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Abstract

Chordal rings have been proposed in the past as networks
that combine the simple routing framework of rings with
the lower diameter, wider bisection, and higher resilience
of other architectures. Virtually all proposed chordal ring
networks are node-symmetric, i.e., all nodes have the same
infout degree and interconnection pattern. Unfortunately,
such regular chordal rings are not scalable. In this paper,
the periodically regular chordal ring network is proposed as
a compromise for combining low node degree with small
diameter. Discussion is centered on the basic structure,
derivation of topological properties, routing algorithms,
optimization of parameters, and comparison to competing
architectures such as meshes and PEC networks.

Keywords: Express channels, Greedy routing, Intercon-
nection networks, Packet-routing algorithms, Skip links.

1. Introduction

The ring interconnection scheme has proven quite effective
in certain small-scale parallel architectures in view of its
low node degree and simple routing algorithm. However
the diameter of a simple ring would become too large for
effective utilization in a massively parallel system. As a
result, multi-level and hybrid architectures, utilizing rings
at various levels of a hierarchically structured network or
as a basis for synthesizing richer interconnection schemes,
have been proposed.

The multi-level ring structure of KSR1’s (Kendall Square
Research) interconnection network [KEND92] and the
QuickRing Network of Apple Computer [VALE94] are
good examples of the hierarchical approach. The chordal
ring architecture, in which each node is also connected to
one or more distant nodes through “skip” links or “chords”
(see the references in [MANS94]), k-ary n-cubes with
express channels [DALL91}, and optical multichannel ring
networks with variable skip capability in connection with
wormbhole routing [REIC93] provide examples of the
second approach. Such skip or express links reduce the
network diameter at the expense of increased node degree.
Because the basic ring structure is preserved, many nice
features of a simple ring, including ease of routing, carry
over to these enhanced ring architectures.
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Figure 1 shows a simple unidirectional ring with 8 nodes
and a chordal ring with the same number of nodes in which
chords, or forward skip links, of length 3 have been added
to each node. More generally, the degree of each node may
be more than 2 and multiple chords or forward skip links
may originate from each node.

Figure 1.
architectures: (a) Simple unidirectional ring with 8
nodes, and (b) Example of chordal ring with 8 nodes
and optimal chords, or forward skip links, of length 3.

Two types of previously proposed ring

However, low-diameter node-symmetric chordal ring
networks require high node degrees. If the node degree is
fixed at k, then the chordal ring is somewhat similar to a
k-dimensional mesh. In this paper, it is shown that by
relaxing the symmetry requirement and opting instead for
periodically regular networks, the advantages of low node
degree and small diameter can be achieved simultaneously.
We analyze the resulting networks and show them to
possess advantages over meshes and packed exponential
connection (PEC) networks with regard to topological
parameters and ease of routing.

The rest of this paper is organized as follows. We begin
by reviewing node-symmetric chordal rings in Section 2.
Periodically regular chordal rings are introduced and
analyzed in Section 3, where a greedy routing algorithm is
also presented and shown to be quite efficient. We discuss
the problem of optimally selecting the network parameters
in Section 4 and compare the resulting networks to mesh
and PEC networks in Section 5. Section 6 contains our
conclusions and recommendations for further work.



2. Node-Symmetric Chordal Rings

The discussion of node-symmetric chordal ring networks in
this section draws heavily from the notation and results of
[HUIS94). Consider an N-node ring with nodes labeled as
0,1,...,N — 1. Let there be unidirectional skip links
from each Node i to Nodes i + 51, + 52, ... , i + Sk—1
(all mod N), with 1 < 57 <53 <..<sk_1. In addition,
the normal ring connection goes from Node i to Node i+1
(mod N). See Figure 2 for notation and an example.

Figure 2. Node-symmetric chordal ring. (a) Degree-3
chordal ring with skips of s1 = 2 and 57 = 4, shown as
solid and dotted arrows, and (b) Input/output
connections of Node i in a degree-k chordal ring.
The nodes shown are not necessarily all distinct.

In the remainder of this paper, it will be understood that all
arithmetic in node-index expressions is modulo N. For
notational convenience, we define so = 1 and sx = N.
Hence, Node i is connected to Nodes i + sjfor 0 < j <&,
where 1 =59 <s5) <52 <...< Sg-) <S¢ =N.
A shortest path leading from Node i to Node j consists of a
number of skips of each type. Because of node-symmetry,
the required skips of each type can be included in any order,
leading to many distinct paths. Let d(i, j) be the distance
from Node i to Node j along the shortest path and ny(i, j),
0 < h < k, be the number of skip links of type sp included
in the shortest path. Then:

d(i, j) = no(i, j) + n1G ) + . .+ ng1 G )
Given the set of skip distances {s; |0 < h <k}, the
problem of finding a shortest-path data route from node i
to node j requires the precomputation of a size-N table in
each node specifying the skip link to be taken for each
possible destination (distance). For example, with k =3
and skips s1 = 10 and s7 = 16, the shortest path for j —i =
32, 33, or 34 starts with sp, whereas for j —i = 24, 25,
30, or 31, 51 should be taken first and for j - i = 26, 27,
28, or 29 either 51 or s2 will do.

In most practical cases, however, a greedy algorithm (that
selects the largest skip not overshooting the destination
node) performs quite well and leads to near-optimal, and
under some conditions to optimal, paths.
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Algorithm 1: Greedy packet routing from Node i to
Node j on a node-symmetric chordal ring.
set the routing distance fieldto d =j - i;
for h =k - 1 downto 0 do
if d = 0 then done endif
while d 2> s do
d:=d-sp;
send the packet along the sy link
endwhile
endfor @

For ease of understanding and analysis, routing algorithms
in this paper are described from the viewpoint of a global
observer. However, the algorithms can be described from
the viewpoint of a node and executed in a distributed
manner. As an example, the distributed version of
Algorithm 1 is given below.

Algorithm 2: Node procedure for greedy packet routing
to a distance-d node on a node-symmetric chordal ring.
if d = 0 then remove the packet; stop endif
for h = k- 1 downto 0 do
if d 2 sp, then
d:=d-sp
send the packet along the s link
endif
endfor B

When the node degree k is large, Algorithm 2 would
become more efficient if the variable 4 is made part of the
message and decremented by a node each time d is smaller
than the skip s;. The advantage of the version given
above is that is can be easily adapted to fault tolerance (i.e.
when the largest possible skip is unavailable, the next
largest one is taken).

The inequality nj(i, j) <[ sp+1/sn] - 1 is clearly satisfied
when routing is done by Algorithm 1. Hence, the “greedy
distance” dg(i, j) from Node i to Node j satisfies:

de(i,)) <s1/sp -1+ |—s2/s1-| -1+...
+[sufsi_11-1
< (E,’,;é Shillsp)—1=E
To minimize the worst-case bound for dg(i, j), the right-
hand-side expression E must be minimized. Equatin%
OE/[0sp = 1/sp—1 — Sha1/sn? with 0, we obtain sp = N
and dg(i, j) = kN1,
The worst-case routing distance obtained is basically that
of a k-dimensional mesh with unidirectional and end-
around links. This is not surprising in view of the fact
that an sg-node chordal ring with skips s1, 52, .. , Sk—1
can be redrawn to resemble an s1X(52/51)% ... X(Sk/Sk-1)
mesh (see the examples in Figures 3 and 4). Hence, given
that the node degree is also the same, such networks do not
seem to offer any advantage over meshes.



Figure 3. The chordal ring network of Figure 1(b)
redrawn, using row-major and snakelike row-major
node orderings, to expose its mesh-like structure.

Figure 4. Chordal ring with 16 nodes, node degree 2,
and skip 5] = 4 is isomorphic to a 4x4 mesh with
same-column, next-row (mod 4) wrap-around links.

The special case where sy is divisible by sz-1, 1 Sh <k,
merits special attention. In this case, greedy routing does
in fact lead to a shortest path. Thus, in this special case,
the diameter of the chordal ring network is upper bounded
by Zh;o Sh+1/sn — k. This bound is tight.

Theorem 1: The diameter D of an N-node chordal ring
network with skip distances sg=1, 51, $2,..., Sk—1, Sk = N,
such that sp41 is div'ks_i})le by sp, 0 < h< k-1, is exactly
equal to the bound X, _ o sp+1/5n — k.

Proof: The expression for dg(i, ) clearly shows that,
when each s, li djvisible by 551, any node can be reached
in at most 2}.:0 She1/sh - k st P§ using the greedy
routing algorithm. Hence, D <3, sh+1/sp — k. The
proof is complete upon noling_l{nat the distance from Node
0to Node N ~ 1 is exactly 3, _ Sh+1/sh — k. W

When Nk is an integer and sp, , 1 < h < k-1 is optimally
chosen (as discussed earlier) to be NHK the exact diameter
of the node-symmetric chordal ring becomes k(N1/% — 1),
For example, with N = 125 and & = 3, the optimal skip
distances are {5, 25) and the network diameter is easily
verified to be 3(12513 - 1) = 12.

Theorem 2: The bisection width B of an N-node
symmetric chordal ring network with S}SI{ distances 1=sq,
51,82, ... » Sk-1 is exactly equal 0 23, _ sh.

Proof: The bisection width of a node-symmetric chordal
ring is obtained by observing that exactly sp links of
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length sj; cross the boundary between Nodes i and i + 1.
That is, the s links for Nodes i —sp+ 1, i —sp+ 2, ..., §
cross this boundary, going to Nodes i+1, i+2, ..., i+sp,
respectively. Summing over 0 < h < k, and doubling to
account for the cut on the other side of the ring, we obtain
the desired result. Note that in the above derivation, we
have implicitly assumed that s 1 < N/2. H

When N1/K is an integer and 55, has the optimal value
NhIk, the exact bisection width of the node-symmetric
chordal ring becomes 2(N - 1)/(N1/k — 1). For example,
with N = 125, k =3, 51 = 5, and 53 = 25, the bisection
width is 2(125 - 1)/(5 - 1) = 62.

3. Periodically Regular Chordal Rings

The node-symmetric chordal ring architecture is wasteful in
that long-distance, medium-distance, and short-distance
links are provided for every node. In a manner similar to
deriving the cube-connected cycles architecture [PREP81]
from the hypercube, one can distribute the various skips
among a sequence of nodes, each having only one skip
link. The N nodes are split into N/g groups of g
consecutive nodes, where g divides N (Figure 5).

The detailed structure of the ith g-node group in the
resulting periodically regular chordal ring is depicted in
Figure 6. Each node [ is connected via the ring link to
node ! + 1. The node ig + j, or the jth node in the ith
group, is also connected through a skip link to Node ig + j
+ Sg—j. In order to assure that node in-degree/out-degree is
uniformly equal to 2, we require that all skip distances sp,
1<h<g, be multiples of g so that each node is guaranteed
to be the destination of one, and only one, skip link.
Figure 7 depicts an 8-node periodically regular chordal ring
network with g =2, 51 =2, and 55 = 4.

-_:': ; to N-1
{7 Askiplink leads tothe " . %
" same relative posi- "
tion within the .

destination,."

Figure 5. Dividing the N nodes into groups of size g
and the numbering scheme for nodes within groups.



.......
.........
-----
.....
. v,

Group i composed of
cosecutive nodes

Figure 6. Nodes within the ith g-node group and their
associated output skip links (input skips not shown).

Figure 7. Periodically regular chordal ring network
with N = 8, group size g = 2, and skips §1 =2, 57 = 4.

As in Section 2, let ny(i, j), 0 < h < k, be the number of
skip links of type s, included in a shortest path of length
d(i, j) from node i to node j. Whereas in the case of node-
symmetric chordal rings d(i, j) depends only on j — i, here
it truly depends on both i and j. In other words, the
relative positions of source and destination nodes within
their respective groups also affects the length of the
shortest path between them. For example, in the network
of Figure 7, the shortest path from Node O to Node 2 has
length 2 whereas Node 1 is directly connected to Node 3.

Before deriving the exact diameter of such networks, it is
helpful to discuss a greedy routing algorithm that performs
quite well in cases where Nodes i and j are not very close
to each other. The greedy routing algorithm is based on
taking the skip links in the order sg, 5g-1, ... , 52, 51.
Since node i in general does not have an sg skip link, the
packet is first routed to a node that does.

Algorithm 3: Greedy routing from Node i to Node j on
a periodically regular chordal ring network.
initialize I :=i;
while I #j and / is not a multiple of g do
1:=1+1; send the packet along the sq link
endwhile
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set the routing distance fieldtod=j -1,
for h = g downto 0 do
while d 2 s, do
d = d - sp; send the packet along the sp, link
endwhile
ifd=0
then done
else d := d - 1; send the packet along the sq link
endif
endfor B

Note that strictly speaking, Algorithm 3 is not a pure
greedy algorithm. It becomes greedy only after the first
while loop has been terminated and the packet has moved
to a node whose index is a multiple of g. It is easy to see
that Algorithm 3 frequently routes packets via non-optimal
paths. Consider, for example, a ring with group size g = 2
and skip distances s; = 10 and s2 = 16. To route from
node 2i to node 2i + 21, Algorithm 3 uses the route
2i, 2i+16, 2i+17, 2i+18, 2i+19, 2i+20, 2i+21
whereas the optimal (shortest) route is:
2i, 2i+1, 2i+11, 2i+21
The worst-case number of steps in routing by Algorithm 3
is2g-1+ 2%:0 xp, where x, is the number of iterations
of the second while loop and the term 2g — 1 results from
the worst case g — 1 iterations of the first while loop plus
g executions of the else clause corresponding to moving
from one skip distance to the next lower one (i.e., sg t0
Sg-1,...,52t0 51,5110 50)-
As in the analysis of Algorithm 1, the inequality xp <
[sp+1/sn 1~ 1 holds for all A; actually, here we can prove
the slightly improved bound xp < [(she1 = Displ=11in
view of the extra s step taken between successive skips of
different sizes (i.e. if we could not take the skip sp4+1 = 25,
we should not be able to take 4 skips of length s = 6 after
we have stepped forward on an sg link), but we will use
the first bound for simplicity. For xg, we can derive a
tighter bound. The above argument suggests that xg <
s1/s0 - 1 =51 — 1. We first note that xg < 51 — 2, since
if xg = 51 — 1, the s steps and the transition step from s1
just preceding the sg steps could be combined into a single
s1 step. That is, the sequence of steps
$1 81 -.. 81 SO SO0 SO ... 8O
x1 steps xp = §1-1 steps
is replaceable with x1 + 1 steps of 51. Thus, letting sg+1
= N for notational convenience and using the tighter bound
for xq given above, the worst case greedy routing distance
is upper-bounded by:

dg(i,j) <

s1/so + |_s2/s1-| +...
+[sgs1/sgl+g -3

<2g-2+ 2§=0 Sh+1/Sh



Algorithm 3 requires that each node know only its own
skip distance and perform only one comparison. If every
node stores all skip distances as in Algorithm 1, then
skipping need not be done in the order sg, 51, .. , 52,
51 and latency will be reduced. This observation leads to
the determination of diameter for an important subclass of
periodically regular chordal ring networks.

Theorem 3: The diameter D of an N-node periodically
regular chordal ring network with group size g > 1 and
skip distances so=1, 1, 52, ... , Sg, Sg+1=N, such that
each sp41 is divisible by 55, 0 < /1 < g, 1s exactly equal to
Ef=0 Sh+1/5p — 3. For g = 1, the diameter is 1 more than
the above expression (i.e., N/sy + 51 — 2).

Proof: The expression for dg(i, j) given above clearly
shows that, when each sp41 is divisible by 55, any node
can be reached in no more than ELO Sh+1/5h — 2 steps
using a variant of our routing algorithm that allows skips
to be taken in the order encountered (the g — 1 term
contributed by the first while loop is removed). Hence, D
< Z‘Lo Sh+1/sh — 2. However, for g > 1, a special
situation arises for skips 51 and sg. Consider the final part
of the route starting with the transition from 57 to s7:

50 S1 §1 ... 51 S0 SO SO ... SO
X1 steps x0 steps

If x1 = 52/51 — 1 and xg = 51 — 2, as discussed in our
earlier worst-case analysis, the steps shown above add up
to 1 + 51(s2/51-1) + 1 + 1(51-2) = s3. Thus the worst-
case values for x1 and xg cannot occur simultaneously and
D < 2%:0 Sh+1/sp ~ 3. The proof is complete upon
noting that the distance from Node 0 to Node N — 1 is
exactly ):i:() Sh+1/sh —3forg>1and Nfsy + 51 -2 in
thecaseof g=1. 1
Theorem 4: The bisection width B of an N-node
periodically regular chordal ring network with group size g
and skip distances s = 1, 51, 52, ... , Sg, Sg+1 = N, is
exactly equal to 2 + 2(Z§=1 sh)g.
Proof: The bisection width of a periodically regular
chordal ring is obtained by noting that sp/g skip links of
type s cross the boundary between two adjacent nodes,
adding the resulting terms, adding 1 for sp, and doubling to
account for the cut on the other side of the ring. B

As an example to demonstrate the results of Theorems 3
and 4, consider a periodically regular chordal ring network
with ¥ = 100, g = 2, and skips of 57 =4 and s = 20. The
diameter of this network is X, sh+1/sp — 3 = 4/1 + 20/4
+ 100/20 - 3 = 11. For instance, the shortest path from
Node 00 to Node 99 is of length 11 as shown below:

00 20 40 60 80 81 85 89 93 97 98 99

By Theorem 4, Llae bisection width for this example
network is 2 + 2(X,_; sp)/g = 2 + 2(4 + 20)/2 = 26.
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4. The Optimal Period and Skips

Assuming that sy is divisible by s, 0 < h < g, the
worst-case greedy distance of an N-node periodically regular
chordal ring was shown to be g — 3 + Zi=0 Sh+1/5h.
Given a particular value for g, this worst-case distance is
minimized for sp41/sp = N1/(€+1), To simplify the
subsequent discussion, we will assume that N1/8+1) js an
integer. This leads to the worst case optimal distance
bound of dg(i, ) < (g + 1)(N1/&*1) + 1) — 4 based on the
above expression and, by Theorem 3, the optimal diameter
D = (g+ )N+ _3,

Plotting the bound for dg(i, j) as a function of g for
different values of N (see Figure 8) clearly shows that g
can be optimally selected to minimize dg (i, /) in the worst
case. Furthermore, we see that for massively parallel
systems (large N), the optimal bound does not change
significantly when g is slightly varied around the optimal
value. In such cases, secondary criteria, such as average
distance or weighted distance for expected communication
patterns, may be used to pick the best value for g.

.....................................................

From top 1o bottom
N = 16K, 4K, 1K, 256, 64, 16

1 2 3 4 5 6 7 8

Figure 8. The worst-case greedy routing distance for
different values of N as a function of the group size g.

The optimal value for the group size g can also be
determined analytically.
Theorem 5: The worst-case greedy routing distance of an
N-node periodically regular chordal ring network with
optimally chosen skips is minimized for the group size g
=alnN -1, where @ = (0.782 188 is the solution of the
equation 1/a = (1/e) /% + 1.
Proof: Differentiating the worst-case greedy routing
distance z = (g + 1)(N1/@+1) + 1) — 4 with respect to g,
noting that dN%/dg = N¥(In N)du/dg, we get:

dz/dg = 1 - NVE+D[(In N)j(g + 1) - 1]
Hence the optimal group size g is a solution to the
following equation:



InN = (g + DIN-1/(8+1) 4 1)
From N-1/(g+1) > 0, we conclude that g + 1 <In N. Let
g+1=0alnN, where @« < 1 is an unknown to be
determined. Substituting in the above equation, we get:

InN = (aln NWN-U@inN), 1)
Noting that N-1/(n N) = 1/e, the above reduces to:
Ya= /)l +1

From this last equation, we find a = 0.782 188, leading to
goPt=0.782 188 InN - 1. 1

Theorem 6: The diameter of an N-node periodically
regular chordal ring network with optimally chosen skips
is minimized for the group size g =In N — 1. The
minimal diameteris e In N - 3 for g 2 2.
Proof: By Theorem 3, with optimal skip distances
satisfying sp41/sp = N1/&*1), the diameter D is:
D=3%_ sne1fsn-3=(g+ HNVe*D) _3
Equating dD/dg = N1/&+D[1 - (In N)/(g + 1)] with 0 leads
to g + 1 =1In N. The minimal diameter is obtained by
substituting In N for g + 1 in the above expression for D
and noting that N/(InN) = o m

As in most optimization problems involving integer-
valued parameters, the “optimal” value obtained by
converting the problem into a continuous one may need to
be adjusted to yield the true optimum.

Consider a ring with N = 1024 nodes as an example.
From Theorem 5, we find g°Pt = 0.782 188 In 1024 -1 =
4,42, Minimizing the diameter based on Theorem 6 yields
gOPt = In 1024 — 1 = 593. Since g must divide N, the
optimal group size is g = 4 in either case. This leads to
skip distances {4, 16, 64, 256} and upper bound of g — 3 +
Zp=0 Sh+1/sp = 21 for the worst-case greedy routing
distance and X, _o sh+1/sp — 3 = 17 for the diameter.
Note that the above values are not significantly higher
than the worst-case routing distance and diameter of 15 for
a 5-dimensional 4x4x4x4x4 mesh having node degree 10.

The bisection width of a periodically regular chordal ring
with optimal skips based on group size g is :
. 2[N - Nle+)

B=2 +g[Nl/(g+1) -1]
Continuing with our numerical example N = 1024, g =4,
we find that the bisection width of the network is B = 172.
In comparison, a 5-dimensional degree-10 mesh with two
unidirectional links between each pair of neighboring
nodes has bisection width 512. A comparable 32x32
mesh with unidirectional links has diameter 62 and
bisection width 32 without wrap-around links or 64 with
wrap-around links.
We next show that the bisection width B is a
monotonically increasing function of the group size g.
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Thus if maximization of bisection width is used as a
secondary criterion in optimization, the largest possible
group size must be chosen. The primary optimization
criterion is likely to be minimized worst-case routing
distance. Minimizing the diameter makes less sense if the
routing algorithm cannot take advantage of the smaller
graph-theoretic distances.
Theorem 7: The bisection width B of an N-node
periodically regular chordal ring network with optimally
chosen skip distances is a monotonically increasing
function of the group size g.
Proof: We rewrite the bisection width B as:
2N _ 2

gINV(E+D) _ 1] g[1 - N-1/(g+1)]
The first term is a constant. Hence, it suffices to show
that the denominator of the second (third) term is
monotonically decreasing (increasing). To see that f=
g[1-N-1/&+1)] is monotonically increasing, we write:

dpB/dg = 1 - N-1/@+D[1 + g(in N)/(g + )]
Letting g + 1 = In N and using N/ N) = ¢, we get:

df/dg = 1-e Vo1 + 1/a - 1/(a? In N)]
Since e~1/® = 1/[1 + Va + 1/202) + 1/(603) + ... ], the
second term above is always less than 1, concluding the
proof that § is a monotonically increasing function of g.
To show that y = g[N1/(¢+1) _ 1] is monotonically
decreasing, we write:

dy/dg = NY/@&+D[1 - g(In N)/(g + 1)2] - 1
Again letting g + 1 = o In N, we get:

dy/dg =eV2[1 - 1/a + 1/(a2 In N)] - 1

_ 1-1/a+1/(a?1nN) -3

1-1/a+ 1/2a%) - 1/(6a3) + ...

For a>1 and N 2 16, the fractional term above can be
shown to be less than 1, leading to the desired result. For
a <1 (or g +1<InN), we rewrite the term within the
square brackets in the initial expression for dy/dg as

1-(InN)/(g + 1) + (In N)/(g + 1)2
This term is always nonpositive if g + 1 is between the
two roots of the quadratic equation:

22_(InN)z+InN=0

Noting that the roots of the above equation are approxi-
mately equal to 1 and In N - 1 concludes the proof. B

From our discussion thus far, it appears that an optimal
periodically regular chordal ring with group size g has
diameter and bisection width parameters that fall between
those of a 2-dimensional mesh with comparable node
complexity and a (g + 1)-dimensional mesh made up of
nodes with much higher complexity. This relationship
will be further explored in the next section.

B=2+




5. Comparison to Other Networks

In Section 2, we noted that node-symmetric degree-k
chordal rings are somewhat similar to k-dimensional
meshes. Two examples are depicted in Figures 3 and 4.
As another example, Figure 9 shows that an 8-node,
degree-3 chordal ring with skips 51 = 2 and 52 = 4 is
similar to a 2x2x2 mesh with unidirectional NEWS
(north, east, west, south, also known as near-neighbor) and
various types of wrap-around links.

A periodically regular chordal ring can be viewed as a
subgraph of a node-symmetric chordal ring (Figure 10).
Hence, one should expect a periodically regular chordal
ring with group size g to have a lower communication
performance compared to a (g+1)-dimensional mesh of the
same size. Such a comparison wouldn't be fair, however.
Given that the node complexity in our proposed
periodically regular chordal ring networks is equal to that
of 2-D meshes with unidirectional NEWS links,
comparison with 2-D meshes is fairer. In particular, it is
natural to ask if our architecture offers any advantage over
such meshes that have found wide applications.

Figure 9. The mesh-like connections of the node-
symmetric chordal ring network of Figure 2(a) with in-
degree and out-degree 3 and skips §1 =2, 52 =4.

Figure 10. The network of Figure 7 redrawn as a
subgraph of the mesh-like structure shown in Figure 9.

Figure 11 shows the periodically regular chordal ring
network of Figure 7 as modified 2x4 and 4x2 meshes.
The modifications consists of replacing some of the near-
neighbor and wrap-around links with “long-distance” skip
or express links. It is such replacements that lead to
improved diameter and bisection.

Figure 11.
and 4x2 unidirectional wrap-around meshes in which
some of the local mesh links have been replaced by
“express” or long-distance links.

The network of Figure 7 redrawn as 2x4

The diameter of an N-node 2-D mesh with unidirectional
and wrap-around links is WN -2 compared toe In N -3
for an optimal N-node periodically regular chordal ring, as
proven in Theorem 6, The bisection width of a wrap-
around 2-D mesh is 4Wcompared to
2(N —e) N

2* - DN -D - %N
for a diameter-optimized chordal ring (withg=In N — 1),
It is worth noting that the diameter and bisection width of
a periodically regular chordal ring are of the same order as
the respective parameters of a cube-connected cycles
network [PREP81] with the same number of nodes.

Packed exponential connection (PEC) networks [KIRK90],
[KIRK91] have some similarities to periodically regular
chordal rings in that they are based on fixed-degree nodes
and provide long-distance connections or skips of various
lengths (always powers of 2). Figure 12 [LINC92] shows
a 32-node PEC network that can be used as a building
block for synthesizing larger networks in a hierarchical
manner. Here we compare an N-node periodically regular
chordal ring to an N-node basic PEC network similar to
that shown in Figure 12.

The diameter and worst-case routing distance of the basic
N-node PEC network have been shown [LINC92] to be:

o(Vlog N x 2V2log Ny

To facilitate comparison with the 6(log N) diameter and
worst-case routing distance of periodically regular chordal
rings, we rewrite the two expressions as follows:

g(m % 2\12log Ny- «e‘llog Ny
&(log N) = g(elog log N)
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Figure 12. PEC network of size 32. Compared to our
periodically regular chordal rings, PEC networks have
fewer long-distance links, potentially leading to
higher congestion for certain routing patterns.

Hence, periodically regular chordal rings have smaller
diameters compared to PEC networks. Additionally, the
routing algorithm for periodically regular chordal ring is
considerably simpler. As for bisection width, the &log N)
width of an N-node PEC network is significantly lower
than O(N/log N) derived above for periodically regular
chordal rings. Thus, periodically regular chordal rings can
be expected to be both more resilient and less prone to
congestion in computations characterized by a significant
level of non-local or random communications. Intuitively,
this last difference can be explained by observing that PEC
networks have fewer skips of the long variety, since the
number of skips provided is halved with each doubling of
the length. The price one pays for the above advantages is
a more complex interconnection pattern which translates to
greater area for on-chip links, larger number of I/O pins,
and more/longer off-chip wires.

6. Conclusion

We have introduced periodically regular chordal ring
networks that combine low node degree with small
diameter. Our discussion centered on the basic network,
topological properties, routing algorithms, optimization of
parameters, and comparison to mesh and PEC networks.
We showed that a chordal ring network has smaller
diameter and wider bisection than similar-sized 2-D meshes
and PEC networks, support simpler routing algorithms,
and are more easily adapted to fault tolerance in routing and
parallel computations. Even though only packet routing
was discussed here, we have shown that wormhole routing
can also be implemented with ease [PARH94].

Research is in progress or planned on the following topics:

* Enhancement and further detailed evaluation of packet
and wormhole routing algorithms, with particular
attention to practical implementation aspects.
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 Analytical and/or experimental determination of average
routing distance and optimization of system parameters
based on the average distance.

» Consideration of physical implementation aspects,
including scalability, modular design, and VLSI layout.

« Fairer and more comprehensive comparisons of
topological, physical, and performance parameters with
meshes, PEC networks, and other architectures.

» Consideration of error detection, fault diagnosis, and
fault tolerance, including variations/enhancements to
support the design of highly dependable systems.

¢ Implementation of important building-block parallel
computations, such as semigroup computation, prefix
computation, selection, and sorting.

 Investigation of data/computation mapping/scheduling
issues, load balancing, and real-time constraints.

+ Study of emulations of/by and embeddings into/from
other networks.
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