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Abstract

Even though the theory of carry-free and limited-carry
generalized signed-digit addition has been known for some
time, exploration of the vast design space encompassing
the n r representation radix, choice of a redundant digit
set, consideration of all possible encodings for operand and
transfer digits, and selection of values for the various “free"
parameters in the general algorithm has just begun. In this
paper, we review several implementation alternatives and
place them into a unified framework that provides insight,
facilitates comparisons and tradeoffs, helps future designers
in effectively exploring the design space, and leads to
novel representations or algorithms in some cases.
Keywords: Carry-free addition, High-radix arithmetic,
Redundant number systems, Signed-digit representation.

1. Introduction

A generalized signed-digit (GSD) number system is a
fixed-radix positional representation utilizing the digit set
[-a, B] = {-a, -a+1 , ..., f-1, B} in radix r with a2 0,
pz0,and p=a+ p+1-r, where p 21 is the
redundancy index of the number system [PARH87a],
[PARHS8], [PARH88a], [PARH90], [PARH93].

It has been shown that any GSD number system with r>2
and p>3 (or with p=2, provided that 21 and f#1) supports
carry-free arithmetic and that even in the exceptional cases
(ie., forr=2,p=1l,orp=2witha=lorf=1)a
limited-carry addition/subtraction algorithm is applicable
which yields the ith sum digit s; as a function of the digits
Xi, Yi» Xi-1» Yi-1, Xi~2, and yj_2 of the two operands x
and y. The carry-free algorithm utilizes transfer digits in
the range [-A, 4} which go to the next higher position and
are incorporated there without propagating further.

Carry-free addition is possible, for example, in the case of
radix-4 redundant representations with digit sets [-3, 3],
[-3, 21, [-2, 3}, and [0, 51, among others.

The limited-carry addition algorithm uses an additional
two-valued “transfer estimate” parameter e; € {low, high}
whose arrival precedes the actual transfers.
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The function of the information carried by e; is to exclude
one extreme in the range of incoming transfers and thus to
enable the transfer generation logic to pick a value for the
outgoing transfer digit in such a way that it guarantees the
capacity to absorb the incoming transfer without exceeding
the allowed range of digit values. For example, if ¢; = low,
then w; can safely exceed § — i, possibly going as high as
B -y, without a problem. This added slack, it tumns out,
is adequate for covering all the special cases that do not
support carry-free addition.

Examples of GSD systems in the limited-carry category
are the stored-carry, stored-borrow, and stored-carry-or-
borrow representation methods corresponding to the digit
sets [0, 71, [~1, ~~1], and [-1, 7], respectively, in radix r,
including their important radix-2 special cases, and radix-4
representation with digit set (-1, 4). Stored-carry, stored-
borrow, and stored-carry-or-borrow number systems have
found numerous practical applications in the design of
high-speed arithmetic circuits with both conventional and
redundant representations (see, for example, [PARH87],
[PARH88b], [PARH892a], [PARH94]).

Application of GSD arithmetic to the design of fast
circuits and algorithms for signal processing and other
applications is well documented in the literature. Proposed
implementations range from pipelined digit-serial (or on-
line) to fully parallel units, with solutions having various
degrees of digit-parallel operation falling between the two
extremes [ERCER9], [HUNG93], [PARH92].

Recently, many implementations of GSD arithmetic have
been attempted from different perspectives and with
varying objectives, environments, and technological
constraints. Examples include optical arithmetic
processors [AWWA92], [CHER88], processors exploiting
multi-valued logic technologies [ETIE93], [HOHL90],
[KAME90], [KAWA91], [KAWA92], [KAWA%4],
[MICH92], [MURA93], and hybrid (mix of redundant and
non-redundant digit positions) realizations for optimizing
VLSI parameters [PHAT94]. Typically, implementers
start from scratch, developing the needed theory and
selecting the various parameters introduced in the



theoretical development in view of performance
requirements and technological constraints.

In this paper, it is shown that all these seemingly different
systems and their associated algorithms are actually
“implementations” of the GSD theory developed by this
author. These variations correspond to various radices 7,
digit sets (parameters « and ), transfer values (parameters
A and y) and encodings of these sets using binary or multi-
valued signals. This characterization:

1. Unifies the various implementations under a single
theoretical framework that provides insight and also
facilitates comparisons and tradeoff studies.

2. Clearly shows that there are other choices for the
parameters involved; these alternatives may not be
evident with ad-hoc development.

3. Facilitates the development of appropriate redundant
number representations to take advantage of new and
emerging implementation technologies.

4. Allows the derivation of novel representation systems
and associated algorithms by merely experimenting
with the various implementation parameters.

Examples of novel redundant representations are provided
along with their associated arithmetic algorithms and
implementation alternatives. These representations are
suitable for the implementation of arithmetic algorithms
with both binary and multi-valued logic (MVL).

2. Carry-Free Addition

Ideally, the term *“carry-free addition” should be applied to
the case where the sum digit s; is only a function of the
operand digits x; and y; (in this paper, we use 0-origin,
right-to-left indexing). This is clearly impossible for
positional number representations. It appears to hold for
residue number system (RNS) representations [SODES6],
but the size of “residue digits” to provide a given range M
is at least logarithmic in M, thus leading to some form of
carry propagation within residue digits, even though the
residues are processed independently.

Given the impossibility of pure digit-by-digit carry-free
addition, the term carry-free has traditionally been applied
to the next best thing: i.e., the addition/subtraction scheme
defined in Algorithm 1 where position i — 1 produces a
transfer digit ¢; that goes to position i and is absorbed there
without causing further propagation. Figure 1 provides a
graphical representation of the two-stage carry-free addition
process defined by Algorithm 1. Any type of transfer
propagation beyond this absolute minimum (e.g., 2 stages
of propagation, as depicted in Figures 3 and 4) will be
referred to as “limited-carry™ in this paper.

Algorithm 1: Two-Stage Carry-Free GSD Addition

1. Compute the position sum p; = x; + yj. Decompose
pi into the transfer digit ¢;,1 and interim sum digit w;
such that p; = rtj41 + w;.

2. Compute the sum digit s; =w; + ¢;. &
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Figure 1. Two-stage carry-free addition process.

Note that the scheme shown in Figure 1 is slightly more
general that the one given by Algorithm 1 in that the
production of ¢; in Figure 1 need not be based on the
explicit computation of p; = x; + y;, leading to more
flexibility and higher speed in some cases.

To further elaborate on this point, we note that the
function of ¢; is to convey some information about
position i — 1 to position i. The needed information can
in fact be conveyed by the operand digits themselves or by
partial information about the operand digits {e.g., a subset
of the bits used to represent the digits in binary or only
their signs). Hence, the single-stage addition process,
defined in Algorithm 2 and depicted in Figure 2, is also
feasible in some cases.

Algorithm 2: Single-Stage Carry-Free GSD Addition
Compute the sum digit s; = fx;, y;, g(xi-1), h(pi-1)). B
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Figure 2. Single-stage carry-free addition process.

For Algorithm 2 to be truly a single-stage process, g and A
must be simple functions that require no computation.
Clearly, one can use the identity function for both g and A,




but this may lead to a large number of inputs for the logic
function f with binary implementation or may make f hard
to realize with MVL. It would be better if g and h
corresponded to selecting a subset of logic signals
representing x;1 and y; 3. Clearly, intermediate schemes
between those of Figure 1 and Figure 2 are possible in
which g and h are very simple functions (perhaps needing a
single gate level with binary logic or have an equivalently
simple realization with MVL).

The choice between Algorithms 1 and 2 (Figures 1 and 2)
is dependent on both the number system being used and
the implementation technology. As an example, values
can be added quite simply with multiple-valued current-
summing logic. This makes Algorithm 1 quite attractive
since obtaining the position sum p; in the first stage and
the entire second stage become trivial.

A subclass of the recently introduced hybrid signed-digit
(HSD) number systems can be viewed as an
implementation scheme for GSD addition with certain
radices and digit sets. In this subclass of HSD numbers, a
kd-digit number uses ordinary binary digits except in
positions d-1, 2d-1, . .., kd~1 where the digit set [-1, 1]
is used. Such numbers can be viewed as radix-2¢ GSD
numbers with the digit set [-2¢-1, 24-1]. It is easy to
show that the transfer ;1 € [-1, 1] is only a function of
the three most significant bits in the binary representation
of each radix-24 operand (2 bits for the signed digit
position and 1 bit for the next lower position).

3. Limited-Carry Addition

The limited carry process based on preliminary estimates
of transfer digit values, described in Section 1, is
formalized in Algorithm 3. One way to compute e;+]
based on p; is to compare p; 10 a known constant
[PARH90], but simpler schemes may also be possible.
Figure 3 provides a graphical representation of the 3-stage
limited-carry addition process defined by Algorithm 3.

Algorithm 3: Three-Stage Limited-Carry GSD Addition
Based on Transfer Digit Estimates

1. Compute the position sum p; = x; + yi. Based on p;,
generate the estimate e;+1 € {low, high} for £;41.

2. Based on the incoming estimate e;, decompose p; into
the transfer digit #;+1 and interim sum digit w; such that p;
=TIyl + Wi

3. Compute the sum digit s; =w; +¢;. W

Again, the scheme shown in Figure 3 is somewhat more
general than the one given by Algorithm 3 in that the

production of e; or even ¢; in Figure 3 need not be based
on the explicit computation of p; = x; + yi.
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Figure 3. Three-stage limited-carry addition process
with transfer digit estimates e;.

A possible alternative to Algorithm 3 for limited-carry
GSD addition is using repeated or double transfers. This is
defined in Algorithm 4 and Figure 4.

Algorithm 4: Three-Stage Limited-Carry GSD Addition
Based on Repeated or Double Transfers

1. Compute the position sum p; = x; + y;. Decompose
pi into the first transfer digit ;41 and the initial interim
sum digit w'; such that p; = rt';41 + W'

2. Compute the initial sum digit s =w'; + ¢,
Decompose s’; into the second transfer digit #;41 and the
final interim sum digit w; such that s'; = rtj41 + wi.

3. Compute the final sum digit s; =w; +1;. B
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Figure 4. Three-stage limited-carry addition process
with repeated or double transfers.

The two transfers do not have to be produced by identical
mechanisms or even have the same ranges. But if this
were the case, then Algorithm 4 would offer no advantage
over Algorithm 3, since the generation of e; is simpler
than that of #';4+1 plus w’;. The primary advantage of



Figure 4 over Figure 3 is its more regular design for VLSI
or sequential realization of the first and the second stage,
with shared hardware, for a lower-cost implementation.

As in Section 2, we note that the e; (¢;) and 1; collectively
convey some information about positions i ~2 andi -1
to position i, The needed information can in fact be
conveyed by the operand digits themselves or, again, by
partial information about the operand digits. Hence, the
single-stage addition process depicted in Figure 2 can be
modified, by adding connections from x;_» and y;_2 to the
logic in Stage i, to handle this case. However, this is
likely to lead to highly complex stage logic.

As a compromise, one can use the two-stage parallel-
transfers approach of Algorithm 5 in which Position i
sends two transfers, f;+1(Vand #;42(?), to Positions i + 1
and i + 2, respectively, Note again that the graphical
depiction of Figure 5 can be viewed as being somewhat
more general than Algorithm 5.

Algorithm §: Two-Stage Carry-Free GSD Addition
Based on Parallel Transfers

1. Compute the position sum f = x¢ + yl Decompose
pi into two transfer digits #;,2(4), 1;31(1 ) and the interim
sum digit w; such that p; = r2t,+2(2) + i1 D + wi,

2. Compute the final sum digit 5; = w; + t;(1) + 2. W
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Figure 5. Two-stage carry- -free addition )process with
parallel carries t,( ) and t,

As an example, two-stage carry-free addition is possible for
radix-2 numbers using the digit set [0, 3] (stored-double-
carry numbers) or [0, 4] (stored-triple-carry numbers).
These particular unsigned-digit redundant representations
were first introduced in [PARH89] in connection with the
design of high-speed multipliers that have area-efficient
layouts in view of their binary-tree structures and were
used more recently for MVL realization of such multipliers
in [KAWA91], [KAWA92], [KAWAY4]. In both of these
cases, the transfers are in [0, 1].
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The use of parallel carries can be generalized to include
more than two receiving positions, non-binary transfer
digits, and non-uniform transfer digit sets. Denoting the
transfer going from Position i — j to Position i by (),
with 1 <j < h and 1;0) € [-4;, y;], one can derive from
the basic addition equatlon

X+ Y; +2t0) = zr"t P +5;

and the various ranges assumed, the relevant constraints to
be met. Some results with uniform transfers, ie. 4;= 1
and g = p (1 £ < h), can be found in [PARH%a].

However, there is no compelling reason for uniformity in
transfer digit sets (see [KORN94] for an illuminating
discussion of digit sets). One possibility is to have
transfers that alternate in sign. For the sake of simplicity,
assume 1 = ¥x (j mod 2) and y;= yx (1 -] mod 2),
leading to 2. + ;=Y. Then, each position i receives
Lh/2] posmvc and ]Lh/21 negative transfers, each up to yin
magnitude. Hence the interim sum must be in the range
~o + Y[h/21 < w; < B - yLh/2] if all transfers are to be
absorbed without exceeding the allowed digit range [-o,8].
Since w; should assume at least r different values, a
necessary condition is:

B+a-hy+12r or p 2 hy

Radices r > 2 impose additional restrictions, but for r = 2
and y= 1, digit sets such [-1, 2] with k=2 (corresponding
to the stored-carry-or-borrow representation [PARH87]) and
[-3, 1] with & = 3, as well as their mirror images [-2, 1],
[~1, 3] obtained by letting u:= yx (j mod 2), are quite
practical. Such digit sets involve smaller maximum
magnitudes than the unsigned versions, thus leading to
potential simplifications in various arithmetic operations
such as multiplication, division, and square-rooting.

4. Conclusion

We have reviewed several implementation alternatives for
carry-free and limited-carry GSD addition and placed them
into a unified framework that provides insight, facilitates
comparisons and tradeoffs, helps future designers in
effectively exploring the design space, and leads to novel
representations or algorithms in some cases.

With renewed interest in GSD representations, spurred
primarily by advances in optical and MVL logic
technologies, researchers in these fields seem to be
reinventing much of the theory already developed in the
field of computer arithmetic. It is hoped that the unified
view and systematic approach to choosing implementation
alternatives and associated parameters for GSD addition,
advocated in this paper, leads to better understanding and
communication between researchers in these fields.
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