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Abstract - Residue number representation has become a viable al-
ternative for fast, area-efficient VLSI realization of high-performance
signal processing hardware. Wider applicability and improved cost/
performance of residue-based VLSI implementations of signal processing
algorithms are critically dependent on efficient realization of I/O data
conversions and several other support functions that are treated in this
paper. Alternate table-lookup schemes for conversion of binary to residue
numbers, and vice versa, are presented. Input widths of lookup tables
can be changed freely through a repartitioning scheme to provide trade-
offs between table size (area) and computation speed. Improved variants
of VLSI-based pipelined binary-to-residue converters are derived along
with balanced, highly regular, pipelined architectures for residue-to-
binary conversion in VLSI. The input repartitioning method is shown
to be applicable to other important residue number system operations,
including sign detection, mixed-radix conversion, and base extension.

INTRODUCTION

The residue number system (RNS) has found numerous applications in the
design of high-performance systems in digital signal processing [9]. RNS-
based systems are preferable to conventional ones in view of parallelism in
arithmetic operations. Recently, very efficient RNS division algorithms have
been developed [5] that can pave the way for the use of RNS representations
in much wider areas, both within and outside signal processing. However,
to achieve high performance, fast arithmetic is not sufficient. It is also im-
perative that support functions such as I/O data conversions, sign detection,
magnitude comparison, scaling, and error checking be fast and efficient.

The need for I/O data conversion to and from standard positional repre-
sentation is self-evident. Sign detection and magnitude comparison are not
only directly useful in threshold-based control and other decision situations
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but also form building blocks for synthesizing important functions such as
overflow detection, scaling, and division. Another helpful tool is mixed-radix
conversion which is used both for magnitude comparison and D/A conversion
[6]. We also deal with base extension, a support function used extensively for
scaling and error checking.

To address the input/output conversion problem, let the number X be
represented in a radix-R positional number system (PNS) as follows:

X:ZuiRi = (ur_l,ur_z,...,ul,Uo)PNs (l)

With the set of moduli {m,,, ..., ma, m;}, RNS representation of X is
X = (%n,Tn-1,.--, L1)RNS (2)

where z; = | X |, represents the residue of X with respect to m;. The binary-
to-residue conversion problem is defined as obtaining the xzys, given the u;s,
m;s, and R. Similarly, residue-to-binary conversion is defined as obtaining
the u;s from the m;s, s, and R.

In this paper, we present tree-structured pipelined architectures for fast,
cost-effective binary-to-residue and residue-to-binary conversion problems.
ROM lookup tables are used in the design, with special attention paid to
optimizing table size (layout area) and circuit speed. In VLSI parlance,
our converters are both scalable and area-time efficient. We then note that
sign detection, mixed-radix conversion, and base extension all require the
computation of a weighted modular summation of the type needed for residue-
to-binary conversion and that any such operation can benefit from our flexible
table-lookup architecture.

BINARY-TO-RESIDUE CONVERSION

The following identity, derived from Equation (1), provides a basis for an
alternate scheme to compute the residue of X with respect to a modulus m:

r—1
X modm = [E(uiRi mod m):| mod m (3)
i=0

To evaluate (3) based on table lookup, we take the pair (u;,?) as the index
into a ROM table, obtaining u; R mod m as output. The value of R will
affect the contents of the table and is not an explicit input. By adding all
the returned values modulo m, the result can be calculated very quickly. We
need r operations of table lookup and r — 1 modular additions. These can be
done sequentially using a single table and one modular adder or with various
degrees of parallelism. If r tables are used, their contents can be specialized
for particular values of .
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Alternate-Radix Algorithm

In some implementation platforms, it is desirable to reduce the number of
table-lookup and addition operations by using a larger radix, and consequent-
ly larger lookup tables. In some others, we may want the opposite tradeoff.
Both alternatives are accomplished in the same way: we pick a new radix
R/, usually such that R and R’ are integer powers of a common factor. The
conversion problem is now transformed into two problems; first from radix R
to radix R’ and then from radix R’ to residue.

Efficiency and Optimality

Selection of the radix affects not only the contents of the tables and the
required number of additions, but also the conversion speed and the cost of
tables - and adders. Thus, the design of a conversion architecture involves
tradeoffs in layout regularity, table size, and performance.

We define the area efficiency index F as being inversely proportional to
the weighted sum of the relative memory size M and the relative number of
additions A: 4

«

b= M+ oA )
Table size and number of additions for radix 2 are taken as units of mea-
surement and Equation (4) is defined in such a way that F becomes 1 for
the radix-2 implementation. Since additions are performed with residue-
size operands, adder width is independent of the radix chosen. The relative
number of additions A is thus proportional to the cost of adders. The weight
parameter o models the unequal costs of adder and memory. Specifically,

o Adder cost (radix-2)  Cost of k? bits of adders
~ Memory cost (radix-2) ~ Cost of 2k2 bits of memory’

where k is the number of bits of the input binary number. The ratio o depends
on layout density and the technology used for the two types of circuits.

Figure 1 shows the area efficiency index £ versus the radix R for several
values of . We see that E improves initially as R increases and that radices
higher than 16 are not likely to be cost-effective unless « is very large. The
optimal radix is between 4 and 16 for the range of « plotted.

The area efficiency index E is a good measure when the design is fully
pipelined at maximal throughput so that the cost of hardware is the main
concern. In other cases (i.e. when pipelining is not used or when minimizing
latency is also important), a better basis for comparison of competing designs
is area-time product. As an example, when computation time is linear in the
number of additions, the area-time efficiency index E’ becomes:

E 1+«

T (M+aAd)A

Figure 2, depicting E’ versus the radix R, exhibits the same general trend as
Figure 1, but higher radices gain a little because they imply faster conversion.

£ =
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The optimal radix is between 8 and 32 for the range of o plotted. Hence the
conclusion that the optimal radix is fairly small for both optimality measures
and for a wide range of technology-dependent parameters.

Implementation Issues

A VLSI design for binary-to-residue conversion which is suitable for pipelining
is given in [2]. By arranging the additions in a tree structure, the ith residue
| X |, can be obtained in log,  adder delays (Figure 3), leading to a significant
speedup. With n moduli and r digits in the high-radix representation of X,
the number of tables is nr. Considering the n(r — 1) adders needed, the space
complexity may become unacceptable. As for the time complexity, let T,
and 7, denote ROM access and adder delays, respectively. Then, each pass
through the pipeline requires Ty, + T, log, r time.

We can reduce the number of tables to O(n) and use n adders only, leading
to time complexity »max(7},,T,) which is larger then that of the above
design. As shown in Figure 4, we use shifting to deal with successive digits
of X using the same set of hardware elements. The tables in this scheme are
modular tables for u; R where i € [0,7 — 1]. Compared to the two previous
schemes, the number of adders is reduced by a factor of r, while the total
table size remains the same.

Figure 5 shows another design that reduces the total memory size as well.
Two tables may be required for each modulus. The table on the right provides
v mod m given u. This table can be omitted when R < m. The table on the
left produces R mod m given z. When R < m and R = m, the total table
size is reduced by a factor of about r.

Table-based modular addition can be incorporated into the original con-
version scheme. This will make the implementation simpler but requires more
space for the tables. An alternative is using carry-save adders (CSAs) for the
internal additions and a modulo-m adder at the last step. If a (log, 2m)-bit
CSA is faster than access to a 2m-entry ROM table, then we can accelerate
the computation by minimizing the number of table references. However, the
last modulo-m addition needs r(m — 1) table entries.

Comparison to Previous Work

Two schemes to do binary-to-residue conversion have been proposed here.
Although our schemes are based on [2], we use fewer adder levels and ob-
tain higher performance. We also provide a lower-complexity scheme for
situations where performance can be traded off to minimize the area. Ac-
tual performance indices must be obtained through simulation or physical
implementation in order to augment our theoretical analyses and to provide
realistic comparison to other schemes proposed earlier [1, 3].
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RESIDUE-TO-BINARY CONVERSION

Our method for residue-to-binary conversion is based on repartitioning of
input residue digits in a way similar to that used in the binary-to-residue
conversion. The conversion process can be formulated as:

X = l:zn:(wi:ci mod M)] mod M, (5)

=1

where M = H?:l m;, and the weight w; associated with the modulus m; is a
value having the RNS representation (0,...,0,1,0,...,0), with only the ith
digit being 1. To realize the conversion based on Equation (5), we take x; as
the index into a table and get (w;x; mod M) directly.

If, as 1s commonly assumed, w;z; mod M is read from a separate table for
each modulus m;, imbalance in the size of moduli leads to irregular hardware
structure. Even with uniform moduli, the modulus size that is optimal for
residue arithmetic may not be optimal, or even feasible, for table lookup.

High-Radix Algorithm

A 7high-radix” residue representation can be created by simple combination
of residues. Instead of taking a single residue for table access, we may take
multiple residues at a time to index each table. Let S = {my,ms,...,m,}
be the set of moduli and P = {s1,ss,...,51} be a partition over S with
5i C S,s;Nsj =D fori#j, and S =Us;. Welook up all the residues in the
subset s, at once to produce the partial result u,,

Up = Z(wi:ci) mod M, (6)

m;€Sy

with the result of the conversion obtained by

X = (iup) mod M. (M

p=1

The summation step in Equation (7) needs a [log, []-level CSA tree and I —1
adders. Since [ < n, the summation step can be accelerated.

Repartitioning of Input Bits

Finding an optimal partition for the high-radix method in the previous sub-
section is difficult. Besides, even the best partition may be highly unbalanced
for particular sets of moduli. Furthermore, it only steps up the radix; it does
not offer any help when the modulus size is already too large for cost-effective
table lookup implementation. Fortunately, however, combining does not have
to occur for entire residues. We can combine residues into equal-size blocks
of bits, with each block containing chunks of one or more residues.
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The basis of the input repartitioning technique is the observation that the
original weighted modular summation in Equation (5) can be rewritten as
another modular summation with all input bits z;; individually weighted:

n s$;—1

X = Z Z(wikxik mod M) | mod M,

i=1 k=0
where s; 1s the number of bits required to represent the residue z;, = is
the kth bit of z;, and w;; = 2¥w; mod M. As the weight w;; is known for
each bit of each residue digit, we can arbitrarily partition all residue digits
at the bit level for input to the lookup tables, and prepare the table contents
according to the partition, as long as each bit z;; goes to exactly one lookup
table. Figure 6 shows an example of such a repartitioning. With the above
observation, the analysis of complexity becomes very similar to that of Section
II and is thus omitted here for brevity.

Implementation Considerations

Implementation of the above scheme is straightforward, but efficiency in the
summation step doesn’t guarantee overall efficiency. We have to pay attention
to the final modulo step also. The major problem of this final step is the
modulo-M addition. The method of Section II is not appropriate here because
M is much larger than the individual moduli. The table size is dictated by
[1m; rather than }_ m;. Since u, is in the interval [0, M —1] and u, = Y up €
[0,1(M — 1)], trial subtraction and testing can become quite inefficient.

If we use a few most significant bits of u, to determine the amount to
subtract from u,, then we do not have to approach X iteratively. In fact,
only one table lookup and one subtraction would be needed. We have shown
that for ¢ an integer, ¢M and (¢ + 1)M differ at some bit of the binary
representation to the left of the |log, M |th bit from the right and that once
a stored multiple of M based on the high-order bits of u, is subtracted from
Uy, at most one subtraction is needed to find X. The number of table entries

1s thus bounded by
9([log,(I(M ~1))]—[log, M1+1)

Since [log,(I{M — 1))] — [loga M| + 1 can be approximated by [log,{] + 1
and [ is small in practice, the storage requirements are quite modest. For
instance, with [ = 16, we use five bits from u; to look up a 32-entry table.

Comparison to Previous Work

Alia and Martinelli [2] give asymptotic results assuming that all moduli are of
the same order. Obviously, such asymptotic results are not practical since the
moduli tend to be fairly small and thus significantly different in magnitude.
We have provided a ”high-radix” residue-to-binary conversion scheme using a
method to balance the table size and to speed up the conversion. The regular
layout of the scheme makes it particularly suitable for VLSI implementation.
Fast computation of the residue of a large number is new to this research and
makes our approach highly competitive with previous ones [8].
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OTHER APPLICATIONS

The repartitioning of residue digits, based on the associativity and commu-
tativity of modular summation, applies to a number of other residue number
operations. Many operations in RNS have the common form

c= (32, a;z;) mod b. (8)

In most practical cases, each digit z; is represented as a binary string, and
consequently the above can be rewritten as

c= (Zi,j a,-j:cij) mod b. (9)

In a lookup table implementation, the conventional method requires n
lookup tables each with m; entries. The implication of Equation (9) is that
individual bits of all residue digits can be arbitrarily combined to access
the lookup tables, as shown in the example in Figure 6. The lookup table
can thus be freely structured to match the application requirement and the
implementing technology in an optimal way.

We show that the repartitioning technique is applicable to algorithms
for approximate sign detection, mixed-radix conversion, and base extension.
These algorithms can in turn be used in scaling, division, overflow detection,
and error detection and correction. The following notation is used. The
product of all moduli is M, the products of all moduli but the ith one is M;,
and the multiplicative inverse of M; with respect to m; is M;. Note that the
previously defined weight w; for residue-to-binary conversion is equivalent to
M; M;, since w; = 1 mod m; and w; = 0 mod my for j # 1.

Approximate Sign Detection

In [5], Hung and Parhami propose an approximate sign detection procedure
and demonstrate its use in integer division of RNS numbers. Integers X in
the range —M(1/2 —¢) < X < M(1/2 — €) are represented, where ¢ is a
precision parameter of the algorithm. Given the z;’s the approximate sign
detection algorithm determines whether the sign of X is positive, negative, or
indeterminate. When the returned sign is indeterminate, |X| is guaranteed
to be no larger than ¢M.

The procedure computes the modular sum EF(X) as an approximation to
| X |[ar/M using scaled approximate CRT decoding.

E Round (x,-M,- , t>} mod 1, (10)
. m;
=1

where ¢ in the rounding function controls the precision of rounding, and is
related to e. The sign is determined by comparing EF(X) against some

EF(X) =

constants. Fractional values Round (%;M—i,t , Tor each 7 and each z; €

[0, m; — 1], are precomputed and stored in lookup tables. As the evaluation of
EF(X) falls under the modular summation form of Equation (8), the input
repartitioning strategy can be used to bring flexibility to the implementation.
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Parallel Mixed-Radix Conversion

In [4], Huang presents a parallel algorithm for mixed-radix conversion. The
mixed-radix conversion problem is that of converting from residue represen-
tation X = (zn,...,#1) to mixed-radix form < yy, ...,y > so that

X =y +yam1 +ysmima+ -+ yamimg - -My_q.

The number X is unsigned, and 0 < y; < m;.
Huang’s algorithm utilizes the weighted modular summation form in the

Chinese Remainder Theorem (CRT):

X =

n
> ziMiM,-} mod M.
i=1

With z;’s as inputs, lookup tables provide the quantity (:c,M,Mz) mod M in
mixed-radix representation. The summation is then carried out in mixed-
radix representation as well. The formulation for mixed-radix conversion
again matches the modular summation form of Equation (8), and thus can
benefit from the input repartitioning scheme.

Base Extension with Redundant Modulus

In [7], Shenoy and Kumaresan show a procedure for base extension of residue
numbers when a redundant residue is available. Base extension refers to
the problem of finding some unknown residues given known residues and the
condition that the number is representable by the known residues. Conven-
tionally, base extension is carried out with mixed-radix conversion, and takes
O((n+k)n) operations, where n and k are the number of known and unknown
residues, respectively. The method by Shenoy and Kumaresan takes O(nk)
operations, and therefore offers significant improvement over the conventional
method when k is small, say, O(1). For brevity, we shall restrict & = 1
in the following discussion, but the algorithms can be easily extended to
multiple unknown residues. Let 21, ..., 2, be the known residues, g be the
redundant residue with respect to modulus mg > n. The unsigned number
X represented is in the range 0 < X < M, where M = [];., m; (excluding
mp and my41). We wish to find @41, the residue with respect to mp 1.
The algorithm is based on an alternate form of CRT decoding,

X = [Zj; Mi|r,—Mi|mi] — A(X)M, (11)

where A(X), also called overflow count, indicates how many times the n-term
summation in Equation (11) overflows M, and is in [0, — 1]. The algorithm
finds the unknown residue in two steps. First, it applies Equation (11) to
compute A(X) using the redundant residue.

A(X) = |A(@)|mp = {(i m;'1|:z:i]\2fi|m,.) - xRM_l] mod mpg. (12)

Equation (12) yields A(X) since 0 < A(X) < n and n < mg. In the second
step, Equation (11) is applied again to find the unknown residue.
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O [(Z Mi}ziMilmi) —A(X)M] mod Mpy41. (13)
i=1

In a direct lookup-table implementation of the algorithm, we need 2n ta-
bles to provide (m; }|z; M;|m,) mod mg and (M;|z; M;|m,) mod my, 41 values
given z; as input. With the flexible table lookup scheme, both steps can be
implemented with table size independent of the modulus size.

Note that both (12) and (13) have modulo m; in each term of the mod-
ular summation, and therefore do not comply with the common form of
Equation (8). The A(X) computed with repartitioned table inputs indeed
is different from A(X) computed with original lookup table structure, but as
long as the inputs z;s are repartitioned the same way in both steps, the final
result is correct. The repartitioned CRT decoding essentially defines a new
overflow count, which is in turn used to find the unknown residue by applying
the same repartitioned CRT decoding again.

Base Extension with Approximate Decoding

The base extension method by Shenoy and Kumaresan requires a redundant
modulus, mg > n, and utilizes only 1/mpg of the potential dynamic range.
Hence, a relatively large fraction (mg—1)/mg < 1—1/n of the dynamic range
is excluded. The following procedure achieves base extension with the same
computational complexity, and allows (1 — ¢€) times the potential dynamic
range to be used, where € can be made arbitrarily small.

Our algorithm also first computes A(X) then uses A(X) to compute the
unknown residue. We compute A(X) differently using

% + Zn:Round (———lxz]&]m‘ ,t)] (14)

i=1 *

A(X) =Int

for input X in [0, (1 — €)M]. The rounding function is defined as having error

in [—t/2,t/2). The parameter t is related to the exclusion fraction ¢ by nt < .

Given A(X), the unknown residue &, is evaluated from Equation (13).
We provide an informal justification of Equation (14) as follows. A(X) can

be written as n

|z M |m;
A(X) = Int (; o ) : (15)
Equation (14) uses rounded terms instead of exact terms in Equation (15).
The additional term €/2 can be viewed as being distributed to each term
to change symmetric rounding to rounding up. As Int always rounds down,
A(X) can be computed by applying Int to the sum of rounded-up terms
provided that the total rounding error does not push the sum to or over
integer units, e.g., from 3.8 to 4.0 or 4.1. The upper portion of dynamic
range is excluded to give room for the the rounding errors.

As in the previous section, application of the table repartition technique
yields a value of A(X) different from the original formulation. However, as
long as the same repartitioning is applied to the second step, computing the
unknown residue, correct result is obtained.
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CONCLUSION

To meet the speed requirement of special-purpose digital systems based on
residue number representation, we have proposed flexible, fast, and cost-
effective schemes to perform conversions between positional number systems
and RNS. The proposed approach can use uniform lookup tables of varying
sizes in order to speed up the conversion process while providing opportunities
for speed/cost tradeoffs. The uniformity in the size of the lookup tables,
independent of the multiplicity and magnitude of the RNS moduli, is a novel
feature of our work which has significant implications for regular, area-efficient
VLSI implementations and high-throughput pipelined designs. The input
repartitioning method used in I/O data conversions was shown to benefit
several other residue number operations such as sign detection, mixed-radix
conversion, and base extension that are useful independently and also as
building blocks for synthesizing other important functions.
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Figure 1 Cost efficiency index for binary-to-residue conversion versus the radix.
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Figure 2 Cost-time efficiency index for binary-to-residue conversion.
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Figure 3 Pipelined binary-to-residue converter design with trees of adders.
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Figure 4 A lower-complexity scheme for binary-to-residue conversion.
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