IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 3, MARCH 1993

On the Implementation of Arithmetic Support Functions
for Generalized Signed-Digit Number Systems
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Abstract—Ordinary signed-digit (OSD) number representation systems
have been defined for any radix r > 3 with digit values ranging
over the set {—co,---,—1,0,1,---,a}, where « is an arbitrary integer
in the range r/2 < o < 7. The most important property of OSD
number representation systems is the possibility of performing carry-
free addition and (by changing all the digit signs in the subtrahend)
borrow-free subtraction. However, OSD number systems are not the only
representations with this property. Previously, the author has defined the
class of generalized signed-digit (GSD) number systems having the digit
set {—a,—a +1,---,3 — 1,3} in radix r with « > 0, 3 > 0, and
a + 3 > r. GSD number systems cover all useful redundant number
representations as special cases. Most GSD number systems support
carry-free addition and borrow-free subtraction and even those that do
not, can be dealt with using limited-carry or limited-borrow algorithms
which yield the ith sum or difference digit z; as a function of the digits z,,
Yis Ti—1y Yi—1y L;—2, and y;_o of the operands = and y. In this paper,
we treat additional topics that are important for practical implementation
of arithmetic functions using GSD ber sy B GSD b
systems may have asymmetric digit sets, we need to consider subtraction
(or at least sign change for representations with o > 0 and 3 > 0)
explicitly. Zero detection, sign detection and overflow handling are also
treated in depth.

Index Terms—Asymmetric signed-digit number systems, overflow, re-
dundant number sy , sign change, sign detection, signed-digit arith-
metic, zero detection.

1. INTRODUCTION

Two basic approaches for reducing the delays caused by signal
propagation in arithmetic operations are speeding up or eliminating
the carry and borrow chains. The first approach is exemplified by
carry-skip [7] and carry-lookahead [8] designs which reduce the
ripple-carry delay of O(n) to a delay of O(+/n) and O(log n),
respectively, for n-digit operands. Even though in the theory of al-
gorithms, O(log n) time complexity is definitely superior to O(y/n),
the length of operands in conventional digital computers is short
enough to make the carry-skip method competitive, particularly in
view of its greater suitability for VLSI implementation [S]. The
second approach is exemplified by stored-carry [9] and signed-digit
[1] number representation methods which limit the propagation of
carries at the expense of some overhead in storage and data-path
width and in processing time for the initial conversion and the final
reconversion. This paper concerns the latter approach (for further
discussion of purpose and motivation, see [15]).

For any radix r > 3, there are one or more signed-digit (SD)
number representation systems [1]—[3]. These ordinary SD (OSD)
number systems correspond to different values of « in the range
r/2 < a < r, from the minimally redundant system (a = [r/2] +
1) to the maximally redundant one (o = r — 1), where o determines
the set {—a,---,-1,0,1,---,a} of the 2« + 1 digit values used.
The most important property of OSD number representation systems
is the possibility of performing carry-free addition and (by changing
all the digit signs in the subtrahend) borrow-free subtraction. The

Manuscript received January 10, 1988; revised June 15, 1990 and April 15,
1992.

The author is with the Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA, 93106.

IEEE Log Number 9202840.

379

most serious drawbacks of OSD number systems are difficult sign
detection (sign of a number is the sign of its most significant
nonzero digit) and the overhead for conversion to/from conventional
nonredundant representation. The propagation-free arithmetic prop-
erty of OSD numbers has caused renewed interest in redundant
number representations for systolic and/or VLSI implementation (see,
e.g., [6]).

However, OSD number systems are not the only representations
with this property. I have previously defined the class of generalized
signed-digit (GSD) number systems having the digit set {—a, —a +
1,---,8 — 1,3} in radix » with @ > 0, 3 > 0, and p = a+
B3+ 1—r, where p > 1 is the redundancy index of the number
system [11], [15]. Table I shows that GSD number systems cover all
previously known useful redundant number representation systems
and also lead to new ones. An example of such new representations
is provided by the class of stored-carry-or-borrow (SCB) number
systems with applications in the design of systolic counters [4], {10].
Any GSD number system with » > 2 and p > 3 (or with p > 2,
provided that  # 1 and 8 # 1) supports carry-free addition and
even in the exceptional cases (i.e., for r = 2, p = 1, or p = 2 with
a = 1 or 8 = 1), a limited-carry addition algorithm is applicable that
yields the ith sum digit s; as a function of the digits x;, y:, =:—1,
Yi—1, Li—2, and y;_2 of the operands x and y [15].

In this paper, we treat additional topics that are important for
practical implementation of arithmetic functions using GSD number
systems. Because GSD number systems may have asymmetric digit
sets, we need to consider subtraction (or at least sign change for
representations with & > 0 and 3 > 0) explicitly. In Section II,
we present results on borrow-free and limited-borrow subtraction of
GSD numbers. Results pertaining to a negation (sign change) unit,
that can be placed on the path of the addend in a GSD adder to allow
the sharing of addition and subtraction hardware, are presented in
Section IIl. Zero/sign detection and overflow handling are the topics
of Sections IV and V, respectively. Conclusions and directions for
further research appear in Section VI

II. SUBTRACTION OF GSD NUMBERS

Proofs have not been provided for results in this section since
they are quite similar to the proofs for carry-free and limited-carry
addition presented in [15]. For the sake of completeness, results that
are identical in form to those for addition are stated for both.

Algorithm 1 (propagation-free addition/subtraction): Let the
augend/minuend and the addend/subtrahend have z; and y; as the
¢th digits. For each position ¢, a position sum/difference p; = x; £ y;
is computed which is then broken into a transfer digit t.1, and an
interim sum/difference w; = p; + rt;y1). The final sum/difference
digit is z; = w; % t; whose computation should produce no new
transfer. O

Since transfer digits in GSD arithmetic are signed (unlike standard
carries and borrows that are unsigned), we could have used “additive”
transfer digits whose values are added into the next digit position for
subtraction as well as for addition. However, we have chosen to use
a “subtractive” transfer digit here since it leads to

ALt S p Q)
as the common range for the transfer digits in addition and subtrac-

tion. The nonnegative integers A < « and g < 3 will be specified
later. The transfer digit selection process consists of a number of
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TABLE 1
MAJOR SUBCLASSES OF GSD NUMBER REPRESENTATION SYSTEMS AND THEIR PARAMETERS

Name of the GSD Subclass Abbr. r o B P
Binary stored-carry BSC 2 0 2 1
General stored-carry SC r 0 r 1
Binary stored-double-carry BSDC 2 [V} 3 2
General stored-double-carry SDC r 0 r+1 2
Binary stored-borrow (signed-digity BSB,BSD 2 1 1 1
General stored-borrow SB r 1 r-1 1
Binary stored-carry-or-borrow BSCB 2 1 2 2
General stored-carry-or-borrow SCB r 1 2
Minimally redundant symmetric SD rz24 rl/2 r/2 1
Ordinary signed-digit OSD r23  rmk<a<r o 2<p<r
Minimally redundant OSD rz3  Ll2l+1 o 25ps3
Maximally redundant OSD r23 r-1 a r-1
Unsigned-digit redundant UDR r 0 B B-r+1

(approximate) comparisons between p; and known constants. Thus,
Algorithm 1 is simplified if A and g are minimized.

Lemma 1: The set {—X,—A+1,-+-,p — 1, u} of possible trans-
fer digit values for propagation-free addition/subtraction of GSD
numbers is of minimal size if A and p are chosen to be

AR = Taf(r = 1)] @

W™ = [B/(r = 1. 0 Q)
Lemma 2: Assuming that A > A™" and p > p™", Algorithm 1
is applicable to a GSD number system iff

pZA+p. 0@
Theorem 1: The propagation-free addition/subtraction defined by
Algorithm 1 is applicable to a GSD number system iff » > 2 and
eitherp>3o0rp=2,a#1l, 3#1. O
Algorithm 2 (transfer digit selection for borrow-free subtraction):
The transfer digit ¢+, is selected to be k iff Cr41 < pi < Cy, where
C_y = o0, Cpuy1 = —oo, and each Cj(~-X < j < u) is a known
comparison constant. O
Clearly, the values of comparison constants in Algorithm 2 directly
affect the complexity of the GSD subtractor. In general, there may
be several valid choices for each C; and thus one which results
in the simplest possible hardware realization can be selected. The
following theorem specifies the range of valid choices for C;. The
corresponding result for addition can be found in Theorem 2 of [15].
Theorem 2: The comparison constants Cj of Algorithm 2 must
satisfy

—k=Ur—(a=p)=1<Ch < —kr+8— A O (5)

Next, we consider a limited-propagation subtraction algorithm that
can be used in the following cases where Algorithm 1 is inapplicable:
Dr=22yp=10r3)p=2,witha=1lorg=1.
Algorithm 3 (limited-propagation addition/subtraction): Let the
augned/minuend and the addend/subtrahend have x; and y; as the
ith digits. In stage 1, for each position i, a position sum/difference
pi = x; £ y; is computed and used to generate a range estimate e,
for the final transfer digit ¢;,. In stage 2, the position sum/difference
pi and the range estimate e; are used to compute a transfer digit

tiy1 and an interim sum/difference w; = p; £ rt;y,. The final
sumjdifference digit is z; = w; = t; whose computation should
produce no new transfer. O

The new aspects of this algorithm vis-a-vis Algorithm 1 are: 1)
Computation of the range estimates e;41, and 2) Computation of
tiy+1 as a function of both p; and e;. The range estimate e; may be
presented in many different formats. In our subsequent discussion,
we consider the simplest case where a binary range estimate is
used, since this can be shown to be sufficient for limited-propagation
addition/subtraction in all cases [15]. Let A’ and u' be constant
(positive or negative) integers satisfying

“A<=XN <y <. 6)

The binary range estimate e; € {l, h} restricts the transfer digit ¢;
into one of two closed subintervals; the low subinterval [—X, 1] or
the high subinterval [—X', u]. )

Algorithm 4 (range estimate for limited-borrow subtraction): Select
e;41 = hiff p; < E and e;4, = iff p; > E, where E is a known
comparison constant. O

Theorem 3: The comparison constant E of Algorithm 4 must
satisfy

(W +)r+B-N<ESN+r—(a=p). OO

Algorithm 5 (transfer digit selection for limited-borrow subtrac-
tion): The transfer digit ¢;+, is selected to be k iff Cry1(ei) < pi <
Ci(e:), where C_»(I) = C_x(h) = 00, Cput1(l) = Cppa(h) =
—o0, and each Cj(e;) (=X < j < p, e; € {I,h}) is a known
comparison constant. O

Theorem 4: The comparison constants Ci(I) and Ci(h) of
Algorithm 5 must satisfy

(k=1 —(a~p)-1<Ce) < —kr+3-2 (8a)

—(k=1r—(a—p)—1< Ce(h)< —kr+p3-X. 0O (8b)

Lemma 3: Propagation-free addition/subtraction is applicable to a
GSD number system iff

p > max(A+ ' X +p) ©)
N4p' > [p/(r+1)]. 0 (10)

Theorem 5: Limited-propagation addition/subtraction (Algorithm 3)
is applicable to all GSD number systems. ]
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III. NEGATION OF GSD NUMBERS

Negation (sign change) may be viewed as a special case of
subtraction. Thus, a subtractor built according to the results of
Section II can be used to effect a borrow-free or limited-borrow
sign change. However, because the minuend is fixed, negation can
be accomplished by a much simpler circuit than that required for
general subtraction. In fact we will see that the negation process is
always borrow-free, even for classes of GSD numbers that do not
support borrow-free subtraction. Clearly, negation is meaningful for
a GSD number system only if 3 > 0 and o > 0. Also, for o # B,
negation may lead to apparent or real overflow that must be handled
by techniques discussed in Section V.

The algorithm for negation of a number y is identical to
Algorithm 1, with g; replaced by —y;. For the sake of completeness,
we restate this special case of Algorithm 1 as follows. We will see
that borrow-free negation is always possible so that the analog of
Algorithm 3 need never be used.

Algorithm 5 (borrow-free negation): Let the number y to be negated
have y; as the ith digit. The position negate —y; is broken into a

transfer digit t;.+1 and an interim negate v; = —y; +rt;1,. The final
negate digit is n; = v; — t; whose computation should produce no
new transfer, O

Lemma 4: The set {7,7 + 1,--,7'} of possible transfer digit
values for GSD negation is of minimal size if  and 7’ are chosen
to be

T = (9~ )/ (r = 1)
7' = (3 - a)/(r — 1)].

(1)
(12)

Proof: Using the extreme values of the parameters in the ith
stage, the following inequalities are easily derived:

gi—a+7 Srtign <yt 4T 13)
To determine the maximal value for 7, we set y; = —a in (13) to
obtain
(=2a +7')/r < miny, (tix1) < (—a+ B+ 7)/r.

Thus, we select

T = (B = a7 fr). (14)
Similarly:

(8= o +7)/r < maxy,(tip1) < (28 +7)/r
T = (8- a4 /] (15)

The desired results are obtained by proceeding as in the proof of

Lemma 2 in [15]. O

Lemma 5: Assuming 7 < 7™ and 7' > 7' ™" Algorithm 5 is
applicable to a GSD number system iff p > 7 ~ 7.

Proof: Similar to the proof of Lemma 1 in [15], with —y;, 7,

and 7' replacing p;i, —\, and p, respectively. ]

Note that 7 and 7' can be of either sign, as will be seen later. This
is the main reason for the change of notation from the —\ and p
introduced in our discussion on addition/subtraction.

For a geometric verification of (14) and (15), one can refer to Fig. 1
where the two lines bounding the value of ¢, according to (13) have
been drawn. Note that in the special case of o = 3 (i.e., symmetric
GSD representations), we have 7™** = 7/™® — (_ Thus, transfer
digits are not needed for negating such GSD numbers; a fact that
is intuitively obvious. Somewhat less obvious is the generalization
stated in the following theorem.

Theorem 6. The need for generating transfer digits in GSD negation
is obviated iff « = 3 mod(r — 1). In all other cases, two-valued
transfer digits are sufficient.
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Fig. 1. The range of transfer digit values as a function of the operand digit
for borrow-free negation.

Proof: Immediate upon noting that 7™* = 7/™i% jmplies the
divisibility of 3 — o by r — 1 and that in all other cases 7™** and
/™% given by (11) and (12) differ by 1. 0

Corollary 1: The borrow-free negation defined by Algorithm 5 is
applicable to all GSD number systems.

Proof: Immediate from Lemma 5 upon noting that p > 1 and
r/min _ pmax < 1 (by Theorem 6). m|

For hardware implementation, a constant transfer digit value
T™3% = /™ means a simpler and faster negation circuit. Thus, SCB
number representation systems having o = 1 and 3 = r (see Table I),
and more generally GSD number systems with o = 8 mod(r — 1),
offer advantages in terms of the speed and simplicity of negation.
When 7% £ 7/ ™" we must specify how one of the two transfer
digit values is selected for Algorithm 5.

Algorithm 6 (transfer digit selection for borrow-free negation): The
transfer digit t;41 is selected to be '™ iff y; > C and to be 7™*
iff y; < C, where C is a known comparison constant. O

Theorem 7. The comparison constant C' of Algorithm 6 must

satisfy

(r=Dr™ - (F-1)<C<(r—1)r™ +a. (16)

Proof: From Fig. 1, we find the values of y; at the intersections
of the lines #;41 = 7'™" and t,,; = 7™ with the upper and lower
oblique lines as

B=(r—1)r'"™" —(3-1)
D=(r-1)r""4+a-1.

So, the boundary between selecting ;41 = 7™ and ¢;4, = 7' ™"
(i.e., the value of C) must lie between B and D + 1. The selection
of a suitable value for C is possible if D + 1 > B. To see when
D +1 > B holds, we compute

(D+1D)=B=(@-1)(r™* - ™) o451
— (7‘ _ 1)(Tmax _ Tlmin + 1)+P" 1.

Since 7™2* — 7'™® L 1 > 0 and p > 1, the above difference is
always nonnegative. O

Example 1: For the BSCB system (see Table I), we have ¢;41 =
7™ = gp'min — 1 Table Il shows the negation process. The
adjustment to nv* is necessary because ts # 0. Hardware for this
adjustment can be incorporated into the logic for the last negator
stage. Similarly, the first negator stage is different since to = 0 (the
circled entry). 0

max
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TABLE 11
EXAMPLE OF BORROW-FREE NEGATION FOR THE BSCB NUMBER SYSTEM

¥ 0 1 -1 1 0 2 -1 1
-y 0 -1 1 -1 0 -2 1 -1
v; 2 1 3 1 2 0 3 1
s 1.1 1 1 1 1 1 1@
n* 1 0 2 0 1 -1 2 1
Adjuslmenk

n -1 0 2 0 1 -1 2 1

IV. ZERO AND SIGN DETECTION

Whenever zero has the unique all-zeros representation, zero detec-
tion for GSD numbers is similar to that of conventional nonredundant
positional systems. Thus, we first prove the following uniqueness
theorem.

Theorem 8: Zero has the unique k-digit all-zeros representation in
a GSD number system iff at least one of the following four conditions
holds: ) k =1,2) a =0, 3) 3 =0, 4) max(a,3) < r.

Proof: For k = 1, o = 0, or 3 = 0, uniqueness is obvious.
Suppose that k > 1, a > 0, 7 > 0, and max(a, 3) < r. Then, the
value of the number zx_jzk_2-+- 2120 can be written as

value(zg—12k—2 "+ 2120) = 20 + 7 X value(zx—12k—2° " 21).

A necessary condition for the above value to be 0 is zo = 0 mod 7.
Thus, since max(a,3) < r, we must have zo = 0. We can deduce
by induction that z; = :-+ = 2x_s = zx—1 = 0. This concludes
the sufficiency proof. To show the necessity of at least one of the
four conditions, we prove that zero has multiple representations if
E>1a >0, 8 >0, and max(a,3) > r. If & > r, then

00 --- 01 —r is an alternate representation of zero. Similarly,
if # > r,then 00 --- 0 —1 7 has the same value as the all-zeros
vector. O

Fortunately, even if the conditions of Theorem 8 do not hold,
zero detection is not fundamentally more difficult. A logic signal
¢i is propagated from right to left, indicating at each position ¢,
whether the digits to the right represent a multiple of = (i.e., zero
with an appropriate transfer digit). The procedure is formalized in
the following algorithm.

Algorithm 7 (zero detection for GSD numbers): Let the number
under test have the k-digit GSD representation zx_yzx—2 - 2120.
Set zx = 0, (o = true, t{x, = 0 and compute sequentially for
i = 0,1, k:

ui = i+t
ti+1 = if u; = 0 mod r then u;/r else anything;
Cit1 := if u; = 0 mod r then (; else false.

The test result is (1. O
Note that in the special cases covered by Theorem 8, we have ¢; = 0,
ui = zi, and (i+1 := if z; = 0 then (; else false. Thus, the test
result is the logical AND of position test signals indicating whether
z; = 0. For large values of k, this must be implemented as a tree
of AND gates due to fan-in limitations. In the general case, transfer-
skip and transfer-lookahead techniques can be used in much the same
way as conventional carry-skip and carry-lookahead to speed up the
hardware realization of Algorithm 7.

Example 2: That the radix-10 SCB number (see Table ) 0 0 —1
9 9 9 9 10 represents zero is established by Algorithm 7 as shown in
Table 1II. We have ¢, = 0 with (, = true. Thus, the zero test result
is affirmative. O
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TABLE III
EXAMPLE OF ZERO DETECTION FOR A RADIX-10 SCB NUMBER SYSTEM

i 8§ 7 6 5 4 3 2 1 0

2z 0o 0 -1 9 9 9 9 10

u; 0 0 0 10 10 10 10 10
o o o

4 S
;l» true true true true true true true true

Let the range of ¢;4; in Algorithm 7 be —X, < ;41 < p.. To
find minimal values for A. and p., we proceed as in the proof of
Lemma 1. We first note that

(a4 A:) Lui <3+ p..
If u; # 0 mod r, then the value of ¢;1; is immaterial. So, we
assume u; = rt;}1. Thus:

—(a+ A/ < tigr < (B +p:)/7

This yields
AP = I_(a + /\’,““’)/TJ = A" = |o/(r — 1)
umn = | (84 ) fr| = ut = 18/t = ).
Note that the values of A™® and #™™® given by (17) are less than or
equal to the corresponding A™™" and p™™ values given by Lemma 1
for the addition or subtraction process.

We now discuss the problem of sign detection for GSD numbers.
Unlike OSD numbers, the sign of the most significant nonzero digit
of a GSD number may not be identical to the sign of the number.
For example, the BSCB number (see Table I) 0 0 —1 2 1 is positive.
Obviously, the sign detection problem arises only if ., 3 > 0.

Theorem 9: The sign of a GSD number is given by the sign of its
most significant nonzero digit iff max(«a, 3) < 7.

Proof: Suppose that the most significant nonzero digit of the
GSD number yx—1yx—2 - y1¥0 is ¥;(0 < j < k — 1) and that it is
positive. Then, the minimum value that the number can have is

(17a)
(17b)

«— j digits —
value(l—a~-~—a—a):rj—a<rj_1+---+'r+1)
=la+r(r—1-a)/(r-1).

Clearly, the above value is positive for & < » — 1. Similarly, if
the most significant nonzero digit is negative and 3 < r — 1, the
number is bound to be negative. This concludes the sufficiency proof.
To prove the necessity, we show that with max(a.3) > 7, we
have positive (negative) numbers with leading negative (positive)
digits. If a > r, we have value(l —r —1) = —1. Similarly, for
3> value(=1r 1)=1. O

Thus, in special cases which satisfy the condition of Theorem 9,
sign detection for GSD numbers is no more difficult than that of OSD
numbers. As was the case for zero detection, a simple extension of the
right-to-left scan will allow us to detect the sign of a GSD number
in all cases.

Algorithm 8 (sign detection for GSD numbers): Let the number
under test have the k-digit GSD representation zx—12k—2 - 2120-
Set zx = 0, 09 = pos, to = 0 and compute sequentially for
it =0,1,--,k:

Ui 1=z + i

tiy1 := if u; > 0 then|u;/r|elsefu;/r];

Vi 1= U — Tligas

0i41 := if v; = 0 then o, else if v; > 0 then pos else neg.
The test result is ox41. o
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TABLE IV
EXAMPLE OF SIGN DETECTION FOR A RADIX-10 SCB NUMBER SYSTEM

i 8 7 6 5 4 3 2 1 0

0 -1 9 9 10 9 10
0 0 10 10 11 10 10
0 1 1 1 1 1 o
vi 0.0 0 0 0 0 1 0 0

O; PoOs pos pos pos pos pos pos pos pos

X
o Qoo
o o

Note that in the special cases covered by Theorem 8, we have ¢; = 0
Vi = Ui = z;, and ;11 is determined by o; and the sign of z;.
Again, transfer-skip and transfer-lookahead techniques can be used
in much the same way as conventional carry-skip and carry-lookahead
to speed up the hardware realization of Algorithm 8.

Example 3: That the radix-10 SCB number (se¢ Table I) 0 0 —1
9 9 10 9 10 represents a positive number is established by
Algorithm 8 as shown in Table IV. We have o4 = pos. Thus, the
number is positive. ' ]

It is interesting to note that Algorithms 7 and 8 can be combined
into a single algorithm whose hardware realization is only slightly
more complex than either algorithm alone. Thus, the overall hardware
requirement is reduced by using the following version of Algorithm 8
with three-valued oi(s; € {-1,0,1}) for both zero and sign
detection.

Algorithm 9 (combined zero and sign detection for GSD numbers):
Let the number under test have the k-digit GSD representation
Zk—12k—2'*21%0. Set zx = 0, 0o = 0, to = 0 and compute
sequentially for i = 0,1,---,k:

u; 1= z; + by

tiv1:=if u; > 0 then|u,/r |else[u;/r];
vi = i = Tl

041 := if v; = 0 then o, else signum(v;).

The three-valued test result is o1, whose interpretation is the same
as that of the signum function used above. O
The range of ¢;4; in Algorithms 8 and 9 is the same as that obtained
for Algorithm 7 in (17a) and (17b).

V. DETECTION OF OVERFLOW IN GSD ARITHMETIC

In dealing with fixed-length k-digit numbers, an apparent overflow
occurs when the outgoing transfer digit ¢ is nonzero. We call this
an “apparent overflow” since even with ¢ # 0, the result of the
arithmetic operation may be representable as a k-digit GSD number.
The apparent overflow simply signifies that a particular representation
of the result has more than k digits. When the result has no k-digit
representation, we say that a real overflow has occurred. Obviously,
real overflow is much harder to detect than apparent overflow.

Fortunately, however, it is not necessary for the hardware to detect
real overflow. In a special-purpose system (e.g., a systolic arithmetic
engine), an intermediate result with apparent overflow can be tagged
as invalid for the rest of the computation. While it is true that with
this approach more results will be tagged than what is absolutely
necessary, overflows are so infrequent that no serious problem is
encountered. A partial remedy is to maintain.a guard digit on the
left which acts as the “invalid” tag when not zero. Frequently, it is
possible to use idle cycles to reset a nonzero guard digit to 0 by
changing the most significant digit of the number (e.g., changing
1 —6'to 0 4 in decimal), thus enabling the computation to continue.
At any rate, the net effect of using apparent overflows instead of
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real overflows is that the range of numbers that we can deal with is
occasionally restricted.

On the other hand, if overflow is dealt with by using exception-
handling software, there is no problem at all since the value of #;
and the apparent result xi_1zx—2 - - - 129 (which, as in the case of
conventional overflow, differs from the correct result by a multiple
of r¥) provide sufficient information for the overflow handler to deal
with the situation; an attempt to obtain a valid k-digit representation
of the result may be part of this routine’s function.

The detection of real overflow and the correction procedure in the
case of a nonreal overflow are discussed next. In the rest of this
section, we will assume ¢; to be an additive transfer digit, so that
tk&k—1Tk—2 -+ - X120 is a correct (k + 1)-digit representation of the
result. Obviously, for a borrow-type transfer digit, the sign of ¢; must
be changed if the subsequent results are to be applicable.

Algorithm 10 (detection of real overflow): Given that an outgoing
transfer digit tx # 0 has been produced with the apparent result
Th—1Tk—2 " T1Z0, Set th = 0 and compute sequentially for ¢ =
0,1,--,k—1:

U; 1= X; +t§;
tipq := if t; > 0 then —[ (8 — u;)/r| else [(u; +a)/r];
1'; =u; - rti_,_l.

Then compute uy := tj + t},. There is real overflow iff txuix > 0.
: a
Note that the computation of z; is redundant in this algorithm.
The reason for its inclusion is that is simplifies the description of
Algorithm 11, as we will see shortly. An intuitive explanation of
Algorithm 10 is that it obtains, in a right-to-left sequential scan, the
largest (smallest) possible digits in the range —a < zf < 3 that
can be used for representing the result producing ¢tz > 0(tx < 0). If
even with these digits, the outgoing transfef digit u, is nonzero and
of the same sign as #, then real overflow has occurred. In executing
Algorithm 10, the sign of all transfer digits is opposite that of tz.
The magnitude of the transfer digit ¢} satisfies "

[t5] < Ua+B)/r] =14+ [(p - 1)/r].

Thus, for p < r, a binary transfer digit is sufficient. It is inter-
esting to note that for nonredundant representations, we have o +
B + 1 = r. Thus, all transfer digits are zero and an apparent overflow
is always a real overflow.

Example 4: Consider a GSD system with r = 10, @ = 5, and
B = 10. The minuend 6 5 5 5 and the subtrahend —5 5 3 4
yield the apparent difference 1 0 2 1 with the outgoing transfer
digit £4 = 1. Algorithm 10 works as shown in Table V. Since
ug = t4 + t4, = 0, the overflow is not real. O

Algorithm 11 (correction of result with nonreal overflow): After
executing Algorithm 10 and determining the values of ux and z)
fori = 0,1,---,k — 1, set t{ = u, and compute sequentially for
i =k-1,---,1,0:

(18)

Vi = .Zi + /"til‘"l;
t; :=if v; > 3 then v; — 3 else if v; < —a

then v; + a else 0;
1! n
T = -t

The corrected result is 2} _, z} _, - - - «} 2. Note that if ¢/ = 0, then

t{ =0 and 2 = z|; for all j < i. Thus, execution of the algorithm
can end as soon as t! becomes zero. O

To find the range of transfer digits in Algorithm 11, let #; > 0.
Then, we must have u, < 0 for the overflow to be nonreal. Thus,
all transfer digits ¢t} in Algorithm 11 are nonpositive. Similarly if
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TABLE V
EXAMPLE OF REAL OVERFLOW DETECTION IN A GSD NUMBER SYSTEM
i 4 3 2 1 0
X; t1 0 2 1
u; 0 0 2 1
t; -1 -1 0 0 0
x'; 10 10 2 1

tr < 0, all transfer digits t; will be nonnegative. Since the sign
of ¢/ is determined by the sign of ¢y, we need only represent its
magnitude. In the following discussion, we take t; < 0 and ug,
7 > 0. Let the range of t/ be [0, 8]. We have in Algorithm 11:

7

o =vi—t = a4 vty — 1. (19)
Combining (19) with the restriction 2’ < 3, we get
thy < (B—al+ )/r. 20

We have x; > —a and t! < 8. Therefore, the right hand side of
(20) is no more than (a+3+86)/r. So, we must have § < (a+ 3+
#)/r, and this is equivalent to

=[a+3)/r] =14 [(p-1)/r]. (21

So the range of ¢/ is the same as the range of ¢ as specified by (18).

Example 5: Consider a GSD number system with » = 10, o = 5,
and 3 = 10. Since p = 6, (21) yields § = 1. Hence two-valued
transfer digits ¢t/ € {0, 1} are sufficient. O

VI. CONCLUSION

We have completed a previously published study of redundant
number representation systems which dealt only with carry-free and
limited-carry addition [15] by considering subtraction, negation, zero
detection, sign detection, and overflow detection algorithms. Using
the results of this study and those of [15], it is possible to design
special-purpose arithmetic “engines” for processing of large volumes
of numerical data, provided that the nature of computations enables
the conversion and reconversion overhead to be amortized over a
long sequence of operations. Such conditions prevail in many signal
processing algorithms and high-precision scientific computations.

It is natural to ask whether the generalization from OSD to GSD
number representation is worthwhile. In other words, is it ever advan-
tageous to use an asymmetric rather than a symmetric digit set for a
redundant number system? Applications of the SC and SCB number
systems lead us to an affirmative answer. One might try to justify
this generalization by asking the equivalent question: Are asymmetric
GSD number systems any more difficult to deal with than OSD
representations? Clearly GSD addition and subtraction algorithms are
no more complex than their OSD counterparts. The complexity does
increase if p exceeds » — 1 (see Corollary 1 in [15]), but this is not
related to the symmetry or asymmetry of the digit set used. Other
advantages of this generalization have been discussed in {15].

Sign detection and overflow handling are difficult for all redundant
number representations, independent of the digit set used. Theorem 8
indicates that zero detection can be equally simple for asymmetric
digit sets, provided that certain conditions are satisfied. The most
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serious objection to the use of an asymmetric digit set is the increased
complexity of negation (sign change), which is required to enable
the sharing of addition and subtraction hardware. Theorem 6 tells
us that the increased complexity is negligible if a GSD number
system satisfies the condition a = 3 mod(r — 1). Even if the above
condition is not satisfied, negation is done totally in parallel with
negligible speed penalty.

Finally, the results obtained here suggest that redundant representa-
tions with unsigned digits (@ = 0) may possess certain advantages if
combined with a suitable representation of sign. Such unsigned-digit
redundant (UDR) number systems eliminate the need for conversion
from standard to redundant representation. The binary stored double-
carry (BSDC) representation is a special UDR system (r = 2, 3 = 3)
that finds application in the design of high-speed multipliers [14].
Although by Theorem 1, no redundant radix-2 representation supports
carry-free addition, BSDC numbers can be added in a special scheme
where two parallel carries are generated by stage i and are forwarded
to stages ¢ + 1 and ¢ + 2 [14]. This obviates the need for range
estimates required by Algorithm 3 and speeds up the “limited-carry”
addition process at the expense of a somewhat more complex wiring.
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