
979-8-3503-6013-4/24/$31.00 ©2024 IEEE

Recursive Implementation of Voting Networks

Behrooz Parhami
 Department of Electrical and Computer Engineering

 University of California
 Santa Barbara, CA 93106-9560

 parhami@ece.ucsb.edu

Abstract—Recursive synthesis of digital circuits leads to

systematic design methods, reuse of building blocks, and clean
mathematical models for circuit cost and delay. Recursive integer
and matrix multiplications, and Fourier transform, are familiar
examples. In this paper, we show that threshold voters, including
the important special case of majority voters, can be synthesized
from smaller networks of the same kind in a simple and easily
analyzable way. At the end of the recursion, we get to readily-
available AND & OR gates, 3-input counters (or full-adders), and
majority circuits, which are realizable in a variety of platforms,
including emerging atomic-scale digital technologies.

Keywords— Majority gate, nanoelectronics, parallel counter,
threshold circuit, VLSI-friendly design, voter, weight checker

I. INTRODUCTION

This paper relates to a previous study of building large
majority and plurality voting circuits [1]. At the time of the
previous study, interest in voters with large numbers of inputs
was mostly theoretical, as practical voters had 3-5 inputs. Today,
we need larger voters, owing to imperfection, and thus extreme
error rates, in nanoelectronic circuits. Redundancy factors of
several-dozen have already been proposed and even higher
redundancy may be needed with further circuit shrinkage and
the accompanying variabilities and uncertainties [2] [3].
Reliability problems are also front-and-center in quantum
computing [4] [5], but it is unclear at this time whether they will
be eventually overcome by massive replication or through
domain-specific methods of encoded computation.

At the same time, the emergence of majority-friendly
technologies motivates the majority-gate-based synthesis of
logic functions, thus rekindling interest in the field of threshold
logic [6], [7]. Any symmetric function of n logical variables can
be implemented by first counting the number of 1s among the
inputs and then using the count to form the output.

Recursive design methods allow testing and verification to
be pursued even in the early stages of design, a boon for safety-
critical and high-stakes applications such as medical monitoring
and aerospace [8]. Furthermore, recursive designs, for both
hardware and algorithms, tend to be simple and clean, easy to
reason about or prove correct, and subject to major overall
enhancement with a small improvement in each recursion stage.
Examples include recursive realizations of integer & matrix
multiplication [9] [10] and Fourier transform [11], that have led,
to Karatsuba-Ofman integer multiplication [12], Strassen’s
matrix multiplication [13], and Cooley-Tuckey FFT [14].
Recursive designs also facilitate the derivation of latency and

circuit-complexity formulas and simplify comparison and trade-
off studies via rigorous mathematical analysis.

The main contributions of this paper relative to existing
designs and published research are as follows:

 We propose a recursive method for counting-based
realization of symmetric functions, a class of digital circuits
that includes majority and minority voters.

 We investigate the characteristics of different gate structures
for use in implementing our designs in order to transfer the
design benefits to actual circuit parameters.

This paper discusses preliminary ideas that are being refined and
extended in several different directions, about which we will
report in multiple planned papers.

II. PRIOR WORK AND MOTIVATION

A. History and Significance

Voting networks, or voters for short, which determine the
majority value, if it exists, among n inputs, have a long history.
Because of their practical significance, voters have been the
subjects of many research studies and implementations. Triple-
modular redundancy with three-way voting has been used for
many decades in various applications [15] [16]. Safety-critical
systems are just beginning to use CMOS voters with 5 or more
inputs [17] [18]. Voters with larger numbers of inputs have also
been proposed for quantum-dot cellular automata [19].

Voters are key components in today’s advanced circuit
designs. Examples of such applications can be found in storage
devices, where RAID algorithms are used alongside voter
circuits for data recovery after a disk failure [20]. Moreover, the
need for weight-checkers arises in authentication circuits for
certain error-detecting and error-correcting codes and in
network communications where packets are verified using
signature approval [21]. Use of replication and voting to
recover from single-event upsets and other disruptions due to
device-level physical damage caused by high-energy particles
is another area of application [22].

Critical applications in domains such as aerospace, nuclear
power generation, electrical grids, banking & financial systems,
and industrial control & automation usually incorporate
physical redundancy to ensure a specific degree of fault
tolerance for successfully overcoming faults or malfunctions in
various function units. While the degree of redundancy has

been fairly limited in the past, it is on the rise, as additional
critical applications are automated and less-reliable
nanoelectronic devices are deployed [23]. Recursive designs,
discussed later in this paper are well-suited to such systems,
owing to their high testability and reliability.

We have found only two prior attempts at recursive synthesis
of voters. One goes only as far as a single level of recursion (it
should thus be called unrolling, not recursion) to design voters
with more than 3 inputs [24]. In the other [1], designs referred
to as mux-based are shown to be superior to a number of other
designs for majority voting with the then-practical smallish
values of n. Here, we extend the design methods and
assessments to an arbitrary number of inputs.

B. Pros and Cons of Recursive Design

There is some tendency to equate recursive algorithms with
inefficiency. This is a remanent from early days of digital
computers when computing power was expensive and thus in
short supply. Programmers would spend much time converting
a recursive algorithm to a non-recursive one through unrolling.
The same would apply to replacing procedure calls with in-line
code to save on a few call- and return-instructions. Things have
changed since then. Computer architects now provide
substantial support for efficient procedure calls and recursion.

For hardware, a similar pre-judgment exists, except that the
concerns are even less relevant here. Recursively-defined
hardware is always implemented with partial or even full
unrolling. For example, an n-input FFT network is built as a
combinational system for small-to-moderate n. For large n,
partial unrolling may be utilized for reducing the cost through
hardware time-sharing. Even in the latter case, the overhead
will be limited to the cost and delay of storage elements, of the
same kind routinely used between pipeline stages.

VLSI design considerations sometimes work against
asymptotically-optimal designs, favoring instead designs with
regularity, short interconnects, and balanced delay paths. After
decades of research, it was proven in 2019 that the
multiplication of n-digit numbers is an 𝑂(𝑛 log 𝑛) operation in
terms of circuit cost [25], but in many practical settings, naive
𝑂(𝑛) designs or Karatsuba-Ofman’s 𝑂(𝑛 .) realization still
prevail over the impractical 𝑂(𝑛 log 𝑛) scheme, or its
𝑂(𝑛 log 𝑛 log(log 𝑛)) predecessors.

Furthermore, whereas in mass-produced circuits speed and
power consumption play outsize roles, thus making domain-
specific designs highly desirable, in the case of limited-
production circuits, the latter may take a back seat to the
attributes of regularity, testability, and rapid realizability (viz.,
short time-to-market). In these domains, recursive design
algorithms, by virtue of simplifying the design and analysis
processes, provide useful tools in the designers’ repertoire.

III. RECURSIVE THRESHOLD COUNTERS

In this section, we discuss the design of ordinary ≥ 𝑙/𝑛 and
inverse < 𝑚/𝑛 threshold counters. The notation ≥ 𝑙/𝑛
represents the fact that the circuit determines whether at least l
of its n inputs are 1s.

A. Ordinary Threshold Counters

A majority voting network realizes the ℎ -out-of−(2ℎ – 1)
function, which assumes the value 1 when at least h of the
2ℎ – 1 inputs are 1s. Let’s generalize a tad and focus on
realizing 𝑙-out-of-𝑛 threshold networks, that produce a 1 output
when at least 𝑙 of the 𝑛 inputs are 1s, where 𝑛 isn’t necessarily
2𝑙 − 1 or another odd number.

Our method begins by isolating the last input xn. If xn = 0,
then to satisfy the ≥ 𝑙/𝑛 output condition, the number of 1s
among the remaining n – 1 inputs must be at least l. If xn = 1,
then the number of 1s among the remaining inputs should be at
least l – 1. Unrolling the recursion, we will eventually arrive at
the familiar building blocks of ≥ 1/ℎ (OR), ≥ ℎ/ℎ (AND),
and ≥ 2/3 (basic majority). Circuit implementation of an
example ≥ 3/5 voting network, derived from two levels of
recursion, is depicted in Fig. 1.

Clearly, we do not need to restrict ourselves to the use of 2-
input multiplexers. For example, the two mux levels in Fig. 1
can be replaced with a 4-to-1 mux. The use of an 8-input mux
for building a ≥ 4/7 voting network is illustrated in Fig. 2. The
use of larger muxes just discussed is also applicable to the
designs that follow in the rest of the paper.

Fig. 1. Recursive synthesis result for a 3-out-of-5 threshold circuit, using two
levels of unrolling that leads to two levels of multiplexers. An h-level binary
tree of 2-input muxes can be replaced by a 2h-input mux, if desired. In this
diagram, we can use a 4-input mux in the last two circuit levels.

Fig. 2. Using an 8-input & two 2-input muxes to synthesize a 4-out-of-7 voter.
The 5-sided box in the middle of the column of gates is a 2-out-of-3 majority
gate, which can be synthesized from ordinary gates if not directly available.

B. Cost and Delay Analysis

Focusing on the recursive implementation with 2-way
muxes, we can readily derive cost and delay formulas,
assuming unit-cost and unit-delay 2-way muxes.

𝐵(≥ 𝑙/𝑛) = 1 + 𝐵(≥ 𝑙/(𝑛– 1)) + 𝐵(≥ (𝑙– 1)/(𝑛– 1))
 – 𝐵(≥ (𝑘– 1)/(𝑛– 1))

𝐵(≥ 𝑙 𝑛⁄) = 1 + 2 + ⋯ + (𝑛 − 𝑙 − 1) + (𝑛 − 𝑙) [𝑛 − 𝑙 terms]
+(𝑛 − 𝑙) + ⋯ + (𝑛 − 𝑙) [2𝑙– 𝑛– 1 terms]
+(𝑛 − 𝑙 − 1) + ⋯ + 3 + 2 [𝑛– 𝑙– 2 terms]

 = (𝑛 − 𝑙)(𝑙 − 1) − 1

Here are two numerical examples to test the formula for the
number of muxes in the design:

𝐵(≥ 5 9⁄) = 1 + 𝐵(≥ 5 8⁄) + 𝐵(≥ 4 8⁄) − 𝐵(≥ 4 7⁄)
 = 1 + 11 + 11 − 8 = 15

𝐵(≥ 6 11⁄) = 𝐵(≥ 6 10⁄) + 𝐵(≥ 5 10⁄) − 𝐵(≥ 5 9⁄)
 = 1 + 19 + 19 − 15 = 24

To the result 𝐵(≥ 𝑙/𝑛) above, we must add the cost of AND
and OR gates at the periphery to find the total cost C:

𝐶(≥ 𝑙 𝑛⁄) = 𝐵(≥ 𝑙 𝑛⁄) + Σ , 𝐶 (𝑖) + Σ , 𝐶 (𝑗)
+𝐶

For delay, we have:

𝐷(≥ 𝑙 𝑛⁄) = 1 + 𝑚𝑎𝑥[𝐷(≥ 𝑙/(𝑛 − 1)), 𝐷(≥ (𝑙 − 1)/(𝑛 − 1))]

𝐷(≥ 𝑙 𝑛⁄) = 𝑛 − 3 + max (𝐷 (3), 𝐷 (3), 𝐷)

The example network of Fig. 3 is a ≥ 3/6 threshold circuit,
with 5 multiplexers and 3 mux levels. The ≥ 6/8 threshold
circuit example of Fig. 4 uses 9 muxes in 5 levels.

Were we not using majority elements as basic building
blocks, the unrolling would continue for one more step:

𝐷(≥ 2 3⁄) = 1 + max (𝐷 (2), 𝐷 (2))

Similarly, for cost:

𝐶(≥ 2 3⁄) = 1 + 𝐶 (2) + 𝐶 (2)

The net result is the addition of 1 mux and two 2-input gates
to network cost and 1 unit to network delay. But with our target
implementation technologies [8], majority elements tend to be
both faster than 3 gate-delays (counting 2 for a mux) and
simpler than 5 gate-costs (counting 3 for a mux).

x 4

x 4

x 5

x 5

x 6

≥2/3

≥3/3

≥1/3

≥1/4

≥2/4

≥3/4

≥3/5

≥2/5

AND(x , x , x)1 2 3

≥3/6

Maj(x , x , x)1 2 3

OR(x , x , x)1 2 3

OR(x , … , x)1 4
Fig. 3. An example threshold circuit, represented with our simplified notation.

x 5

x 6

x 6

x 7

x 7

x 8

≥5/5

≥4/4
≥4/5

≥3/5

≥4/6

≥5/6

≥6/6

≥6/7

≥5/7

≥6/8

x 5

≥3/4

≥2/4
x 4

≥2/3

≥1/3

x 4

≥3/3

AND(x , … , x)1 6

AND(x , … , x)1 5

AND(x , … , x)1 4

AND(x , x , x)1 2 3

Maj(x , x , x)1 2 3

OR(x , x , x)1 2 3
Fig. 4. Another example threshold counting network. This one determines
whether at least 6 of its 8 inputs are 1s.

C. Inverse Threshold Counters

An ordinary ≥ 𝑙/𝑛 threshold counter has its output asserted
whenever at least l of its n inputs are 1s. We can also define an
inverse threshold circuit, or < 𝑚/𝑛 counter, whose output is
asserted if fewer than m of its n inputs are 1s. Clearly, a < 𝑚/𝑛
inverse threshold circuit can be built by simply inverting the
output of a ≥ 𝑚/𝑛 circuit. However, as the example of Fig. 5
confirms, when compared to Fig. 4, direct realization of an
inverse threshold circuit using the techniques previously
outlined can lead to a simpler design.

To confirm the observation above analytically, we write the
expression for the number of muxes in a < 𝑚/𝑛 circuit for
values of 𝑚 in the range 2 ≤ 𝑚 ≤ 𝑛/2:

𝐵(< 𝑚 𝑛⁄) = 1 + 2 + ⋯ + (𝑚 − 2) + (𝑚 − 1) [𝑚 − 1 terms]
 +(𝑚 − 1) + ⋯ + (𝑚 − 1) [𝑛 − 2𝑚 terms]

 +(𝑚 − 1) + ⋯ + 3 + 2 [𝑚 − 2 terms]
 = (𝑛 − 𝑚)(𝑚 − 1) − 1

Comparing the latter expression with our expression for 𝐵(≥
𝑙/𝑛) = (𝑛 – 𝑙)(𝑙 – 1)– 1, after replacing 𝑙 with 𝑛 – 𝑚 to get
𝑚(𝑛– 𝑚– 1)– 1, we see that 𝐵(< 𝑚/𝑛) < 𝐵(≥ (𝑛– 𝑚)/𝑛) for
all 𝑚 ≤ 𝑛/2. The number of edge gates is comparable for both
designs. So, the direct realization of a < 𝑚/𝑛 counter is
beneficial for 2 ≤ 𝑚 ≤ 𝑛/2. Both designs require 𝑛 – 3 mux
levels, plus one level of gates on the left edge.

x 6

x 7

x 8

<1/5

<2/5

<1/6

<2/6

<2/7

<1/7

<2/8

x 5

<2/4

<1/4

x 4

<2/3

<1/3

Maj(x , x , x)1 2 3

NOR(x , x , x)1 2 3

NOR(x , ... , x)1 4

NOR(x , ... , x)1 5

NOR(x , ... , x)1 6

NOR(x , ... , x)1 7
Fig. 5. Example of inverse threshold circuit that determines whether fewer
than 2 of the 8 inputs are 1s. This circuit's output is the complement of the
output of the threshold circuit ≥ 2/8.

D. The Important Special Case of Voting

A simple majority voter, or simply voter, is a ≥ ⌈𝑛/2⌉/𝑛
counter with an odd number 𝑛 of inputs. This special case is of
immense importance in the design of fault-tolerant systems
relying on multi-channel computation and majority-based
decisions to choose highly-reliable outputs. To convey the
complexity & latency of an 11-input majority voter, we provide
a ≥ 6/11 example in Fig. 6. Simple voter layouts have vertical
symmetry and, with the exception of the rightmost mux,
horizontal symmetry, leading to more efficient layouts.

Majority voting need not be limited to an odd number of
inputs. For example, a ≥ 4/6 majority voter may be used to
build a multi-channel computation scheme with greater
reliability than one based on ≥ 3/5 voting, without incurring
the added cost of going to the higher redundancy level of a ≥
4/7 scheme. A simple majority voter with an even number 𝑛 of
inputs is 𝑎 ≥ (𝑛/2 + 1)/𝑛 counter.

Also, we do not have to limit voters to a simple majority.
When more than a majority of inputs are required to be 1s for
the output to be 1, we have a super-majority scheme, although
super-majority is sometimes reserved for 2/3 agreement
among the inputs. Either way, using super-majority, which
requires broader agreement among the input values, is
appropriate for certain safety-critical systems, in which the
output of 1 may be unsafe whereas 0 is safe. A ≥ 6/9 two-
thirds majority circuit is depicted in Fig. 7.

x8

x8

x9

x9

x9

x10

x10

x11

≥5/7

≥5/8

≥6/8

≥4/7

≥3/7

≥4/8

≥4/9

≥5/9

≥6/9

≥6/10

≥5/10

≥6/11

x8

≥2/7

x8

≥6/7

x7

≥2/6

≥5/6

x7

x7

≥3/8

≥4/6

≥3/6

x6

x6

≥4/5

≥3/5

≥2/5

x6

≥1/5

x6

≥5/5

x5

≥1/4

≥4/4

x5

x5

≥3/3

x4

x4

≥3/4

≥2/4

≥2/3

≥1/3

≥6/6

x7

x7

≥1/6

AND(x , x , x)1 2 3

Maj(x , x , x)1 2 3

OR(x , x , x)1 2 3

AND(x , … , x)1 6

AND(x , … , x)1 5

AND(x , … , x)1 4

OR(x , … , x)1 4

OR(x , … , x)1 5

OR(x , … , x)1 6
Fig. 6. An 11-input simple majority voter.

x 6

x 6

x 7

x 7

x 7

x 8

x 8

x 9

≥5/6

≥6/6

≥4/5

≥3/5

≥4/6

≥4/7

≥5/7

≥6/7

≥6/8

≥5/8

≥6/9

x 6

≥2/5

x 5

≥2/4

x 5

≥3/6

x 4

≥4/4

≥3/4

≥3/3

≥2/3

x 5

≥1/4

x

≥1/3

4

≥5/5

OR(x , … , x)1 4

AND(x , … , x)1 6

AND(x , … , x)1 5

AND(x , … , x)1 4

AND(x , x , x)1 2 3

Maj(x , x , x)1 2 3

OR(x , x , x)1 2 3

Fig. 7. Super-majority voter with 9 inputs.

In 1

Sel_b

In 1

Sel Sel_b

Sel

In 2

In 2

Sel

Sel

In 1

In 2

Out
Out

Out

In 2

In 1

Sel

Sel

Sel_b

Sel Sel_b

(a) (b) (c)
Fig. 8. Three possible structures for a 2-input multiplexer: (a) Ordinary
CMOS; (b) Bypass transistor; (c) Transmission gate.

IV. IMPLEMENTATIONS AND COMPARISONS

In this section, we present preliminary circuit realizations and
compare them to alternate designs, after discussing the
technology platform used and associated components. More
detailed implementation studies are underway.

A. Technology and Components

Considering our recursive design approach, it can be seen
that a major portion of the circuitry consists of muxes.
Therefore, selecting a suitable mux structure can greatly impact
the speed, cost, and power requirements of our final designs.
The muxes in our recursive designs are faster than muxes in
typical designs, because the selection input to each mux is
always ready before the data inputs arrive.

Three possible mux structures, based on ordinary CMOS,
bypass transistors, and transmission gates, are given in Fig. 8.
These are simulated in our evaluations, using the FinFET 7nm
technology file [26].

Our simulation and timing studies have shown that using the
bypass transistor structure is best for our recursive designs due
to lower preset delay & power consumption, and smaller area
overhead. The only shortcomings of the bypass structure are
non-full-swing output voltage and low drive strength; problems
that can be mitigated by using buffers after every few serial
stages of bypass transistors [27]. The last stage of the circuit
must also be followed by a buffer or it can be designed using an
ordinary CMOS structure to resolve voltage-swing and drive-
strength issues.

B. Comparative Analysis

To evaluate our proposed method and compare it with
alternative designs, we synthesized five different circuits using
our proposed recursive method and three existing alternatives:
Two-stage schemes beginning with parallel-counter or parallel-
compressor [9], followed by a comparator, and a third scheme
with input-capacitances, which uses analog summing instead of
digital counting (thus, limiting the design's scaling potential).
The simulated circuits are a <2/8 inverse threshold counter
(deciding whether there is at most a single 1 among the 8
inputs), an = 4/8 weight checker (e.g., for a 4-out-of-8

constant-weight code), ≥ 5/9 and ≥ 6/11 simple majority
voters, and a ≥ 6/9 super-majority voter. In our evaluations,
we considered room-temperature environment, operation
frequency of 100MHz, and supply voltage of 0.7V. FinFET
parameters are obtained from [26]. The input set of all circuits
is the same and includes all possible combinations of entries in
order to have a fair and thorough comparison.

Gate-level realization of the <2/8 inverse threshold circuit
based on our design strategy is given in Fig. 9. Note that the
NOR networks of Fig. 5 are simply implemented by successive
use of NOR results from previous stages. This observation
greatly reduces the area and power overhead of the design by
eliminating the need for large NOR gates. Multiplexers M1 to
M4 are based on the bypass transistor structure (Fig. 8b), while
M5 is designed based on the typical CMOS method (Fig. 8a).
These choices allow a compact low-power design, while
preserving the output’s full swing and drive strength.

C. Assessment of Performance Boost

Intuitively, one reason for the observed improvements in
speed and circuit cost is the use of low-complexity and highly-
optimized mux units as the basic building blocks. Additionally,
an examination of Fig. 9 reveals that our design is quite regular
and has mostly-local connections. To confirm these intuitive
advantages, we evaluated the performance boost that can be
achieved by using the recursive design technique. To this end,
we formulated the improvement achieved by our method in
comparison to the best competitor, that is, the parallel-
counter/comparator design.

Generally speaking, the exact delay of a circuit depends on
many factors, including the number of inputs and the circuit's
function. However, Fig. 10 can provide an overall perspective
on the benefits of using recursive designs. We see that the delay
reduction continually increases with n, although the reduction
is sublinear in n (it appears to be even sublogarithmic). The
jumps in the blue curve in Fig. 10, which produce jumps in the
purple curve, arise because of increases in the number of levels
in the parallel-counter for certain values of n. The smoothed
green curve provides a good model for predicting delay
improvements, before synthesizing actual circuits.

Fig. 9. Design of <2/8 inverse threshold counter using our recursive
construction method (a physical realization of the design in Fig. 5).

Fig. 10. Delay reduction of our design as a function of the number of inputs.

V. CONCLUSION

We have presented a recursive method for synthesizing
threshold networks, including special cases of majority bit-
voters, that offers the benefits of regularity, circuit reuse, ease
of analysis, and formal verifiability.

To assess the practical advantages of the proposed method
for real implementations, five structures were simulated, with
the results compared with those of three alternative design
strategies. The simulated examples included a < 2/8 recursive
threshold counter (determining whether at most 1 of the 8 input
bits is 1), an = 4/8 equality checker (deciding whether exactly
4 of the 8 input bits are 1s), ≥ 5/9 and ≥ 6/11 conventional
threshold counters or simple majority voters (determining
whether at least 5 of the 9 input bits or 6 of the 11 input bits are
1s), and a ≥ 6/9 super-majority circuit (determining if there is
a 2/3 agreement amongst the 9 inputs).

Our results show that the recursive construction method
offers speed, cost, and power-consumption benefits. For the
five diverse examples considered, an average reduction of 18%
in delay and reduction to less than half in power dissipation and
circuit complexity (54% power savings; 51% fewer transistors)
were demonstrated, compared with three alternative
implementations. When power savings are achieved at the same
time as speed improvements, they lead to even greater savings
in energy consumption.

Fig. 11. Simple example of a between-limits threshold circuit.

[3,4]/7
[3,4]/6

[2,3]/6

=3/3

=0/3

OR

(AND gates)

(NOR gates)

[3,4]/5

[3,4]/4

[1,2]/5
[0,1]/4

[2,3]/3

[2,3]/4

[1,2]/4
[1,2]/3

[0,1]/3

=2/2

[1,2]/2

[0,1]/2

=0/2

[2,3]/5

NAND

We know that in the case of bit-voting, circuits based on
selection (median-finding) can be beneficial [1]. How do our
designs compare with such circuits? Are there alternative design
strategies that we have overlooked? Other plans for
generalizations and extensions include applying the recursive
design method to word-voters, possibly with the ability to signal
a lack of majority [28].

Among the many possible generalizations, combination
threshold/inverse-threshold circuits can be contemplated as
checkers for some weighted codes. An example of such a circuit
is depicted in Fig. 11, where the circuit determines whether 3 or
4 of its 7 inputs are 1s (combining the functionalities of < 5/7
and 3/7 threshold counters). Finally, modular, approximate,
and saturating counting networks are worth considering.

ACKNOWLEDGMENT

The author is indebted to Mr. Behzad Davoodnia for several
implementation ideas and to Dr. Ghassem Jaberipur & Mr. Sina
Bakhtavari for supplying the implementations and comparative
evaluations discussed in Section IV.

REFERENCES
[1] B. Parhami, “Voting networks,” IEEE Trans. Reliability, vol. 40, no. 3,

pp. 380-394, Aug. 1991.

[2] K. Nikolic, A. Sadek, and M. Forshaw, “Architectures for reliable
computing with unreliable nanodevices,” Proc. 1st IEEE Conf.
Nanotechnology, 2001.

[3] M. Stanisavljević, A. Schmid, and Y. Leblebici, Reliability of Nanoscale
Circuits and Systems: Methodologies and Circuit Architectures.
Springer-Verlag, 2011.

[4] S. Pakin and P. Coles, “The problem with quantum computers,” Scientific
American, 2019.

[5] M. A. Thornton, “Introduction to quantum computation reliability,” Proc.
Int’l Test Conf., pp. 1-10, 2020.

[6] S. Muroga, Threshold Logic and Its Applications, Wiley, 1971.

[7] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, “A majority-based
imprecise multiplier for ultra-efficient approximate image
multiplication,” IEEE Trans. Circuits and Systems I, vol. 66, no. 11, pp.
4200-4208, Nov. 2019.

[8] S. Bakhtavari Mamaghani, M. H. Moaiyeri, and G. Jaberipur, “Design of
an efficient fully nonvolatile and radiation-hardened majority-based
magnetic full adder using FinFET/MTJ,” Microelectronics J., vol. 103, p.
104864, Sep. 2020.

[9] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
Oxford, 2nd ed., 2010, sec. 12.1 on the design of divide-and-conquer or
recursive multipliers.

[10] M. Blaser, "Fast matrix multiplication," Theory of Computing, pp. 1-60,
2013.

[11] W. L. Briggs, The DFT: An Owners’ Manual for the Discrete Fourier
Transform, SIAM, 1995.

[12] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on
automata,” Soviet Physics-Doklady (English translation), vol. 7, no. 7, pp.
595-596, 1963.

[13] V. Strassen, “The asymptotic spectrum of tensors and the exponent of
matrix multiplication, Proc. 27th Symp. Foundations of Computer
Science, pp. 49-54, 1986.

[14] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series.” Mathematics of Computation, vol. 19, pp.
297-301, 1965.

[15] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM J. Research & Development, vol.
6, no. 2, pp. 200-209, 1962.

[16] V. Elamaran, V. S. Balaji, G. Rajkumar, M. Chandrasekar, and H. N.
Upadhyay, “Survey on hardware redundancy and CMOS majority voting
circuits,” Int’l J. Pure and Applied Mathematics, vol. 119, no. 15, pp.
1081-1091, 2018.

[17] P. Balasubramanian, D. Maskell, and N. Mastorakis, “Majority and
minority voted redundancy scheme for safety-critical applications with
error/no-error signaling logic,” Electronics, vol. 7, no. 11, p. 272, 2018.

[18] E. Abdulhay, V. Elamaran, N. Arunkumar, and V. Venkataraman, “Fault-
tolerant medical imaging system with quintuple modular redundancy
(QMR) configurations,” J. Ambient Intelligence and Humanized
Computing, pp. 1-13, 2018.

[19] R. Jayalakshmi and R. Amutha, “An optimized high input majority gate
design in quantum-dot cellular automata,” Int’l. J. Engineering and
Manufacturing Science, vol. 8, no. 1, pp. 63-75, 2018.

[20] S. Pashazadeh, L. N. Tazehkand, and R. Soltani, “RSS_RAID a novel
replicated storage schema for RAID system,” in Data Science: From
Research to Application, Springer, pp. 36-43, 2020.

[21] J. Xu, T. Zhang, and Z. Dong, “On forward error correction with
Hamming code for multi-path communications,” Proc. Int'l Conf.
Wireless Communication & Signal Processing, Oct. 2012.

[22] S. Sayil, “A survey of circuit-level soft error mitigation methodologies,”
Analog Integrated Circuits and Signal Processing, vol. 99, no. 1, pp. 63-
70, 2019.

[23] E. Dubrova, Fault-Tolerant Design. Springer, 2013.

[24] P. Balasubramanian and D. L. Maskell, “A distributed minority and
majority voting based redundancy scheme,” Microelectronics Reliability,
vol. 55, nos. 9-10, pp. 1373-1378, Aug. 2015.

[25] D. Harvey and J. Van Der Hoeven, “Integer multiplication in time O(n
log n),” Annals of Mathematics, vol. 193, no. 2, pp. 563-617, 2021.

[26] L. T. Clark et al., “ASAP7: A 7-nm FinFET predictive process design
kit,” Microelectronics J., vol. 53, pp. 105-115, Jul. 2016.

[27] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated
Circuits: A Design Perspective, 2nd ed., Pearson, 2016.

[28] B. Parhami, Dependable Computing: A Multilevel Approach, online book
available at: https://web.ece.ucsb.edu/~parhami/text_dep_comp.htm

