1344

(71

(8]
191

[10]

(1]

[12]

(13]

(14]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 11, NOVEMBER 1995

W.J. Dally and C.L. Sietz, “Deadlock-free message routing in multi-
processor interconnection networks,” IEEE Trans. Computers, vol. 36,
pp. 547-553, 1987.

L.M. Ni and P.K. McKinley, “A survey of wormhole routing techniques
in direct networks,” Computer, vol. 26, no. 2, pp. 62-76, 1993.

J.M. Rosario, “High performance parallel /O on the nCUBE 2,” Trans.
Inst. of Electronics, Information, and Comm. Engineers, vol. J75-D-1,
no. 8, pp. 626-636, 1992.

T. Shirakawa, T. Kageyama, H. Abe, and T. Hoshino, “Processor array
PAX-128,” Trans. Inst. of Electronics and Comm. Engineers, vol. J67-D,
no. 8, pp. 853-860, 1984.

H. Ishihata, T. Horie, S. Inano, T. Shimizu, and S. Kato, “An architec-
ture of highly parallel computer AP1000,” Proc. IEEE Pacific Rim
Conf. Communications, Computers, and Signal Processing, pp. 13-16,
1991.

L.N. Bhuyan and D.P. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” IEEE Trans. Computers, vol. 33,
pp- 323-333, 1984.

P.W. Dowd and K. Jabbour, “Spanning multiaccess channel hypercube
computer interconnection,” JEEE Trans. Computers, vol. 37, pp. 1,137-
1,142, 1988.

C.M. Fiduccia, “Bused hypercubes and other pin-optimal networks,”
IEEE Trans. Parallel and Distributed Systems, vol. 3, pp. 14-24, 1992.

Error Analysis of Approximate Chinese-
Remainder-Theorem Decoding

Ching Yu Hung and Behrooz Parhami

Abstract—Approximate Chinese-remainder-theorem decoding of
residue numbers is a useful operation in residue arithmetic. The decod-
ing yields an approximation to (X mod M)/M, in the range [0, 1), where X
is the input number and M is the product of all moduli. We show the
error distribution and worst-case errors for both the truncation and
rounding versions of the approximate decoding procedure. We also
prove that, contrary to some published accounts, limiting the dynamic
range is ineffective in reducing the maximal error.

Index Terms—Computation errors, computer arithmetic, residue
numbers, RNS representation, scaled decoding.

1. INTRODUCTION

Residue number system (RNS) offers fast, carry-free, addition and
multiplication, as well as useful properties for error detection and
correction in arithmetic operations. Magnitude information, however,
is not explicit in the representation. Decoding refers to the process of
obtaining some magnitude information from a residue number. This
paper deals exclusively with scaled decoding, where the decoding
output is scaled to the range [0, 1), or equivalently, [0, 2% for some
integer k. By performing summation modulo a power of 2, as op-
posed to modulo M, the product of all moduli, scaled decoding can
be carried out more efficiently.

Approximate CRT (Chinese-remainder-theorem) decoding is an
essential operation in many RNS arithmetic algorithms, including
sign detection, division, and overflow handling. This operation is
used in several proposals for RNS arithmetic and residue-to-binary
conversion [2], [3], [4], [5], [7]. The precision of decoding ranges
from low, for approximate sign detection [3], to medium, for scaled
decoding [4], [5], to full representation, for exact sign detection [7]
and scaled conversion to positional notation [2]. However, we have
been unable to locate any work that analyzes the decoding error for-
mally. Some obtain a simple upper-bound error by treating the prob-
lem as rounding or truncation error, while others use exhaustive
search to find the range of errors for specific moduli.

Soderstrand et al. [5] show the maximal error for one set of moduli.
They also suggest that the error can be reduced by excluding a fraction
of the dynamic range. Unfortunately, their results, based on exhaustive
computer search, are incorrect. Thus, the question of whether restricting
the dynamic range can effectively reduce the error remains open. Vu [7]
proposes a scaled CRT decoding in the range [0, 2) for (exact) sign
detection. He concludes that the minimal width of tables and adders
used in the decoding is roughly [log, nM | bits, where n is the number
of moduli. The method used is exact rather than approximate decoding.
Griffin et al. [2] use exhaustive computer search and plot the error dis-
tribution for a modulus set of the form {2¢— 1, 2%, 2+ 1}. Kim et al. [4]
compute the maximal error for a few sets of moduli through computer
search. The rounding error compensation method proposed in the paper
requires extra lookup tables and an adder tree to reduce the error. It
appears that extending the precision of the lookup table would achieve
the same effect with simpler hardware.

Manuscript received Dec. 22, 1993; revised Apr. 28, 1994.

C.Y. Hung is with the Integrated Systems Laboratory, Texas Instruments,
Dallas, TX 75243.

B. Parhami is with the Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106-9560; e-mail:
parhami@ece.ucsb.edu.

To order reprints of this article, e-mail: transactions @computer.org, and
reference IEEECS Log Number C95121.

0000-0000/95$04.00 © 1995 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 11, NOVEMBER 1995

In this paper, we analyze the error distribution of approximate
CRT decoding, for both truncation and rounding versions. When n,
the number of moduli, is not very small, the distribution is shown to
resemble a normal distribution. The worst-case error is derived and is
shown to be close to the simple upper bound. Moreover, it is proven
that input numbers that cause near-worst-case errors are so evenly
distributed throughout the dynamic range that no subrange larger
than M/m; can avoid all such numbers. It is therefore infeasible to
reduce the maximal error by restricting the dynamic range, as sug-
gested by Soderstrand et al. [5].

II. APPROXIMATE CRT DECODING

We denote the list of moduli for the RNS as {m,, m,, ..., m,}. An
unsigned number X is represented by a list of residues with respect to
the n moduli. X = (x;, X, ..., X), x; =|X| . Furthermore, let
M= H)siSnmi iy = M[m; , and g; = |’ﬁi_l|mi.

We define the exact scaled CRT decoding result as f{X). It is com-
puted as follows.

) =X b(x) =X/M M
1<i<n 1
i,
b(j) = I—L. @
m

i
The truncation and rounding versions of approximate CRT decod-

ing are denoted as F4X) and F4X), where d is the number of bits
kept after truncation or rounding.

Frax) =1 26 () 3
ez ,

bl(j) = Truncate[lj ‘f"'lli"'-' : a‘], @

FrUx) = 1Zb,-""‘(x.-) ; ®)
& ,

b (j) = Round(lj(f;lim‘ , d}. 6)

Each component, b,~T "'(xi) or biR‘d(x,-), can be computed on-line

or precomputed and stored in a lookup table. The parameter d dic-
tates the cost of computing and storing these components. The Trun-

cate and Round functions are defined as Truncate(z, d) = 242%]and
Round(z, d) = 2_d|_2"z + %J

We are interested in the decoding errors Af Tdxy = FHX) - AX)

and Af R4X) = £ R4(X) - X). Viewing the decoding error as the
summation of n truncation or rounding errors, each with a value of
ulp or +-ulp (ulp = unit in last position = 2% depending on whether
truncation or rounding is used, we conclude that

-n2 < AfT(X) <0, Q)

-n2% < AR < n27 ®)

Vu {7] derives the minimal 4 that allows accurate sign detection of
residue numbers, and in the process implies (8) without explicitly
stating it. We call the bounds in (7) and (8) the simple error bounds

1345

for (scaled) CRT decoding. Figs. 1 and 2 are scatter plots for the
decoding error of the truncation and rounding versions for all input
numbers with the modulus set {5, 7, 9, 11}. The simple error bounds
clearly hold for this example.

Note that (7) and (8) may not hold when f{X) is close to the
boundaries 0 and 1. In such cases, due to the modulo-1 operations in
(3) and (5), errors may cause f Tdor f Rd o cross the boundary, lead-
ing to a large value for Af Td or Af ®4. Therefore, our analyses, as
presented in this paper, are valid only if a small upper portion of the
dynamic range near the boundary is excluded and appropriate com-
pensation is applied to the decoded values that fall in the excluded
interval. However, if one defines the total error as the sum of indi-
vidual error terms, rather than as the difference between f{X) and its
approximate version, then our results and conclusions will apply to
these boundary cases as well.

0 p : nl . : . : : ; . l i

] s. -\ \‘ ‘\ “ \‘ ‘\ “ :

] AY N, AY \ \ \ A

-0.1 \F

-027 [

AfTAX) 1 [

-03 {\ -

E\ \\. \',_ \\ \\ * \\ \ N E

Y R

-0.5] T T T T T T
0 500 1000 1500 2000 2500 3000 3500
X

Fig. 1. Error of truncated CRT decoding as a function of the input X. Modu-
lus setis {5, 7, 9, 11}, d = 3, so the decoding error is bounded in (-0.5, 0].

] [1 L 1 1

Y

029’

1 - ‘.\ '|'. '-\ ‘.\ . ‘.\ N
] \ \ \ \ \, \, \, N
0.1] \
AfRYX) o 4
-0.1
.\‘ “ \‘\ \‘ \\ \\ \\ \.

L

-02

T

T T T T T T
0 500 1000 1500 2000 2500 3000
X

3500

Fig. 2. Error of rounded CRT decoding as a function of the input X. Modulus
setis {5,7,9, 11}, d = 3, so the decoding error is bounded in (-0.25, 0.25].

III. COMPUTING THE ERROR SETS

We are interested in the decoding errors Af T4(X) and Af R“'(X). First,
we derive the error for individual terms AbT(j) = b (j) - b;(j) and

ABR () = b (j) - b;(j) . From (4), we have

. . -d|nd .
4y = 2 2\ial,, | _lal,, 2 2 jai, |

i m; m;

It follows that

1346 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 11, NOVEMBER 1995

l’ja|

AbI(j)=-27¢ L)

i

For rounded CRT decoding, we derive from (6) that

. m; , d. o m
bR,d(]) = 2_d 2d|]qi|mi +T = Ijqilmi +2_d—l _2"1 _|2 i+ 2 |m
’ L i m; m;

d . m|
AbRA(j) =271 i_lz /1 'm,-
1 2 .

m;

(10

We are interested in the error variations for all X in the dynamic
range. For example, we ask how the error is distributed, what the
worst-case values are, and if it is possible to reduce the error by limit-
ing the range of represented numbers, as suggested in [5]. To gain
such information we look at the errors as a set generated by all pos-
sible inputs in the dynamic range.

The set of moduli are assumed to be pairwise relatively prime.
Furthermore, we restrict our argument to the case that all moduli are
odd. The other case, when there is one even modulus, is slightly more
complicated and is discussed in the appendix. We shall use the fol-
lowing lemma from number theory [1]:

Let a and m be integers. If a is relatively prime to m, we have

{Yal, 10<j<m-1}={0,1,2,...,m~—1}.

Since both factors, 2¢ and gi, inside the modulo operation in (9)
and (10) are relatively prime to m;, a = 2’1q,~ is also relatively prime to
m;. By the above lemma, we obtain all possible error values for each
component as

{Ab,?’-d(j)Ios;s mi—l} ={—2"’i|0sj's m,-—l}, 1)
m;

4

n_(i+d
{af(Dlo<jsm, —1}={2‘”—2—(’—”l|osj's m; -1}
m.
(12)

m. 2 2

I

:{2“"-L|———m‘_1 <j< m"*l}.

Thus, as the input j to the error component Ab,.“ () varies from 0 to
m; — 1, the error takes values from the set {0, —2“1/m;, o
(m; =1)/m;}, not necessarily in that order. Similarly for the rounding
version, as j varies from 0O to m; — 1, AbiR"l(J) takes values from the
set on the right-hand side of (12). Note that the truncation error set is
nonpositive, and the rounding error set is symmetric about zero.

Next we look at the decoding errors Af74(X) and Af R"’(X), again as
sets for all input numbers. Error accumulates as b™(x;) or b%(x;)
terms are summed modulo 1. Except when X is close to the two ex-
tremes of the dynamic range, we have

AT (X) = zAbiT'd(xi)’
1<i<n

AFR(X) = Y AbR ().
1€ign

As the input X sweeps the entire dynamic range, 0 S X <M — |,
the n error components have each of their inputs x; stepping through
all combinations of 0 < x; < m; - 1. The decoding errors of all inputs
in the dynamic range, as a set, thus contain all possible combinations
(ITm; = M of them) of the n error components:

{ar o< x < M-1}

‘ (13)
={—2“‘Z—y'—|05y,.5mi—1,15i5n},

1Sisn 7%

{ar™ o< x < m-1}

={2-dzi_

t<i<n M

mloy < mi_l,lSiSn}. 1
2 2

In the above equations, n variables y; through y, are used in the n-term

summation, and each variable y; can assume one of m; values. Each one

of the M summations generates a unique sum. The uniqueness can eas-

ily be proven for the truncation version: We multiply all set elements by

-2'M to obtain {Y y,m;|0<y; <m;-1,1<i<n}. Let two sums be

equal; ie, Y ym; = 3 zm;. Taking modulo m;, 1 < j < n, on both

sides, we have |y i j| = Iz m j| , and therefore we must have y; = z;,
mj mj

for 1 <j < n. The proof for the rounding version is similar.

Equations (13) and (14) contain the exact quantity of every possi-
ble decoding error. However, they do not provide explicit informa-
tion on how these errors are distributed. To get an intuitive feeling
for the distribution of error magnitudes, we resort to an approximate
analysis. Each error component is approximated by a uniformly dis-
tributed random variable, roughly in (-27% 0] and (=27, 21),
respectively for truncation and rounding. The decoding error is the
sum of the n identical and independent uniformly distributed random
variables. Therefore the distribution function of decoding error is just
the convolution of the n uniform distributions. As n assumes the
values 1, 2, ..., the shape of our approximate distribution changes
from uniform to triangular (a rising linear part followed by a declin-
ing segment), ..., resembling normal distribution for moderate values
of n, and eventually converging to a perfect normal distribution.

100 L

T

0 . .;.‘5 T r r -'.;. "
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Y = Round(A fR4)

Fig. 3. Error distribution of rounded CRT decoding. Modulus set is {5, 7, 9,
11}, d = 3, interval size is 0.005, so the plot appears as a jagged normal-like
distribution.

The probability-distribution view of the decoding error (rounding
version) shown in Fig. 3 has been obtained by dividing the real line
into equal-size intervals and counting the number of errors falling
into each interval as all integers in the dynamic range are decoded
with the procedure. The result is the same as randomly selecting a
number X in the dynamic range and finding the probability of the
decoding error falling into each interval. The size of intervals affects
the shape of the distribution. When interval size is small, viz < 2%/m;,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 11, NOVEMBER 1995

the analogy is not so good because error components do not fall into
every interval. The truncation version has a similar shape in the error
distribution, but the peak is shifted from 0 to n2™"",

A possible application on the above insight on the distribution of
errors is the modeling of decoding errors. When CRT decoding is
performed on a time-domain signal, received as a residue number, the
decoding errors may be viewed collectively as a single noise source
added to the signal, which may also be affected by other noise
sources prior to and after the decoding. When the number of moduli,
n, is not very small, the decoding error can be approximated by a
normally distributed random variable, also known as white noise in
signal processing.

IV. ANALYSIS OF ERRORS

We are now ready to answer the questions we have posed. The
worst-case errors are easy to derive from (13) and (14). For the trun-
cation version, there is an input X™*™ such that

Afr,d(x(worst)) =27y m—1
1sisn My

15)

This is very close to the simple bound —2n. For the rounding ver-
sion, there are X and X™*™® for which the errors are close to
the simple bounds +274"'1;

—m; +1

AfR“’(X(““'“‘A)) =n-d) 16)
ISz 2my

AfR’d(X(womB)) =9 2 m; —1 ' an
|Si=n 2M;

The next question is whether it is possible to reduce the decoding
error by restricting the dynamic range. The following argument for
the truncation version shows that the answer is negative. The argu-
ment for the rounding version is similar.

Let X™™ = (x, x,, ..., x,) be the number that causes the maxi-
mum error, Ab™(x;) = —27%m; ~ 1)/m;. Consider m, distinct numbers
Y0 = (j, x5, x3, ..., %,), 0 < j < m, — 1, which include X™™. Since n — 1
out of the 7 residues of these numbers are identical, these m; numbers
differ by multiples of M/m,. They must therefore spread out evenly
throughout the dynamic range [0, M ~ 1]. We proceed to evaluate
their decoding errors. Since these numbers are different only in the
first residue, and each error component only depends on its corre-
sponding residue, n — 1 of the error components are the same for all

the numbers. Therefore, their decoding error must be at least
Y(j) > _2—11 z m; -1
<ign M

=~2"(n-1),

only a fraction, 1/n, less than the peak error. We conclude that no
continuous range larger than M/m, can avoid these near-peak decod-
ing errors. Since the choice of using the first modulus is arbitrary, no
range larger than M/m, m being the largest modulus, can avoid near-
peak decoding errors. It is therefore not possible to significantly re-
duce the decoding error without substantial sacrifice in the dynamic
range. The above argument is confirmed by Figs. 1 and 2: For both
versions of CRT decoding, close-to-peak errors are observed
throughout the dynamic range.

Another observation from Figs. 1 and 2 is that the errors line up
on parallel sloped lines. These lines overlap vertically so that for
input numbers in a small interval, the decoding errors spread out into
several clusters that are 27 apart. The regularity in the plots appears
to convey some information about the decoding error. Actually, no
useful information can be gained. Take the rounding version for ex-
ample. The decoding produces multiples of 27 as output. If the de-

1347

coding error were within 27" in all cases, then we would have per-
fect rounding and the plot would have been saw-tooth like, without
the sloped lines vertically overlapping one anther. However, the n
components of bR‘d(xi), each rounded up or down, often add up to a
decoding result that is a few multiples of 27 above or below the per-
fect result. This explains the overlapping of sloped lines that are
separated by a vertical distance of 27,

V. CONCLUSIONS

We have obtained closed-form solutions for the error in approxi-
mate CRT decoding of residue numbers. Error distribution and worst-
case errors are shown. Our results on the worst-case errors confirm
that the simple upper bound first observed by Vu [7] is close to the
actual worst-case errors. Since RNS representations are non-
redundant, it would have been surprising if worst-case error compo-
nents did not combine.

Possible future research directions include: seeking to control the
decoding error based on the knowledge of error distribution; develop-
ing a more efficient sign detection algorithm by incrementally
evaluating the decoding error, thereby improving RNS division al-
gorithms; and tailoring the analyses to special sets of moduli.

APPENDIX
THE CASE OF RNS WITH ONE EVEN MODULUS

Because all the moduli are pairwise relatively prime, there is at
most one even modulus. Without loss of generality, let this modulus
be m,. From the analysis in Section IV we see that the decoding error
is the sum of n independent components, each dependent only on the
corresponding residue. An easy way out is to rewrite the lower
bounds of error sets and of worst-case error by eliminating the first
component from (13), (14), (15), (16), and (17). We can do slightly
better than that.

We need a generalized version of the lemma used in Section I {1].

Let a and m be integers, g = gcd(a, m) and k = m/g. We have
{lial,10<j<m~1}={0,¢g,2eg, ..., (k- 1)g},

Let m{ =m, / ged(2%, my). 1t follows from the lemma that, for the
even modulus, (11) becomes

Ablr,a={_2-di,|os,‘5m,’—1}. (18)
m;

The rounding version is more difficult. Let my = r2° with r odd.
There are two cases:

Case L s <d. In this case, m{ = m [gcd(2¢, m)) = m,/2° = r, an 0dd
number. The modulo m; expression in (10) becomes

,
2475 jg. +
nvt]

= 2’(j’+%), forsome j,,0< j < r—-1.

|2’qu,- +r2’_’l’2_, =2¢

Thus, (12) becomes

1348

2 r2¢
- 1
={2’“ (+3) 0<j<r-1
r
19
={2"’l—r_1515r_1
r 2 2

Cast IL s > d. In this case, m] = m;[gcd(2?, m) =m, [2? = r2°™*,
an even number. The modulo m; expression in (10) becomes
d . s-1 _ nd]: s—d-1
|2 Jjg;+r2 lrz‘ =2 |jq,. +r2 lrz’—"
=24j’, forsome j’,0< j'<m{-1.

Equation (12) now becomes

d .

AbRA =27 1.2
2 r2f

={24 1_J

2 m

= 2‘”L‘-ﬂf—+15jsi"i .
mi| 2 2

OSjSml’—l}

(20

OSjSml'—l}

Comparing (19) and (20) with the original (12), we see the effect
of the even modulus is just replacing m; with m{ and changing
boundary conditions for the enumerator j. Instead of having m;, levels
of error values, now there are only m; = m;/gcd(2%, m,) levels. The
argument on error distribution, worst-case errors, and uniform spread
of near-peak errors can be modified for the case of an even modulus.
In the special case that m; = 2%, we have m{ = 1, and the even modu-
lus contributes nothing to the decoding error. Because the first error
component skips levels, the error distribution should become some-
what more jagged when n is small. The argument on uniform spread
of near-peak errors is still valid, if we select some odd modulus for
constructing Y¥.

REFERENCES

[11 R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics.
Reading, Mass.: Addison-Wesley, 1989.

[21 M. Griffin, F. Taylor, and M. Sousa, “New scaling algorithms for the
Chinese remainder theorem,” Proc. 22nd Asilomar Conf. Signal, Sys-
tems, and Computers, vol. 1, pp. 375-378, 1988.

[3]1 C.Y.Hung and B. Parhami, “An approximate sign detection method for
residue numbers and its application to RNS division,” Computers and
Mathematics with Applications, vol. 27, pp. 23-35, Feb. 1994.

[4] 1Y.Kim, K.H. Park, and H.S. Lee, “Efficient residue-to-binary conver-
sion technique with rounding error compensation,” IEEE Trans. Cir-
cuits and Systems, vol. 38, pp. 315-317, Mar. 1991,

{51 M.A. Soderstrand, C. Vemnia, and J.-H. Chang, “An improved residue
number system digital-to-analog converter,” IEEE Trans. Circuits and
Systems, vol. 30, pp. 903-907, Dec. 1983. Also in [6], pp. 47-50.

[6] Residue Number System Arithmetic: Modern Applications in Digital
Signal Processing, M.A. Soderstrand, W K. Jenkins, G.A. Jullien, and
F.J. Taylor, eds. IEEE Press, 1986.

[71 T.V. Vu, “Efficient implementations of the Chinese remainder theorem
for sign detection and residue decoding,” IEEE Trans. Computers,
vol. 34, pp. 646-651, July 1985.

1EEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 11, NOVEMBER 1995

A Continued-Fraction Analysis of
Trigonometric Argument Reduction

Roger Alan Smith

Abstract—The calculation of a trigonometric function of a large ar-
gument x is effectively carried out by, finding the integer Nand0< a<1
such that x = (N+a)%. This reduction modulo 4 makes it possible to
calculate a trigonometric function of a reduced argument, either o or
(1~)%, which lies in the interval (0, {-) . Payne and Hanek [1] described

an efficient algorithm for computing ¢ to a predetermined level of accu-
racy. They noted that if x differs only slightly from an integral multiple
of Z-, the reduction must be carried out quite accurately to avoid a large

loss of significance in the reduced argument. We present a simple method
using continued fractions for determining, for all numbers x represented
in an IEEE floating-point format, the specific x for which the greatest
number of insignificant leading bits occur. Applications are made to
IEEE single-precision and double-precision formats and two extended-
precision formats.

Index Terms—Argument reduction, computer arithmetic, continued
fractions, nonlinear optimization, trigonometric functions.

I. INTRODUCTION

The IEEE Standard for Binary Floating-Point Arithmetic [2]
established the simple but powerful concept that the result of an
elementary arithmetic operation on floating-point numbers
should be obtained as if the exact result were simply rounded to
fit in the floating-point format. For the elementary arithmetic
operations, many manufacturers have achieved this standard in
hardware with fixed-precision arithmetic.

The extension of this concept to elementary transcendental
functions would be that the evaluation of an elementary function
of floating-point numbers should be obtained as if the exact re-
sult were rounded to fit in the floating-point format. Although
this is a nice principle, implementation of it is far from trivial.
Gal and Bachelis [3] describe how this can be done for almost all
argument values.

For many purposes, a less stringent requirement is that the
answer should be close to the exact result. One can use a two-
step procedure to calculate a trigonometric function of an argument
x> 0 by first reducing the argument to the first quadrant or octant
and then calculating an appropriate function of the reduced argument.

For octant reduction, the first step computes the reduced argument

oa=2%x- N where N =lixJ; 1)
T F3

here x = (N+a)% with N an integer and 0 < & < 1. The second step
computes sin(x) or cos(x) by noting that each of these functions is
one of i{sin(a%),cos(a%)} when N is even and one of

i{sin((l—a)%), + cos((1 - a)%)} when N is odd; the value of N mod 8

determines which sine or cosine must be computed.

Manuscript received Jan. 19, 1994; revised Aug. 12, 1994.

The author is with RISC Software, Motorola, Austin, TX 78735, e-mail:
rogers @risc.sps.mot.com.

To order reprints of this article, e-mail: transactions@computer.org, and
reference IEEECS Log Number C95125.

0018-9340/95$04.00 © 1995 IEEE

