Fault-Tolerant Processor Arrays Using Space and Time Redundancy

DING-MING KWAI and BEHROOZ PARHAMI

Department of Electrical and Computer Engincering
University of California, Santa Barbara, USA

Abstract — Spare processors in a processor array are
usually idle in normal operation. They are used only after
a fault is detected through periodic or on-line diagnosis
and the processor array is reconfigured to include them.
In this paper, we propase a design methodology in which
the spare:processors are used fo aid with a data-driven
error detection scheme. Our method consists of attaching
tags to data streams, thereby allowing the data items to
carry their own control information. A checking processor
changes the tags when it detects a disagreement among
replicated computation results. The faulty processor can
then be located by error information derived from two
distinct data streams. We incorporate the techniques using
space and time redundancy into a fault-tolerant processor
array that can provide different levels of fault tolerance
according to the availability of fault-free processors. The
scheme is also flexible in that it can trade error detection
capability for added computational throughput.

1 INTRODUCTION

Fault tolerance is wusually achieved through
redundancy applied in time or in space domain [18].
Without proper encoding of data, use of time redundancy
can only detect or correct transient faults. A concurrent
error detection method based on recomputing with shifted
operands has been proposed to facilitate the detection of
permanent faults in a computational module [16, 17]. This
method can also be applied to a processor array if a proper
control sequence is provided [5, 13, 20]. Another method
using duplicate computations in neighboring processors
eliminates the coding and decoding steps at the expense of
one redundant processor {1, 2, 12, 14}. Computations have
to be appro- priately rescheduled for error detection.

As shown in Fig. 1, these two methods differ only in
that one inserts and interleaves the duplicated computation
in time and the other in space. The original computations
Cy are rescheduled in the redundant schemes in such a
way that the precedence relations are kept and the control
flow can be pipelined. Both schemes have regular control
flow, so we can incorporate them in the same processor
array. They can be more efficient for on-line testing if

0-7803-3529-5/96/$5.00 © 1996 IEEE

there are idle processors at each time step, or equivalently,
idle time steps in each processor.

pef]2

Py fCu | Cua

P2 JCiu|Cx

Ps |Cs: | Cx

Origjnal Modified computation with Modified computation with
tati time redundancy space redundancy

Ly

Fig. 1. Two error detection schemes using redundancy in
time and in space. The column for f = 5 in space redun-
dancy signifies the final comparison needed for Cy.

To provide the control sequencing and error
indication, a data stream carrying control and error
information, in the form of tags attached to data items, can
be propagated through the array. Since any processor
along the data flow path can be faulty, error information
from a single data stream can only indicate that an error
has occurred and would be inadequate for. locating the
faulty processor [12]. In this paper, we propose to use two
data streams to carry the control and error information in
order to be able to locate the faulty processor. The
diagnosis scheme is used to provide fault tolerance in the
array. The host initiates the reconfiguration procedure to
bypass the faulty processor if it appears repetitively in the
fault list.

We will introduce our method by applying it to a
particular linear array. In section II, we introduce a bi-
directional linear array for matrix-vector multiplication.
Section III deals with the error detection methods with
time¢ redundancy and space redundancy and their
associated synthesis procedures. In section IV, we extend
the methods to provide fault diagnosis capability. In
section V, we combine the time redundancy and space
redundancy schemes into the linear array. In section VI,
the extension to 2D array is given. Section VII contains
our conclusions.

03

Il PRELIMINARIES
Consider the problem of multiplying an n x m matrix
A = (ay) with an m-vector x = [xi x; ... xa]' to yicld an
n-vector y = [y1 y ... vaJ". It can be written as a set of
uniform recurrence equations [7}

yiw “ y‘.(i—l) + ay x xj(l-l) y’_(O) =0

xj(i) (——xj("" xj“’) = x

which are referred to as inner product step operations.
Suppose A is a band matrix with band width (the number
of diagonals) w. Fig. 2 shows the dependence graph ina
two- dimensional . Cartesian coordinate for the band
matrix- vector multiplication when w = 3. The nodes in the
graph represent the inner product steps and the arcs denote
the movement of data items.

Fig. 2. Dependexiqc'-graph for matrix-vector multiplication.
The projection direction and scheduling (diagonal dotted
lines) are also shown.

-The algorithm can be implemented on a linear array
of processors, each with three data streams. Data streams x
and y flow in opposite directions at a velocity of one
processor per time step in which consecutive data items x;
(or y,) are interspersed with irrelevant data items. Fig. 3
shows the array with its associated data flow. The mapping
from a dependence graph to a processor array is an gffine
trans- formation onto space and tirne domains [8, 19]. We
have selected the projection direction such ‘that the
reqmred array size is the band width w of the matrix.

" We assume that the array is reconfigurable with spare
processors. One possible structure is shown in Fig..4 in
which the faulty processor P, has been bypassed following
reconfiguration. Here we are concerned only with how
faulty processors can be detected and located, and not with
issues related to reconfiguration [4, 13]. We assume.that a
suitable reconfiguration method is available {3, 6]. Spare
processors are used to provide fault tolerance by space
redundancy until all spares have been exhausted following

reconfiguration of the array. We then can use time
redundancy for error detection and fault diagnosis.

- 3 -

an a3
- A -
a2 - aa
- an -
Xy _ X2 _ —d X1 [-
P P P
l 2z 3
< [¢ Yi [_ A _ >

Fig. 3. Bldlrecuonal linear array for matrix-vector multi-
plication. Each block is a processor.

R T e o]

2 Py Py

s L =
g \ Faul
N v - aulty
- < «

Flg 4. Reconfigurable bidirectional lmear array The bold
tines show the normal data flow. The dotted lmes _provide
external access to the faulty processor(s).

1. ERROR DETECTION

A. Time Redundancy o

This scheme works as follows. After completing an

inner product step, each processor not only sends the result
to its left neighbor but also stores the result in an internal
register. At the next time step, it recomputes’ the inner
“product step (perhaps with shifted operands if a wider
class of faults must be tolerated) and compares the result
with its stored value. A mismatch indicates an error in
either of the two time steps. »

We actually create two events for each computation
and a partial order between these two events. The first
event (that requires the processor to forward and also siore
the computation result) is followed by the second event
(that requires the processor to compare the stored value
with its recomputed result). These two events correspond
to two different types of nodes in the dependence graph.
The dependence graph for time redundancy is derived by
duplicating the original dependence graph of Fig. 2 and
interleaving it in the projection direction. These duplicate
nodes are shaded to denote that different instructions are
exccuted. They are connected by arcs in the projection
direction to represent the partial order between the two
events in the processors (see Fig. 5).)

Because duplication is done in the projection
direction, the number of processors needed does not

304

{ 1, if T=7?
0, lfT 7(’0)

The error signal ¢, at position index i/ indicates that at least
one of the two y, outputs is incorrect.

Note that if all of the tags attached to the data items
are set to the same value (either 0 or 1) and the error
signals are ignored, the linear array can do two matrix-
vector multiplications concurrently. The data items for
these two computations are interleaved and the through-
put is twice that of the original one. Thus, the above fault
detection scheme is both efficient (uses excess node
capacity to perform the duplicate computations) and
flexible (allows for trading the error detection capability
for added computational throughput).

IV. FAULT DIAGNOSIS

Our approach to diagnosing the faults to the level of
individual processors is based on attaching error tags to
the data stream x in addition to those attached to the data
stream y. Error tags on the data stream x have no effect on
the control of processors. They are just carriers of error
messages. The functionality of each processor is still
determined by the tags on the data stream y. To indicate
that the data items are initially error free, all tags on the
data stream x are set to 0.

A. Time redundancy

For the time redundancy scheme, if processor P, can
not perform the computation properly at one of two time
steps, £ — 1 or ¢, or it is faulty but produces different results
at these time steps, the tag bits will be changed by P, to 1
at time step ¢ Modified tag bits emerging from both
directions are used to find out which processor is faulty.

We assume that faults will manifest themselves with
altered values of the output at the level of individual
processors and that there is at most one faulty processor in
the array. This may not be impractical for on-line
diagnosis, if a certain percentage of defective processors
have been rejected. Since the communication links are
multiple bits, the probability of error masking in all bits is
very small. We shall assume that any error at a processor
propagate to all successive oncs. In such cases, only the
leading 1s in error vectors are important. We denote the
position of the leading 1 in the error vector of data stream
yasyandthatof datastreamxasx (1 <x<mand 1 €y <
n). From x and y, we can derive the index p of the
processor P, first reporting an error and the time step ¢
when the disagreement was detected.

The space-time diagram of the linear array can be
drawn in a two-dimensional Cartesian coordinate. Fig. 7
shows the space-time diagram with time redundancy. The

data streams x and y are represented by two families of
lines running in parallel. The position indices x and y are
related to the displacements’ of the lines. Pairs of values
that are computed at time steps £ — 1 and ¢ and then
compared at time step ¢ have been identified by enclosing
the corresponding points of the space-time diagram in
dotted boxes.

)4 X

Fig. 7. Space-time diagram of the bidirectional linear
array with time redundancy.

Clearly, given x and y, thé time step f 2 <t <n + m)
and the processor number p (1 < p < w) can be obtained:

p=y—x+po
T t=xty

The constant po is the index of the processor where the
first computation takes place (1 < po < w). To verify the
above equations, let us consider the case x = y = 1. They
point to the processor where the first computation takes
place (p = po = 2) and the time step 7 = 2 when the first
comparison is performed. Here we assume that the
computation task starts at + = 1. As an example, for the
computation depicted in Fig. 7 (where po = fwr2l=2), x=
2 and y = 1 identify processor P; as faulty (p = 1), with the
erroneous result (produced at £ = 2 or = 3) detected at £ =
3. Clearly not all combinations of x and y values make
sense. In a non- redundant bidirectional linear array with
w processors, we must have 1 —py <y —x<w - po.

B. Space redundancy
Similarly, for the space redundancy scheme, if one of

two processors, P, or P, is unable to perform the

computation properly at time step 7 — 1, the tag bits will be
changed by P, to 1 at time step f. The modified tag bits
emerging from both directions can be used to find out
which processor reported the error, but it is insufficient to
pinpoint the faulty processor. Fig. 8 shows the space-time
diagram of the linear array with space redundancy. Pairs
of values that are computed at processors P, and P,.; and
then compared at processor P, have been identified by
enclosing the corresponding points of the space-time

305

change, although each processor will be slightly more
complex. Comparison of Fig. 5 with Fig. 2 shows that the
schedule is lengthened by only one time step due to the
fact that most tre- computations are done by nodes that
would otherwise be idle.

Fig. 5. Dependence graph for matrix-vector multiplication
with time redundancy. The two types of nodes are inter-
leaved in the projection direction.

B. Space redundancy

It is assumed that every processor in the
non-redundant array checks its computation result with its
neighbor such:that a fauit is. detected when these two
processors produce inconsistent results. If we use processor
P, to check with Py, P; to check with P,, and so forth, we
will need another processor to do the checking with P..
The redundant processor (denoted as P..;) is appended to
the right end of the linear array. S

In error-detecting mode of operation, two processors
compute the inner product step simultaneously, but the
checking processor stores the result in an internal register
~"while the checked processor sends its result to the
* checking processor. At the next time step, the checking

processor compares the received data value with its stored
value. A mismatch indicates an error in either of the two
Processors.

Here also, there exists a partial order between these
two events. The first event requires the processor to store
the computation result (which is the same as that in time
redundancy) and the second event consists of a comparison
of the stored value with the received data value. The latter
is different from that in time redundancy, so we denote it
as a different type of node in the dependence graph by
using lighter shading. The dependence graph is derived by
duplicating the original dependence graph of Fig. 2 and
interleaving the two along equi-temporal lines as shown in
Fig. 6.

Fig. 6. Dependence graph for matrix-vector multiplication
with space redundancy. The two types of nodes are inter-
leaved along the equi-temporal lines.

C. Error indication

One may observe that the above two dependence
graphs (Figs. 5 and 6) have similar characteristics: Each
data stream x or y flows in a regular fashion without
meeting more than one type of node. It is therefore
sufficient to use only ong of the data streams (either x or y)
to carry instructions to each processor in either scheme.
The instruction is contained in a tag attached to each data
item. To encode the two types of nodes, one tag bit is
enough. We assign a tag bit "0" to specify that the
processor should do an additional comparison operation
(the shaded nodes in Figs. 5 and 6) and "1" to specify that
the processor should do an additional storing. operation
(unshaded nodes in Figs. 5 and 6). Every time a processor
receives a data item, it first examines the tag and then
decides which operation it should perform. In more
general data-driven control schemes, both data streams can
carry tags for multiple functions implemented on the
processor array [11].

We allow the processors to modify the tags to indicate
errors once they detect inconsistent results. For example,
assume that we attach function tags to the data items in
data stream p. The comparison operation is performed
when the processor receives a tag bit 0, and thus, we are
concerned only with the tags having the value 0. The
processor will invert the tag bit from 0 to 1 if an error is
detected; further comparison for this data item is thus
prohibited. ‘Since the error propagates along the path, each
suiccéssive comparison would certainly yield inconsistent
results. The modified tags propagate with the data items 1o
the outermost processor. The corresponding tags 71, Tz,
..., Tn.are compared to the pre-assigned tags 11®, O, ...,
7, and the error vector e = (), €3, ... , €,) is computed
where

306

diagram in dotted boxes. Here again, r and p can be
obtained (1 <p<wand2<t<n+m) givenxandy (1 <
x<mandl<y<n)

pP=y-—x+pm
I=x+y
}
1 2 3
4 \\ .
36 \\ b
2
1 - L »
0 1 2 3 4 5 6. 1 8
1 2. 3
y

Fig. 8. Space-time diagram of the bidirectional linear
array with space redundancy.

It is noteworthy that for ‘both, time and space
redundancy, the representations are the same. This is due
to the fact that Figs. 5 and 6 can be overlapped, with Fig. 6
having an extra column on the left edge (Corresponding to
t = 0 in Fig. 8). With time redundancy, we can pinpoint
the faulty processar P,, given x and y, but we can only
locate the faulty processor to within a pair of processors, P,
and P,.,;, in the case of space redundancy. However, if the
crror persists at the output of the faulty processor in
consecutive time steps, then there will be more than a
single 1 in each error vector. The following 1 provides
another set of equations to resolve the ambiguity. Since the
error is also detected at the next time step, the set of
equations must include

rexty =41

Depending on the following | appearing in the error
'Vectoriof data stream x or in the error vector of data stream
y, we can derive:

p=y—C+D+po=p-1 ifx'=x+1land y'=y
or
p=@+D)—x+po=p+1 ifx=xand y'=y+1

which indicates that the faulty processor is also within the
pair of processors, P, and P, (or P,+; and P,+2). In such
cases, the faulty processor P, (or P,.) is uniquely

identified and the correct results can be selected at the
output.

V. COMBINED TIME AND SPACE REDUNDANCY

Given the similarities in terms of control and fault/
error handling between time and space redundancy
schemes, a single array can be designed to operate in
either mode under external control. To distinguish these
two schemes, we augment the tags in data stream x with
information about the mode of operation: tag bit "0" to
specify the time redundancy scheme and "1" to specify the
space redundancy scheme. Since these two schemes are
independent, .the, mode tag attached .to data stream x
should not be Changed when an error occurs.

The resulting tag assignment for our example is
shown in Fig 9. The error tag that is initially set to 0 is
shown in parentheses. When an error occurs, the state of
the data stream x will shift horizontally to the columns
with error tag set to 1 (enclosed in the dotted box at the
right). The mode remains unchanged. Simultaneously, the
state of the data stream y will shift vertically to the row
with function tag set to 1 (enclosed in the dotted box at the
bottom) which changes the function to prohibit further
comparison and indicates the occurrence of an error.

(Errof tag) and Mode

X Redundancy Scheme

Time Space Time Space
y (00 1 e w1

Jemeo @ O @ O
O O

Fig. 9. Tag assignment combining the time redundancy
and space redundancy schemes.

Function

Store 3

The above tag assignment does not fully utilize the
entire code space. If we make time redundancy comple-
mentary to space redundancy, attaching error tags to data
stream x is no longer necessary. The mode tag in data
stream x that indicates whether time or space redundancy
is used for error detection, can indicate the occurrence of
an error by inverting its value. Because of the inversion,
all of the subsequent tags will also be changed. Since we
are only concerned with the leading 1s in the error vectors,
this will not cause any problem in fault diagnosis.
However, the error rtecovery capability of space
redundancy, discussed in section IV-B, will be lost. Fig. 10
shows the resulting tag assignment.

307

Mode

X | Redundancy'Scheme

Time . Space

-y
£ Compar;: 0 ‘ O
é Store 1 O O

Fig. 10. Reduced tag assignment for combined time/space
redundancy.

VI EXTENSION TO 2D ARRAYS
The error detection and fault diagnosis method can be
extended to a 2D mesh-connected array executing matrix
multiplication. Similar to the matrix-vector multiplication,
the matrix multiplication ¥ = 4A-X can be written as a sct
of uniform recurrence equations as follows:

y,k"’«ym"“’” ay X

ka& G D,

w1

“where 4 = (a), X = (x,,,),'and Y = (yw) are.n X m, m % 1,
and n % / matrices (1 <7.< n, l<j<m\l<‘k<l),
respectively.

The dependence graph for mamx mumphcauon
consists of / layers (in the k dimension), each for a matrix-
vector multiplication, as that shown in Fig. 2. For error

. detection, duplicate computations are inserted and inter-
leaved in the k dimension such that the dark node on the
even-numbered layer sends the intermediate computation
result vertically to a clear node and the clear node on the
odd-numbered layer compares horizontally and vertically
incoming data values (see Fig. 11). The vertical transfer in
the dependence graph corresponds to saving of local values
from one time step to the next in the 2D mesh. The even-

- numbered layers are shifted to the right (along the j
djrectmn) leading to a pair of neighboring processors
perfomung the same inner product step. The same tag
assignment (1 for ‘"compute-and-store" and 0 for
"compare- and-compute") can also apply, since data
streams X and ¥ flow in a regular fashion without meeting
more than one type of node operation.

Fig. 12 shows the 2D mesh-connected array with its
data flow, where each processor contains two coefficients
retrieved in alternate time steps. In this example, the tags
attached to data stream ¥ can also be used to select the
appropriate coefficient. It is easy to see that error signals
derived from the modified tags attached to data streams X
and Y are able to locate the column and row in which the
checking processor first reported the error.

*&645

k=60 o k=

xi2 X2 Xy - X Xm Xy

Fxg 11. Dependence "graph for matrix mulnphcatmn (n=
= | = 3) with space redundancy. The two types of nodes
are mlerleaved along ‘the k dimension.

0 (0)
x5 (6) x33 (0)
xg3 (0} x5 (@) [N ()]
30 Xy (@) 2 (0 a3 ()
0 (0) xp(@ x2(0) 0 (0)
x2(0) x2 {8 xy (0) x5 (0)
L0 X (0 xn (0)
x4 © x O
¢ ©

Xu ¥ oy yiz Yu
© (1) © () ©)

Y3 Yoy Yu Yu Ya Yu

[ORORGORGRUNO]

ri Y ¥sa Yz Ynt Yu
© Q) (@ Q) O (D)

Fig. 12. 2D mesh for matrix multiplication with its associ-
ated data flow. Each processor contains two coefficients
used in alternate time steps.

308

We next present another example. In the LU decom-
position, a given matrix C is decomposed into C = 4B,
where A = (au) is a lower triangular matrix and B = (by) is
an upper matrix [7]. The recursions involved arc (1 <k <
nksisn k<j<n)

by « c®Y
aw - ca® Veu®

cy(k) “— CU(H) ~ ay by €0 = ¢y

The dependence graph for the LU decomposition
algorithm is shown in Fig. 13 [8]. In each plane, the points
that serve as the source of the row and column are marked
as dark nodes. These nodes perform a different operation
from the clear nodes. For simplicity, we will not discuss
how to assign functional tags to distinguish these
operations, but only focus on the error detection scheme.
The interested reader may refer to {11] for details.

The algorithm can also be implemented on a 2D
mesh- connected array, each with three data streams. Fig.
14 shows the array with its associated data flow. Data
strecams A and B flow to the right and to the bottom
respectively, at a velocity of one processor per time step,
where consecutive data items a. and by are interspersed
with irrelevant data items purposely. The time and space
redundancy schemes are readily derived by duplicating the
original dependence graph and interleaving it in the
projection direction.

k=1 k=2 k=3

Fig. 13. Dependence graph for LU decomposition. The
additional dependence lines in the k dimension are not
drawn.

Similar to the 2D mesh-connected array we have
shown above, these two redundancy schemes are independ-
ent. This can be scen by noting that after we insert the
duplicate computation, nodes on odd-numbered planes
store the intermediate results and nodes on even-numbered
planes compare the results. The same tag assignment as in
Figs. 9 and 10 ¢an be used by simply changing x to 4 and
ytoB,

an

Lo

N " -
v v v

Fig. 14. 2D mesh for LU decomposition.

b

1 order to locate the processor reporting an error and
the time step when the disagreement was detected, the
leading 1s in error vectors must be found for all outpuis.
The diagnostic process is similar to constructing an error-
locating matrix in coding theory [9, 10].

VII. CONCLUSIONS

We have presented a method for introducing fault
diagnosis into a processor array. Error detection is based
on duplicate computation and comparison. Reporting of
error is done by modifying function tags attached to the

" data items or by introducing "error" tags. Once a processor

finds an error, it changes the function or error tag value to
signal the error. In either case, 'the error indication is
propagated through the processor array and is examined by
the host when it emerges from a boundary processor. If the
tags have remained intact, then the results are assumed
correct and nothing is done. Otherwise, the error
syndromes obtained from the tags are used to pinpoint the
faulty processor and a particular time step when the error
occurred.

We have shown that the space redundancy scheme can
recover from an error in some cases while the time
redundancy scheme allows the array to survive when the
number of processors is reduced to that of a non-redundant
array. Combining these two schemes thus provides
different levels of fault tolerance in the same array and
leads to higher resilience as well as better survival
characteristics.

One way to utilize our proposed combined redundancy
scheme is to use¢ space redundancy to provide fault
tolerance until all spare processors have been exhausted
and then fall back to time redundancy for error detection
and fault diagnosis. Whereas it would be possible to

" * continue tolerating permanent faults with time redundancy

if each processor is provided with the ability to compute
and interpret the results of computations with shifted
operands, the added cost of such processors is probably 100

309

high for the level of protection provided. This added cost is
probably better spent on extra spare processors. =

The examples that we used show. that for simple and
regular operations of systolic computation, a small number
of bits are sufficient to encode the control and error
information (two bits in our case) and that by adding a
single extra bit, both time and space redundancy schemes
can be incorporated in the same processor array with o
change in processing element (PE) complexity. ‘The
number of bits used is independent of the size of the
processor array. Since the array is composed of identical

‘ " _PEs and we access it only through the boundary PEs to
.. control

and observe the interior processors, this
. -data-driven approach provides scalability. Once a
" processor array is built, it can be expanded easily as the
problem size increases by simply using more of the same
PEs and controlling them in exactly the same way.

REFERENCES

1] Y-H Choi, S.-H Han, and M. Malek, “Fault diagnosis of reconfig-
urable systolic arrays," Proc. IEEE Int'l Conf. Computer Design,
Oct. 1984, pp. 451455,

2] R J. Cosentino, "Concurent error correction in systolic architec-
tures," JEEE Trans. CamputerAxded Design, vol. 7, no. 1, pp.
117-125, Jan 1988,

3] N J. Davis er al., "Reconfiguring fault-lolerant two dimensional

: axmyamlntecnm"lEEEMtcm vol 14 no. 2, pp. 60-69, Apr.

i 1994,

[4] S.Duttand J. P. Hayes, "Some practical issues in the design of fault-
tolerant multiprocessors,” IEEE Trans. Computers, vol. 41, no. 5,
pp. 588-598, May 1992.

[51 M. O. Esonu et al, "Design techniques for fault-tolerant systolic
arrays," J. VLSI Signal Processing, vol 11, no. 122. pp. 151-168,
Oct/Nov. 1995

[6} J. Franzen, "A design method for omeline reconfigurable array
- processors," J. VLSI Signal Processing, vol. 5, 1o, 1, pp. 21-35, Jan.
o 1993,

{71 H T Kung and C. E. Leiserson, "Algorithms for VLSI processor
arrays,” in Introduction to VLSI System, C. Mead and L. Conway,
pp. 271292, Addison-Wesley: Reading, MA,, 1980.

8] 'S. Y. Kung, VILSI Army Processors, Prentice-Hall: Englewood

" Cliffs, NI, 1988.

[9] M G.Karpovsky, L. B. Levitin, and F. S. Vainstein, "Diagnosis by
signature analysis of test responses,” [EEE Trans. Computers, vol.
43, no. 2, pp. 141-153, Feb. 1954,

{10] M G. Karpovsky, T. D. Roziner and C. Mqaga,"Famtdetectxmm
multiprocessor systems and array processors,” JEEE Trans. Comput-
ers, vol. 44, 0. 3, pp. 383-393, Mar. 1995.

{11] D-M. Kwai and B. Parhami, "A data-driven control scheme for
linear processor amays," Submitted for publication.

112] L. Li, "Systolic computation with fault diagnosis,” Parallel Comput-
ing, vol. 14, pp. 235-243, 1990,

“{13] A. Majumdar, C. S. Raghavendra, and M. A. Breuer, "Fault toler
ance in linear systolic arrays using time redundancy," IEEE Trans.
Computers, vol. 39,269-276, 19%0.

[14] H. Mo, J. Tamaki, and M. Uebara, "Stream oriented fault tolerant
array," Proc. 7th IEEE Intl Conf. Wafer Scale Integration, Jen.
1995, pp. 172-181.

{151 B Parhami, "Optimal placement of spare modules in a cascaded
chain," JEEE Trans. Reliability, vol. R-26, pp. 280- 282, Oct. 1977.

[16] J. H Patel and L. Y. Fung, "Concurrent exror detection in ALUs by

ing with shifted operands,” JFEE Trans. Computers, vol.
C-31,10.7,pp: 589-505, July 1982. .

{17] ——, "Concumrent error detection in multiply and divide arrays,"
IEEE Trans. Computers, vol. C-32,n0. 4, pp. 417-422, Apr. 1983.

|18] M. Pectcy and P. Banerjee, 'Fault-tolerant VLSI systems,” Proc.
IEEE, vol. 81, no. 5; pp. 745-758, May 1993.

[191 S. K. Rao and T. Kailath, "Regular iterative algorithms and their
implementation on processor-amays," Proc. IEEE, vol. 76, n0. 3, pp.
259-269, Mar. 1988. ‘

20] Y-M. Wang, P-Y. Chung and W. K Fuchs, "Scheduling for
periodic concurrent exror detection in processor arrays," J. Parallel
Distributed Computing, vol. 23, no. 3, pp. 306-313, Dec. 1994.

310

