OPTIMAL ALGORITHMS FOR EXACT, INEXACT,
AND APPROVAL VOTING

Behrooz Parhami

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

Abstract

Voting is an important operation in the realization of
ultrareliable systems that are based on the multi-channel
computation paradigm. In this paper, the design of optimal
n-way voting algorithms based on the structure of the input
object space is considered. The design techniques are then
extended to inexact and approval voting schemes. It is
shown that efficient O(n)-time voting algorithms can be
designed when the input object space is small. Next in the
hierarchy is the case of a totally-ordered object space that
supports worst-case 6(n log n) algorithms for both exact
and inexact voting as well as for certain approval-voting
schemes. An unordered input object space leads to worst-
case §Xn?) algorithms, even when a distance metric can be
defined on the input object space. Some observations on
the relationship of voting to other well-studied problems,
particularly sorting, are also included.

Keywords: Approximate voting, design diversity, inexact
voting, multi-channel computation, n-modular redundancy.

1.

Voting is an important operation in the realization of
ultrareliable systems that are based on the multi-channel
computation paradigm. Voting is required whether the
multiple computation channels consist of redundant
hardware units, diverse program modules executed on the
same basic hardware, identical hardware and software with
diverse data, or any other possible combination of
hardware/program/data redundancy and/or diversity.
Depending on the data volume and the frequency of voting,
hardware or software voting schemes may be appropriate.
Low-level voting with high frequency requires the use of
hardware voters whereas high-level voting on the results of
fairly complex computations can be performed in software
without serious performance degradation or overhead.

The use of voting for obtaining highly reliable data from
multiple unreliable or less reliable versions was first
suggested in the mid 1950s. Since then, the concept has
been practically utilized in several fault-tolerant computer
systems and has been extended and refined in many different
ways. Hardware voters that have been described in the
literature are essentially “bit-voters” that compute a
majority function on n input bits [JOHN89}, [SIEW82].
Combined bit voting and disagreement detection has also
been discussed [CHEN90].

Introduction

0731-3071/92 $03.00 © 1992 IEEE

404

Proposed software voters are quite varied and possess a
wide range of features. The earliest software voters are
found in the design of modular multiprocessors with
replicated software. For example, the voter routine in
SRI’s SIFT design [WENS78] is invoked by any task
which requires inputs for a new iteration. In the Space
Shuttle’s 4-way software voting scheme [SKLA76],
selected data items are computationally combined to form
“compare words” that are periodically exchanged and
compared in 4 out of the 5 onboard computers. Another
example is the “Stepwise Negotiating Voting” scheme of
[KANES9] which essentially amounts to a 2-out-of-n
voting strategy. The advantages of such “relaxed” (non-
majority) voting schemes have been discussed by others as
well [AGRASS], [BLOU90], [PARI86]. Researchers in
the field of software diversity have designed voters that are
suitable for processing the results obtained by multiple
versions of a program and have contributed techniques for
handling approximate results [AVIZ85], [BRIL87],
[KNIG86], [LORC89], [VOGES8]. Software voters have
also been designed or proposed in connection with the
management of replicated data in distributed systems
[BABAS87], [BARBS87], [GARCSS], [GIFF79], {JAJO90]
to assure database reliability and/or consistency.

2. The Problem and Its Variations
1 define the weighted voting problem as follows:

2.1. Definition: The Weighted Voting Problem —

Given n input data objects xy, xp,. .., X,, With

associated non-negative real votes (weights) vy, vp,...,

v, compute the output y and its vote w such that y is

“supported by” a number of input data objects with votes

totalling w, where w satisfies a condition associated with

the desired voting subscheme:

Threshold voting subschemes:

@ Unanimity voting: w = Xv;

@ Byzantine voting: w> 32.v;

@® Majority voting: w > %Zvi

[t-out-qf—Ev,' (generalized m-out-of-n) voting: w 21
(if ¢ < 5Xv;, y may be non-unique)

Plurality voting subscheme:

@ No other y'is supported by inputs having more votes
(ifw< -Zyv,-, y may be non-unique)

The term “supported by” can be defined in several ways,
leading to different voting schemes, each of which has the
subschemes listed above. With exact voting, an input
object x; supports y iff x; =y. With inexact voting,
approximate inequality (<) is defined in some suitable way
(e.g. by providing a comparison threshold € in the case of
numerical values or, more generally, a distance measure d
in a metric space) and x; supports y iff x; =~ y. Finally
with approval voting, y must be a member of the approved
set of values that x; defines (more on this later).

The reason I have chosen to start with weighted voting is
threefold. First, it is more general than simple voting and
thus useful in a wider context. Setting all weights to 1
yields simple voting as a special case. Second, it turns out
that in most cases, weighted voting isn’t harder to
implement than simple voting, especially in software-
based implementations (adding an arbitrary weight to a
vote tally isn’t any harder than adding 1). When non-
weighted voting is considerably simpler than weighted
voting, this will be pointed out. Third, some fixed-weight
schemes are essentially adaptive over the long run (e.g.,
disabling faulty units in some n-way voting schemes may
be equivalent to setting their initial votes of 1 to 0).

Several important voting schemes, such as median and
mean voting, are not covered by Definition 2.1 because
they are specific to certain input types and do not apply to
a general object space. 1 will deal with such voting
schemes where applicable.

3. Algorithms for Exact Voting

Although exact voting has been studied and used
extensively, no general discussion of exact-voting
algorithms appears in the literature. The reason is that
exact non-weighted n-way voting for bits or numerical data
with n =3 or n = 5 is quite simple. But for larger n or for
more complex data types, the situation changes. I divide
my discussion of algorithms according to the size and
structure of the input object space. Throughout this
section, which deals with “exact” comparisons, equality is
assumed to be transitive.

3.1. Small Object Space

For a small object space, an efficient linear-time algorithm
can be devised. Let the input object space be of size § and
let the set of possible values or classes of objects be
encoded by integers {1,2, 3, ..., 8}. Then the algorithm
consists of tallying the votes for each of the § possible
values/classes and then selecting the appropriate output.

3.1.1. Algorithm: Exact Voting — Small Object
Space of size §

Let u be the vote-tally vector, with »; (1 < i <) holding
the vote for the object class i

for i = 1 to 6 do u; := 0 endfor

fori = 1to ndoj := class(x;); Wji= Ui+ v endfor

(y, w) := select(u) 1

For all varieties of voting covered by Definition 2.1, the
selection function for output (last step) can be computed in

time O(8). Therefore, the worst-case execution time of
Algorithm 3.1.1 is O(n + §).

405

Algorithm 3.1.1 can be easily implemented in hardware
also. Direct hardware realization for the case of bit-voting
(6 = 2) is depicted in Fi 1. Actually with bit voting,
both hardware and software implementations can be
simplified by tallying the vote for only one of the two
values. With this simplification, the design of Figure 1
becomes the “arithmetic-based” design technique for bit-
voters that I have previously discussed in the context of
voting networks [PARH91]. Despite its seemingly low
0 (né) complexity and O(log n) delay, hardware
implementation of this algorithms is only practical for
very small & (perhaps only for bit-voting). The software
version, however, remains attractive for larger é, as long as
the O(8) working space is acceptable. The obvious £2(n)
time lower bound for n-way voting leads to:

3.1.2. Theorem: Algorithm 3.1.1 is an optimal n-way
voting scheme for §= O(n). 1

X Demultiplexers
1

vy 0-adder
X2
v2
X3
v3
X4
Va
Xs
Vs

I<

1-adder Compare
and

Select

Figure 1. Hardware realization of five-way weighted
bit-voting: The triangular demultiplexers use the x;
data bits as “control” or “selection” signals and have
widths equal to the number of bits in the binary
representations of the input votes v, Each circular
adder attaches its carry-out signal to its output, which
is then fed to a wider higher-level adder. If each of
the n input votes can be as large as v, . then w will
have log, v,.,, + logy] + 1 bits.

3.2. Totally Ordered Object Space

With a large object space (e.g. 32-bit integers), Algorithm
3.1.1 is inapplicable. In this subsection, I show that if the
input object space is totally ordered, then the following
algorithm based on sorting is optimal. All sorting is
assumed to be in ascending order.

3.2.1. Algorithm: Exact Plurality Voting — Totally
Ordered Object Space

Sort in place the set of records (x;, v;) with x; as key; use
the end-marker (%11, Vps1) = (>, 0)

yi=z =X Ui=Ew =Yy

fori=2ton+1do
while x;=z do u :=u +v;;i:=i+ 1 endwhile
if u > w then w := u; y := z endif
zI=Xp U=

endfor {nexti}

The algorithm can be easily modified for other voting
schemes. For example, majority voting requires appending,
at the end, the statement: if w < 53X v; then w := 0 (no-
quorum indicator). weighted median voting follows.

3.2.2. Algorithm: Weighted Median Voting —
Totally Ordered Object Space

Sort in place the set of records (x;, v;) by the x; keys.

q= %Zv,-;u =vpsii=1

while u <qdoi:=i+1;u:=u+v; endwhile

yi=x; |

Since sorting is asymptotically an €(n log n) operation (it
in fact takes quadratic time for small values of n that are of
practical interest in voting), with highly reliable

computation channels it is quite advantageous to add the
following test to the beginning of exact voting algorithms:
if x=xy=...=x,, then (y, w) := (x;, Xv;) stop endif
For example, if each computation channel produces a
correct result with probability 0.999 and S-way non-
weighted voting is used to obtain a result with even higher
reliability, the effect of this additional test is to make the
running time of the algorithm linear in at least 99.5
percent of the cases and the average running time becomes
almost linear. It may even be worthwhile to handle the
case of a single disagrecing input (the next most likely
case) separately also before resorting to the general
algorithm. These special tests increase the code length but
improve the performance significantly.

Hardware realization of Algorithm 3.2.1 or its variants
may also be contemplated. The straightforward hardware
design will consist of a sorting network followed by a
combining and a max-selection network. It is also possible
to modify the cells in a sorting network in order to convert
it into a vote-tallier [PARH91] that requires very little
additional hardware to become a voting network.

I now show that Algorithm 3.2.1 is optimal in the sense
that voting with a large object space has {Xn log n) time
complexity.

3.2.3. Theorem: The complexity of n-way plurality
voting, as specified in Definition 2.1, with large object
space is 2(n log n). 1

Proof: Any voting algorithm will be based on
comparison and combining: comparing two input objects
and combining their votes if equal. I prove the result in
two phases. First I show that any voting algorithm must
tally the votes for all distinct input values. Then, I prove
that the complexity of vote-tallying is £2(n log n). The
first part is easy to prove. If the vote for a particular value
is not tallied, one can change the vote weights such that
this particular value has the maximum total vote. But
changing the votes does not change the decision structure
of the voting algorithm and the instances of vote
combining. Thus, incorrect output will be produced if the
original algorithm did not tally all the votes. For the
second part, I use a decision-tree argument similar to the
one used for establishing a lower-bound for sorting. The
number L(n) of leaves in this binary decision tree is equal
to the number of ways combining can occur. This is equal
to the number of different partitions of a set of n elements

406

into nonempty disjoéns subsets. The number of partitions

with m classes is §,,", or Stirling number of the second

kind [KNUT73]. Hence:
n

Lin) = .5,

Using the Sz'éT:leres-Binet approximation to the above sum
of Stirling numbers [DAVI62], one gets for llargele n)
L(n) = B+ 172 (1 - prazny) XB-1+ 1P -
where B is defined by ﬁep = n. For large n, we have § =
log n - log log n = O(log n) and:
L(n) = (log ny" /2 ¢ 18"
The minimum number of levels in the decision tree, and

thus the number of compare-combine operations is the
worst case, is at least 1g(L(n)) = n log n. §

3.3. Unordered Object Space
An 0(n2) algorithm for plurality voting can be devised in
this case. Here is a high-level description of the algorithm.

3.3.1. Algorithm:
Unordered Object Space

Let z and u be the distinct-input and vote-tally vectors (zj
the jth distinct input encountered, u; the vote tally for z)

k=Ly:=z1:=x;;wi=u;i=v
fori=2tndo
if 3 j<k such that x; =
then u; =
else k:=k + 1; zp := x5 ug == v;
endif
endfor
fori=1tokdo
if u;>w then y := z;; w := u; endif
endfor I

The O(nz) worst-case complexity of this algorithm results
from the (n — 1)-iteration loop and the O(n) linear search
required in each iteration. The average performance is
again almost linear due to the fact that £ remains 1 with
very high probability. Because of excellent average-case
performance, there is no need to resort to more efficient
search schemes to find j inside the for loop. Since in an
unordered space, the equality of two objects can only be
established by direct comparison (the transitivity feature of
equality is of no help in the worst case), the following
lower bound is established.

3.3.2. Theorem: With an unordered input iject space,
n-way plurality voting has a complexity £2(n“). I

It turns out that one can devise simpler threshold voting
algorithms in this case. Consensus voting clearly has
linear complexity. Less obvious is the following result.

Exact Plurality Voting —

%
uj +v;

3.3.3. Theorem: With an unordered input object space,
t-out-of-X.v; voting can be performed with time complexity
O(np), where p = (Zv)/t .1

Proof: The algorithm to be described needs working
storage space for p = (Zv;)/t] different objects zq, z,, ... ,

z,, each of which has an associated vote tally u; (all u;s are
ifitialized to 0). The next object x; to be cdnsidefed is
compared to the stored z;s. If x; = z;, then u; is
incremented by v;. If x; is not equal 10 any’ z; and felver
than p objects have been stored thus far, thén (x;, vp) is
stored also. If p objects are stored, then the minimum vote
tally u; for the stored objects is found. If v; <y, then x;
is discarded and all stored vote tallies are decremented by v;.
If v; > uy, then all vote tallies are decremented by iy and
(x;, v; — up) replaces one of the objects with 0 vote tally.
One can prove that any object with total vote tally of ¢ or
more will be among the final p objects. The proof (a
generalization of a recently published proof for m-out-of-n
voting [CAMP91]) is based on the observation that every
time an object loses votes (due to the vote decrementation),
p other distinct objects also lose the same vote. Thus if an
object loses ¢ votes in the process, a total of (p + 1)t votes
must have been lost. But this is impossible since (p + 1)t
> Xv;. A second pass through the input, comparing each
x; to all remaining z;, tallying the vote for cach z;, and
keeping track of thelargest vote tally will complelte the
algorithm. Each pass requires O(np) time, thus proving
the desired resuit. i

3.3.4. Corollary: Weighted majority voting (¢-out-of-
Yv;, with £ > 33;) can be performed in O(n) time using
working storage for a single object.

3.3.5. Corollary: ynweighted m-out-of-n voting can
be performed in O(n“/m) time. Unweighted majority, or
(Ln/2)+1)-out-of-n, voting can be performed in O(n) time
using working storage for a single object. §

3.3.6. Example: Consider 6-way, 8-out-of-15 voting
with the vote weights 4, 3, 3, 2, 2, 1. Take an instance of
the voting problem with inputs (A, 3), (B, 2), (B, 2),
(A, 1), (C, 3), (A, 4) in presentation order. A single
working storage (z1, 4;) is required that will successively
hold the values (A, 3), (A, 1), (B, 1), (-, =), (C, 3), and
(A, 1) as we proceed through the algorithm steps.
Therefore, A is a candidate value for the voting result and a
second pass through the input will yield its actual vote
tally for comparison with 8. 1

4. Algorithms for Inexact Voting

Algorithms for inexact voting are in general more complex
than their exact-voting counterparts because of the non-
transitivity of approximate voting. Although the notion
of approximate voting and its applications have been
discussed in the literature, only one published inexact
voting algorithm is known to me [LORC89] and that
algorithm happens to be incorrect (more on this in
Subsection 4.1). Inexact voting with a small object space,
though theoretically possible, is not of practical interest.
Thus in this section, a large object space is assumed.

4.1. General Weighted Inexact Voting

Dealing with approximate equality requires defining a real-
valued distance function d: X“ — R on pairs of objects in
the input object space. Then two objects x; and x; are
approximately equal if d(x;, x;) < € where € is a sui\’ably
small comparison threshold. / The following definition
captures some properties of d consistent with the intuitive
notion of approximate equality.

407

4.1.1. Definition: The function d: X2—R is a distance
function for the object space X if for all x;, x; € X:

1. d(x;,x)=0

2. d(x;, x) = 0 iff x; = x;

3. d(xi, xJ) = d(X', x,-)]

Note that I have excluded from Definition 4.1.1 the
“triangle inequality”, viz d(x;, xp) < d(x;, x;) + d(x}, x).
which would make (X, d) a metric space. This is ddne in
view of the fact that the “triangle” restriction would not
simplify the voting algorithm while it needlessly
eliminates some potentially useful definitions of distance.

4.1.2. Example: Let our objects be pairs of integers
(i, j) denoting points on a two-dir?ensiorll)al grid. geﬁ;\e
d((i1, j1), (i, jo)) as min(li - ipl, ljj — jol). Accordingly,
twololj>}ects2wifl be considéred 2‘ap;%roxxzmately equal’giff
they have matching i or j coordinates. Then, sets of
approximately equal objects contain points that are
horizontally or vertically aligned. B

While distance functions such as that defined in Example
4.1.2 may not seem particularly useful for common
applications, there is no compelling reason to exclude
them (by restricting our discussion to metric spaces) when
the exclusion does not lead to simpler voting algorithms.

Given input objects xq, X9, . . . , X, With associateq votes
Vi, V2,...,V, and the distance function d: X“ - R
satist%ring Definition 4.1.1, the following algorithm can be
used for inexact voting.

4.1.3. Algorithm: Weighted Inexact Voting

1. Determine a maximal-vote subset S of the set of n
input objects such that for all x;, x; € §,d(x;, x)) < €
(this subset may not be unique).

. In general, S may contain identical elements; i.c.,
objects x; and x; with d(x;, x;) = 0. Combine the votes
for identical ol‘jects in 5‘ ﬁetling the set of distinct
objects §' = (z1,29,...,2,) and associated vote
tallies uy, up, ..., um',nwith m < n and d(z;, zj) > 0.

3. y:=select(z, u); w:= Zui. 1

The above description is af 2 high level and each step must
be further clarified arﬁi analyzed with respect to complexity.
Step 1 requires O(n*) time and can be carried out using
well-known procedures for minimizing the number of
states in an incompletely specified sequential machine
[KOHA78]. Here is a brief overview of the procedure. An
(n-1)-by-(n-1) triangular table is constructed in which
entry (i, j) indicates the “compatibility” (approximate
equality) of x; and x;, Compatibility classes of size 2 are
read directly from the table. Larger compatibility classes
are built in a stepwise fashion by adding to an existing
class a new object which is compatible with every member
of that class. The maximal compatibility classes thus
obtained form a “cover” on the set of objects (and not a
partition as asserted in Subsection 2.1 of [LORC89]).

It is also possible to define the computation in Step 1
recursively. Let the computed function in Step 1 be
denoted by S = cluster({xq,xy, ..., x,}). Given any set
M ={zq1,2,,...,2) of objects, let z;, z;€ M be a pair
of objects that are flrthest apart. Then clisster(M) is M if
d(z;, zj) < . Otherwise, cluster(M) is the larger of

cluster(M — {z;}) and cluster(M — {zj]). The resulting
implementation will be fairly efficient’in view of the fact
that in practice recursion stops after zero or one level with
very high probability. Step 2 is simple and can in fact be
merged with Step 1 (reducing the compatibility table by
combining objects pairs having 0 distance).

The selection function in Step 3 can be specified in
different ways depending on the structure of the input
object space. A general selection rule would be to a pick
an object z; having maximal vote. For a metric space,
generalizedl median voting (recursively removing an object
pair with the largest distance until only a single object or
two objects are left, then picking one at will) can be used
as suggested in [LORC89]. For numerical values, the
mean selection rule can also be applied. In all the above
cases, the worst-case 2c:omple:xity of Step 3 is O(n),
resulting in overall O(n“) complexity for Algorithm 4.1.3.
Whether one of the objects z; is picked as the output or a
“compromise” object is constructed based on the set §’, the
output vote w is the vote total for the entire subset S.

There are also situations in which the complexity of the
final selection dominates that of the rest of the algorithm.
A good example is voting on strings with d defined as the
“edit distance” between two strings (the minimal number
of symbol insertions, deletions, or substitutions that
wouid convert one string into the other) and the voting
result defined as a string for which the sum of distances
from 29, 2y, . . . , 2, is minimal. Since in the worst case
m = n, any selection rule that would require a search in the
large input space for a value that optimizes an objective
function would dominate the azlgorithm’s time complexity.
In such cases, the time is £X(n*).

4.1.4. Example: Consider the following object-vote
pairs (x; € R, v; € N) as inputs to an inexact 8-out-of-13
voting algorithm with the comparison threshold of 0.02.
The distance function is defined as d(x;, xj) =Ix; - xj|.

Objects Yotes
Xl = 1300 Vl =2
xp = 1310 vp=3
x3 =1.330 vy =
x4 = 1.340 V4=
x5 = 1.350 Vg =

The compatible pairs are: (xy.,xp), (x2,%3), (x3 X4),
(x3.%5), (x4%5). The maximal-compatible cover is thus
(x1.,x2)(x2.%3)(x3,x4,%5) with class vote tallies being S, 7,
and g, respectively. 'Phus w = 8. As for y, the maximal-
vote selection rule yields 1.330 while the weighted median
and weighted mean rules result in 1.340 and 1.336. 1

Clearly, distances between all object pairs must be
obtained in any algorithm for inexact voting. This leads to
the following theorem that establishes the optimality of
Algorithm 4.1.3.

4.1.5. Theorem: The complexity of Yeighted inexact
voting with a general object space is X n”).

4.2. Totally Ordered Object Space

In the special case of a totally ordered object space, a
simpler inexact voting algorithm based on sorting can be
devised. First, I formalize the notion of a totally ordered
object space for inexact voting.

408

4.2.1. Definition: An object space X is totally
ordered with respect to the distance function d if for any
three distinct objects x;, x;, X € X, we have d(x;, xp) =
ld(x;, xj) + d(Xj, xpl. 8

Definition 4.2.1 establishes a total order as follows. Pick
two distinct elements x; and x;, and order them arbitrarily;
say x; precedes x, denoted by x; — x;. Given an element
x;, it can be ordered relative to x; and x; by these rules:

xj = x; = xp iff d(x;, xp) = -ld(x;, x7) - d(xj,)]

X; = x; > xp iff d(x;, xp) = d(x;, ;) + d(xj, xp)

x; = X - x; iff d(x;, xp) = dx;, %)) - d(x;j, xp)
Continued application of these rules will order all elements
in X. Assuming that the relative order of any two objects
can be determined by simply comparing the object pair,
then any fast sorting algorithm can be utilized to obtain a
worst-case O(n log n) inexact voting algorithm.

4.2.2. Algorithm: Inexact Plurality Voting — Totally
Ordered Object Space

Sort in place the set of records (x;, v;) with x; as key; use

special end-marker (X1, Vp41) = (0, 0)

i=j=lu=w:=0

while j < n do
while d(x;, xj) sedou:=u+vj j=j+ 1 endwhile
if u > w then w := u; first := i; last = j — 1 endif
ur=u-vpi=i+1

endwhile

y := select(first, last) {w has already been computed)

The selection function here takes the indices of two
elements in the sorted list and returns a value selected from
Xf;yst 10 X5 O computed from all elements in that
i{tcrval. e time complexity of Algorithm 4.2.2 is
dominated by the O(n log n) sorting phase, as the rest of
the algorithm runs in linear time. Since inexact voting is
at least as hard as exact voting, one can state as a corollary
to Theorem 3.2.3 the following result which establishes
the optimality of Algorithm 4.2.2.

4.2.3. Corollary: The complexity of n-way inexact
plurality voting is £X(n log n). I

Again, as was the case for exact voting, a simple initial
test, establishing if the distance between the end (minimal
and maximal) objects is no more than &, can produce
almost linear average-case running time for the algorithm.

Here also a recursive formulation is possible. Instead of
sorting, we recursively remove from the set under
consideration, the smallest or the largest element. Thus
we want to compute S = cluster({x1, X, . . . , X,}) where
cluster(M) is M if max(M) — min(M) < € or else it is
obtained from M — {max(M)} or M — {min(M)}, whichever
is larger. The advantage of this method is that it achieves
average-case linear running time.

4.2.4. Example: Consider the inputs of Example 4.1.4,
which are already in sorted order, and the same distance
function. In executing Algorithm 4.2.2, the variables
involved assume the following values after each iteration
of the outer while-loop:

Iteration i j u w first last
0 1 1 0 0 - —
1 2 3 3 5 1 2
2 3 4 4 7 2 3
3 4 6 4 8 3 5

Therefore, the output y must be computed based on x3, x4,
x5 and the output vote is w = 8. 1

5. Algorithms for Approval Voting

In ordinary sociopolitical context, approval voting is an
election process whereby each participant, rather than
picking just the one “best” candidate, votes for a subset of
candidates who are qualified for the office or position under
consideration. The candidate with the highest approval
vote tally wins the election. Some restrictions may apply
to the subset that each voter can approve (e.g., there may
be a maximum size). Such details, as well as certain
disadvantages of approval voting, are not relevant to our
discussion here. An important advantage of approval
voting (and one that is also relevant in the context of
dependable computing) is that a lesser qualified candidate
will not get the highest vote total because of votes
splitting among several better, but almost equally
qualified, candidates. For our purposes, approval voting
means that each input to the voting process consists of a
set (finite or infinite) of approved values. Multiple
approved values may result from non-unique answer to a
given problem or from uncertainties in the solution
process. Either way, the value or set of values with the
highest approval vote will emerge as output.

As an example of where approval voting might be useful,
consider a process control application that requires the
periodic determination of a safe setting for a particular
system variable. In general, there may be more than one
safe setting or a range of safe values. If multiple redundant
versions of the control program present their sets of
“approved” values in a suitable format, an approval voting
routine can pick the required setting based on these values
and other system considerations.

5.1. Small Object Space

Let the input object space be of size 6 and let the set of
possible values or classes of objects be encoded by integers
{1,2,3,...,8). Since § is small, the ith approval set
can be represented by the bit vector x; with components x;;
(x;; = 1 means that input i approves the value/class j).
Then the algorithm consists of tallying the votes for each
of the & possible values/classes and then selecting the
appropriate output.

5.1.1. Algorithm: Approval Voting — Small Object
Space of size §

Let u be the vote-tally vector, with u; (1 < i <) holding
the vote for the object class i

fori =1to 6 do u; := 0 endfor

fori=1tondo
forj=110 §doif x;;

endfor

(y, w) = select(u) 1

= 1 then u; := u; + v; endfor

409

The pair of nested loops above involve # and § iterations,
respectively. For all varieties of voting covered by
Definition 2.1, the selection function for output (last step)
can be computed in time O(8). Therefore, the execution
time of Algorithm 5.1.1 is O(nd).

A slightly modified version of the circuit of Figure 1 can
be used for hardware implementation of this algorithm if
the bits x;; are applied serially to the x; inputs and
pipelining ¥s used. Itis fairly easy to show the optimality
of this algorithm leading to:

5.1.2. Theorem: Algorithm 5.1.1 represents an
optimal n-way voting scheme. I

5.2. Totally Ordered Object Space

Just as in the case of exact voting, a large object space
renders the above approach impractical. The set of
approved values associated with each input can be
represented in different ways. When all approval sets are
relatively small, they can be represented by lists. In this
case, I assume that the approval lists are sorted in
ascending order and that each list is terminated by the
special marker “eo”, This marker makes each set
nonempty, facilitates the termination check, and obviates
the need for special handling of empty sets at input and
output. For large approval sets, I consider here only the
case of interval representation; i.e., all values from some
lower bound /; to an upper bound h; are approved and I
denote this approval interval by [J;, 4;].

5.2.1. Algorithm:
Representation

I[niti;‘ilize the]working list N of value-vote pairs to @; § :=
1,2,...,n};z:=—00

while z # o do
Read the next element of L; into z; forallie §;
z := min(zy, 22, . . . , 2n);
S:={jlzj=z}iu=%_cv;;
Append the value-vote pair (z, 4) to N

endwhile

Compute the output list M := select(N). 1

Approval Voting — List

5.2.2. Example: Consider the approval lists L1 =
(1,2,3,4,%),L3=(2,3,4,5,%),and L3 = (3, 4, 5,).
Just before final selection step of Algorithm 5.2.1 is
executed, the working list N is ((1,1), (2,2), (3.3), (4,3),
(5.2), (==,3)). Depending on the selection rule applied, the
output list M will be:

Unanimity (3,4,)
Majority (2,3,4,5,)
Compilation (1,2,3,4,5,)
Plurality ((3,4,=),3)

Compilation is useful in situations where one wants to
compile all possible safety risks (e.g., pairs of aircraft that
are dangerously close to each other or radar targets that are
judged to be hostile, even though only one of the n
computation channels “thinks” so) for subsequent in-depth
analysis. For larger values of n, other schemes such as
“2/3 majority” and “seconded opinions” (values approved
by at least two inputs) may be considered. I

The complexity of Algorithm 5.2.1 is O(nq), where g is
the number of distinct elements that appear in the n input
lists. This is true since an O(n)-time search for the
minimal element is needed ¢ times. Since it is possible
that no two lists contain common elements, q can bg as
large as nk and the worst-case running time is O(n“k),
where £ is the size of the longest input [ist. Like all other
voting algorithms, this worst-case performance is almost
never encountered in practice.

Even though Algorithm 5.2.1 will most likely be
implemented in software, hardware realization is also
possible. One can envision n fixed-size dedicated queues,
each associated with one of the n computation channels.
The elements at the queue heads are the z;s (i = 1,2,....n).
In each step, the smallest of these values are removed from
the queues and a decision is made whether to output this
value. The process repeats until all head elements are “oo”.

5.2.3. Algorithm: Approval Voting — Interval
Representation; the ith input object is [1;, 4;]
Sort the 2n values /; and ; into ascending order to obtain
the list N. Also form the 2n-element list V such that Vi
=vi fN; =l and V; = -vjif N; = hj (this is done by
initializing V appropriately and exchanging its elements in
tandem with the exchanges required to sort N).
Initialize I, h, u, w to 0.
fori=1to2ndo
while i<2n and V20 do ueu+V;; i—i+1 endwhile
ifu>wthenw « u; 1 « Ni_1; h « N; endif
while i<2n and V<0 do wew+V; ; ii+1 endwhile
endfor
Output /, A, w. 1

The complexity of Algorithm 5.2.3 is dominated by the
initial sorting since the remainder of the algorithm needs
O(n) time. Thus the complexity is O(n log n) overall.

Algorithm 5.2.3 selects the lowest subinterval in the case
of tie votes for several subintervals. The selection rule can
be modified with knowledge about the object space. For
example, with intervals on the real line, it is reasonable to
assume that in the case of tie votes, the widest interval is
to be selected since it represents a wider range of approved
values. This can be easily accomplished by modifying the
condition for the if-statement to:

u>w or (u=wandN;-N;_1 >h-1))

5.2.4. Example: Consider the intervals (1.hy),
(I2,h3), (I3,h3), and (I4,h4) on the real line as depicted in

Figure 2 and assume vi=3,vy=2,v3=2, vq4=1. The
lists N and V (after sorting) are N = Iy, 13,14, 15, hy, hs,
31, -2). The output

hi,hp)and V= (3,2, 1,2, -1, -2, -
of Afgorithm 5.2.3"is then' = Iy, b = hgy w = 8,
indicating that the subinterval (I, hy) has obtained all of
the 8 votes or unanimous approval. I

The two while-loops in Algorithm 5.2.3 increase the
efficiency of the algorithm by avoiding the additional work
in the statement between them in a great majority of cases.
For example, with the four intervals of Example 5.2.4,
Step 4 of the algorithm is executed only once. If efficiency
were of no concern, a simpler algorithm could be used.

410

la hy
—_—

Figure 2. Example intervals on the real line.

The following result establishes an interesting relationship
between inexact and approval voting.

5.2.5. Theorem: With the real line as the input space,
approximate voting with values x,, X2, ...,%, and
comparison threshold ¢ is equivalent to approval voting
with the input intervals [x; — &/2, x; + €21, i = 12,....n.

Proof: Immediate upon noting that the intervals [x—¢/2,
x;+&f2] and [xf-elz, x]+e/2] overlap iff ix; - le < e.‘l

6.

I have presented algorithms for exact, inexact, and approval
voting and have demonstrated that the complexity of
voting algorithms differs depending on the structure of the
input space. The complexity of n-way, voting ranges from
O(n) for a small object space to O(n*) for a large object
space having no particular structure, with the O(n log n)
complexity in the case of a totally ordered object space
falling between the two extremes.

The results in this paper show that with a totally ordered
object space, voting is intimately related to sorting and has
the same complexity for both exact and inexact voting as
well as for approval voting with intervals. In fact, for
hardware voting, sorting networks can be easily modified
and augmented to yield voting networks [PARH91]. When
the input space is small, techniques for multiple-operand
addition and parallel counting (both fairly well-studied
problems in the field of computer arithmetic) can be used
for hardware realization of the voting algorithms.

Analyses offered in this paper for the complexity of the
various voting algorithms have been asymptotic and worst-
case. Since in most practical cases the number of input
data objects that participate in voting is small, more
detailed analyses are needed for comparing and selecting
algorithms. There are situations however when voting
with a fairly large number of inputs is needed. One
example is in image processing filters where during each
pass, pixel values may be replaced by values determined
from voting on a predefined neighborhood of nearby points
[BROWBS4]. Another example is in distributed fault
diagnosis where voting might be used to determine the
signature of a fault-free processor from the self-diagnosis
signatures of participating processors [SUSY91].

Finally, in several places, I have referred to average-case
complexity of voting algorithms. In real-time applications
with hard deadlines, the gain over the worst-case
performance may seem unimportant. However, even in
such cases, the average running time may be used to
advantage if the probability of missing the deadline due to
excessive voting delays is comparable to other sources of
failure (e.g., resource exhaustion or imperfect coverage).

Conclusions

References

[AGRAS88] Agrawal, P., “Fault Tolerance in
Multiprocessor Systems Without Dedicated
Redundancy”, IEEE Transactions on Computers, Vol.
37, No. 3, pp. 358-362, Mar. 1988.

[AVIZ85] Avizienis, A., “The N-version Approach to
Fault-Tolerant Software”, IEEE Transactions on
Software Engineering, Vol. SE-11, pp. 1491-1501,
Dec. 1985.

[BABA87] Babaoglu, O., “On the Reliability of
Consensus-Based Fault-Tolerant Distributed Computing
Systems”, ACM Transactions on Computer Systems,
Vol. 5, pp. 394-416, 1987.

[BARB87] Barbara, D. and H. Garcia-Molina, “The
Reliability of Voting Mechanisms”, IEEE Transactions
8{1: C%rgputers, Vol. C-36, No. 10, pp. 1197-1208,

t. 1987.

[BRIL87] Brilliant, S.S., J.C. Knight, and N.G.
Leveson, “The Consistent Comparison Problem in N-
version Software”, Software Engineering Notes, ACM
SIGSOFT, Vol. 12, pp. 29-34, Jan. 1987.

[BLOU90] Blough, D.M. and G.F. Sullivan, “A
Comparison of Voting Strategies for Fault-Tolerant
Distributed Systems”, Proc. of the 9th Symp. on
Reliable Distributed Systems, Oct. 1990.

[BROW84] Brownrigg, D.R.K., “The Weighted Median
Filter”, Communications of the ACM, Vol. 27, No. 8,
pp- 807-818, Aug. 1984,

[CAMP91] Campbell D. and T. McNeill, “Finding a
Majority When Sorting is Not Available”, The
Computer Journal, Vol. 34, No. 2, p. 186, Apr. 1991.

[CHEN9S0] Chen, Y. and T. Chen, “Implementing Fault
Tolerance via Modular Redundancy with Comparison”,
IEEE Transactions on Reliability, Vol. 39, pp. 217-
225, June 1990.

[DAVI62] David F.N. and D.E. Barton, Combinatorial
Chance, Hafner, 1962, p. 315.

[GARC85] Garcia-Molina, H. and D. Barbara, “How to
Assign Votes in a Distributed System”, Journal of the
ACM, Vol. 32, pp. 841-860, Oct. 1985.

[GIFF79] Gifford, D.K., “Weighted Voting for
Replicated Data”, Proc. of the 7th ACM SIGOPS
Symp. on Operating System Principles (Pacific Grove,
CA), Dec. 1979, pp 150-159.

[JAJO90] Jajodia, S. and D. Mutchler, “Dynamic
Voting Algorithms for Maintaining the Consistency of
a Replicated Database”, ACM Transactions on Database
Systems, Vol. 15, pp. 230-280, June 1990.

411

[JOHN89] Johnson, B.W., Design and Analysis of
Fault-Tolerant Digital Systems, Addison-Wesley, 1989.

[KANE89] Kanekawa, N., H. Maejima, H. Kato, and H.
Thara, “Dependable Onboard Computer Systems with a
New Method — Stepwise Negotiating Voting”, Proc.
of the International Symp. on Fault-Tolerant
Computing (Chicago), June 1989, pp 13-19.

[KNIG86] Knight, J.C. and N.G. Leveson, “An
Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming”, IEEE
Transactions on Software Engineering, Vol. SE-12, pp.
96-109, Jan. 1986.

[KNUT73] Knuth, D.E., The Art of Computer
Programming — Vol. 1: Fundamental Algorithms,
Addison-Wesley, 2nd Edition, 1973. (Subsection
1.2.6, Problem 64, p. 73 and p. 489).

[KOHA78] Kohavi, Z., Switching and Finite Automata
Theory, McGraw-Hill, 2nd Edition, 1978, pp. 333-347.

[LORC89] Lorczak, P.R., A.K. Caglayan, and D.E.
Eckhardt, “A Theoretical Investigation of Generalized
Voters for Redundant Systems”, Proc. of the
International Symp. on Fault-Tolerant Computing
(Chicago), June 195)9, Pp. 444-451.

[PARH91] Parhami, B., *“Voting Networks”, IEEE
Transactions on Reliability, Vol. 40, No. 3, pp. 380-
394, Aug. 1991.

[PARH91a] Parhami, B., “The Parallel Complexity of
Weighted Voting”, Proc. of the International Conf. on
Parallel and Distributed Systems, Washington, DC,
Oct. 1991, pp. 382-385.

[PARI86] Paris, J.-F., “Voting with a Variable Number
of Copies”, Proc. of the International Symp. on Fault-
Tolerant Computing (Vienna, Austria), July 1986, pp.
50-55.

[SIEWS82] Siewiorek, D.P. and R.S. Swarz, The Theory
and Practice of Reliable System Design, Digital Press,
1982 (discussion on voting, pp 117-122).

[SKLA76] Sklaroff, J.R., “Redundancy Management
Techniques for Space Shuttle Computers”, IBM Journal
of9' Research and Development, Vol. 20, pp. 20-28, Jan.
1976.

[SUSY91] Su, S.Y.H., M. Cutler, and M. Wang, “Self-
Diagnosis of Failures in VLSI Tree Array Processors”,
IEEE Transactions on Computers, Vol. 40, No. 11, pp.
1252-1257, Nov. 1991.

[VOGE88] Voges, U., “Use of Diversity in
Experimental Reactor Safety Systems”, in Software

Diversity in Computerized Control Systems, Springer-
Verlag, 1988, pp. 2949.

