtained from [26]. The input set of all circuits 
is the same and includes all possible combinations of entries in 
order to have a fair and thorough comparison. 

Gate-level realization of the <2/8 inverse threshold circuit 
based on our design strategy is given in Fig. 9. Note that the 
NOR networks of Fig. 5 are simply implemented by successive 
use of NOR results from previous stages. This observation 
greatly reduces the area and power overhead of the design by 
eliminating the need for large NOR gates. Multiplexers M1 to 
M4 are based on the bypass transistor structure (Fig. 8b), while 
M5 is designed based on the typical CMOS method (Fig. 8a). 
These choices allow a compact low-power design, while 
preserving the output’s full swing and drive strength. 

 

C. Assessment of Performance Boost 

Intuitively, one reason for the observed improvements in 
speed and circuit cost is the use of low-complexity and highly-
optimized mux units as the basic building blocks. Additionally, 
an examination of Fig. 9 reveals that our design is quite regular 
and has mostly-local connections. To confirm these intuitive 
advantages, we evaluated the performance boost that can be 
achieved by using the recursive design technique. To this end, 
we formulated the improvement achieved by our method in 
comparison to the best competitor, that is, the parallel-
counter/comparator design. 

Generally speaking, the exact delay of a circuit depends on 
many factors, including the number of inputs and the circuit's 
function. However, Fig. 10 can provide an overall perspective 
on the benefits of using recursive designs. We see that the delay 
reduction continually increases with n, although the reduction 
is sublinear in n (it appears to be even sublogarithmic). The 
jumps in the blue curve in Fig. 10, which produce jumps in the 
purple curve, arise because of increases in the number of levels 
in the parallel-counter for certain values of n. The smoothed 
green curve provides a good model for predicting delay 
improvements, before synthesizing actual circuits. 

 

 
Fig. 9. Design of <2/8 inverse threshold counter using our recursive 
construction method (a physical realization of the design in Fig. 5). 

 
Fig. 10. Delay reduction of our design as a function of the number of inputs. 

 

V. CONCLUSION 

We have presented a recursive method for synthesizing 
threshold networks, including special cases of majority bit-
voters, that offers the benefits of regularity, circuit reuse, ease 
of analysis, and formal verifiability.  

To assess the practical advantages of the proposed method 
for real implementations, five structures were simulated, with 
the results compared with those of three alternative design 
strategies. The simulated examples included a < 2/8 recursive 
threshold counter (determining whether at most 1 of the 8 input 
bits is 1), an = 4/8 equality checker (deciding whether exactly 
4 of the 8 input bits are 1s), ≥ 5/9  and ≥ 6/11 conventional 
threshold counters or simple majority voters (determining 
whether at least 5 of the 9 input bits or 6 of the 11 input bits are 
1s), and a ≥ 6/9 super-majority circuit (determining if there is 
a 2/3 agreement amongst the 9 inputs).  

Our results show that the recursive construction method 
offers speed, cost, and power-consumption benefits. For the 
five diverse examples considered, an average reduction of 18% 
in delay and reduction to less than half in power dissipation and 
circuit complexity (54% power savings; 51% fewer transistors) 
were demonstrated, compared with three alternative 
implementations. When power savings are achieved at the same 
time as speed improvements, they lead to even greater savings 
in energy consumption. 

 
Fig. 11. Simple example of a between-limits threshold circuit. 
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We know that in the case of bit-voting, circuits based on 
selection (median-finding) can be beneficial [1]. How do our 
designs compare with such circuits? Are there alternative design 
strategies that we have overlooked? Other plans for 
generalizations and extensions include applying the recursive 
design method to word-voters, possibly with the ability to signal 
a lack of majority [28].  

Among the many possible generalizations, combination 
threshold/inverse-threshold circuits can be contemplated as 
checkers for some weighted codes. An example of such a circuit 
is depicted in Fig. 11, where the circuit determines whether 3 or 
4 of its 7 inputs are 1s (combining the functionalities of < 5/7 
and  3/7 threshold counters). Finally, modular, approximate, 
and saturating counting networks are worth considering. 
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