IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 4, APRIL 1994

Comments

381

Comments on “Evaluation of A + B = K
Conditions Without Carry Propagation”

Behrooz Parhami

Abstract—A special carry-free circuit for the evaluation of conditions
of the type A + B = K is proposed by cortadella and Llaberia, and
its usefulness for reducing the negative effects of conditional branches in
pipelined architectures is noted. It is shown that the same advantages are
offered by another equally simple circuit based on carry-save redundant
numbers and (3, 2)-counters. This alternative circuit has other potential
applications and much of it may in fact be already present in some ALU’s.

Index Terms—Addition, carry propagation, carry-save numbers, com-
parators, conditional branches, parallel counters, pipelined architectures,
redundant number representation.

I. INTRODUCTION

A special add-on circuit, comparable in area complexity to a ripple-
carry adder, has recently been proposed for evaluating conditions of
the type A + B = K without the need for performing a carry-
propagate addition [1]. Internal “propagate” and “generate” signals
pi = a; ®b; and g; = a; Ab; from the addition A + B are combined
with the bits k; of K, in a local way, and the resulting n-bit vector
Z is fed to an n-input AND circuit computing the final test result
E = 2o Azp—1 A--- Az The proposed circuit is positioned between
the logic for producing the p and g signals and the ALU’s main
adder. Usefulness of the circuit, named “fast adder-comparator,” is
demonstrated for reducing conditional branch penalties in a pipelined
CPU.

In this note, I utilize the simple equivalence of A + B = K and
A+ B+ (2" —-1- K)=2" -1 to convert the problem into a 3-
operand carry-save addition [4] and a subsequent all-ones detection
for the resulting carry-save redundant number.

II. THE ALTERNATIVE CIRCUIT

Let A, B, and K be n-bit 2’s-complement binary numbers. To
determine if A + B — K = 0, one can add A, B, and K™ =
2" —1— K (bitwise complement of K') and check if the sum is equal
to 2" — 1 which is represented by the n-bit all-ones vector. Instead
of completely evaluating A + B + K “°™P, one can use a row of full
adders with no carry propagation, also known as (3, 2)-counters [4],
to find two numbers S and C satisfying A + B + K°™° = § + C.
The problem then reduces to checking the condition S+ C = 2" ~ 1
or § =2" —1—C = C°™P, This is accomplished by a row of n
two-input XOR gates feeding an n-input AND circuit that produces
the final comparison result E.

The conversion of the sum A + B 4+ K°™P to the two numbers
S and C, that together can be viewed as a single redundant radix-
2 number with the digit set {0,1,2}, is a standard technique in
computer arithmetic [4]. The verification of § = C™P js also
a special case of a reduction method that I have used previously

Manuscript received December 31, 1992; revised June 16, 1993.

The author is with the Department of Electrical & Computer Engineering,
University of California, Santa Barbara, CA 93106-9560.

IEEE Log Number 9213764,

for zero, sign, and overflow detection in generalized signed-digit
arithmetic [2], [3].

III. COMPARISON

The alternative circuit defined in Section II consists of n full
adders, n two-input XOR gates, and an n-input AND circuit. It can
be positioned before the inputs to the ALU’s main adder and implies
logarithmic delay when the n-input AND is implemented as a tree
of smaller AND gates. With respect to speed, the two alternatives
are virtually identical. The critical path in the design of [1] goes
through 3 XOR gates (one to generate p; and two in the adder-
comparator cell) and n-input AND circuit. In my design, the critical
path contains a full-adder cell (2 XOR delay), an XOR gate, and an
n-input AND circuit. While p; still needs to be generated for the
ALU’s fast adder, the corresponding circuit is no longer in the path
of the add-on comparator.

The hardware complexity of my design is higher than that of
[1] by about one XOR gate per bit slice. However, there are two
redeeming factors. First, I use standard full adder cells that have
been fully optimized for many different technologies. Second, my
circuit is potentially more useful in that the 3-to-2 reduction can also
be used to speed up multiple-operand addition and multiplication in
some applications. If such a 3-to-2 reduction circuit is already present
in the ALU to facilitate multiplication, then the cost of my approach
is indeed very small.

REFERENCES

[1] J. Cortadella and M. Llaberia, “Evaluation of A + B = A conditions
without carry propagation,” IEEE Trans. Comput., vol. 41, no. 11, pp.
1484-1488, Nov. 1992.

[2] B. Parhami, “Generalized signed-digit number systems: a unifying
framework for redundant number representations,” IEEE Trans. Com-
put., vol. 39, no. 1, pp. 89-98, Jan. 1990.

[3] ——, “On the implementation of arithmetic support functions for

generalized signed-digit number systems,” IEEE Trans. Comput., vol.

42, no. 3, pp. 379-384, Mar. 1993.

S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital Systems

Designers. New York: Holt, Rinehart & Winston, 1982,

4

Comments on “Decomposition of Complex
Multipliers Using PolynomialEncoding”

Rajendra Katti

Abstract— We present a better way of decomposition of complex
multipliers using polynomial encoding than the method presented in
the paper, “Decomposition of Complex Multipliers Using Polynomial
Encoding.” The decomposition described in this paper makes use of
smaller multipliers which results in smaller ROM’s if ROM table look-ups
are used to implement multipliers.

Manuscript received March 15, 1993.

The author is with the Department of Electrical Engineering, North Dakota
State University, Fargo, ND 58105.

IEE Log Number 9213766.

0018-9340/94304.00 © 1994 IEEE




