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Abstract

In this paper, we propose a new class of interconnec-
tion networks, called swapped networks, for general-
purpose parallel processing. Swapped networks not
only generate a wide class of high-performance inter-
connection networks, but also generalize, and serve
to unify, many proposed parallel architectures as well
as their algorithms. We show that swapped networks
can efficiently emulate hypercubes, high-dimensional
meshes, or generalized hypercubes, while having node
degrees significantly smaller than the emulated network
in each case. We also show that some subclasses of
swapped networks can achieve asymptotically optimal
diameters. Swapped networks are highly modularized,
make the use of fizred-degree building blocks possible for
any practically realizable system, and lead to the con-
struction of high-performance scalable networks with
reasonable cost.

1 Introduction

Many interconnection schemes for parallel architec-
tures have been proposed in the literatures [2, 3, 4,
5, 6, 10, 11, 13]. Among them, the hierarchical cu-
bic network (HCN) [4], hierarchical folded-hypercube
network (HFN) [3], three-level hierarchical cubic net-
work (3-HCN) [12], hypernet [5], symmetric hypernet
[6], and WK-recursive network [11] offer various de-
sirable properties. HCNs (HFNs) use (folded) hyper-
cube networks as basic modules, and are composed of
nodes with degree n/2+1 (n/2 + 2), as opposed to n
for a hypercube of the same size, and can emulate a
hypercube in O(1) time. 3-HCNs use hypercube net-
works as basic modules, and are composed of nodes
with degree n/3 + 2, perform matrix-multiplication
faster than a hypercube of the same size, and also
emulate a hypercube in O(1) time. Hypernets use
a cubelet, treelet, or buslet as the basic module and
are communication-efficient for large-scale parallel sys-
tems. Symmetric hypernets (WK-recursive networks)
use a hypercube (complete graph) as the basic mod-
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ule and are composed of nodes with constant degree.
The first three networks offer better topological and
algorithmic properties, while the last two networks are
more scalable; hypernets fall between these classes.

Although the structures of these networks do not
resemble each other at first glance, they actually be-
long to the same class of hierarchical parallel architec-
tures we call swapped networks and share many prop-
erties and algorithms in common. Swapped networks
not only generalize, and serve to unify, these paral-
lel architectures as well as their algorithms, but also
generate a much wider class of high-performance scal-
able interconnection networks. In particular, we study
recursive swapped networks based on various nucleus
graphs and show how they lead to high-performance
and scalability, providing tradeoffs between them. We
also specify the relevant parameters of swapped net-
works to establish each of the six networks listed above
as a special case.

A major characteristic of swapped networks is that
the address of each neighbor of a node is obtained by
“swapping” two equal-length bit-strings in the node
address. The use of bit-string swapping as the rule for
connectivity establishes swapped networks as a sub-
class of multi-level fully-connected (MFC) networks
[13], which have more general connectivities. Swapped
networks, being a subclass of MFC networks, have
most of their desirable properties. In this paper we
show that swapped networks can emulate hypercubes,
generalized hypercubes, or high-dimensional meshes
efficiently. As a consequence, we obtain a variety
of algorithms on swapped networks through emula-
tion, thus proving their potential for use in high-
performance general-purpose parallel architectures.

In Section 2, we define recursive swapped networks,
derive some of their parameters, and establish HCNs
and HFNs as special subclasses (2-level recursive
swapped networks based on hypercubes and folded-
hypercubes, respectively). In Section 3, we study



recursive swapped networks based on the n-cube.
We present ascend/descend algorithms on hypercube-
based recursive swapped networks. We also show how
to emulate a hypercube efficiently. In Section 4, we
present recursive swapped networks based on a com-
plete graph, generalized hypercube, or mesh. In Sec-
tion 5, we present general, more flexibly structured,
swapped networks that can fit various applications.
We construct 3-HCNs, which have smaller step size
than recursive swapped networks. We establish hy-
pernets, symmetric hypernets, and WK-recursive net-
works as subclasses of partially-linked swapped net-
works. We conclude that swapped networks are cost-
effective and have desirable topological and algorith-
mic properties. They appear to be attractive candi-
dates for versatile high-performance interconnection
networks.

2 Recursive Swapped Networks

A swapped network is characterized by its nucleus
graph, number of hierarchical levels, number of clus-
ters in each level, and the number of links connecting
each pair of clusters. A swapped network that has [
levels and uses the graph G as its nucleus is called a
G-based I-level swapped network, and is denoted by
SN(I,G). In this section, we define recursive swapped
networks (RSN), a simple subclass of swapped net-
works, whose number of clusters in each level is equal
to the number of nodes in a cluster and each cluster
having a link that connects it to each of the other
clusters at the same level. We will study RSNs based
on different nucleus graphs in Sections 3 and 4 and
then generalize their constructions and definitions to
the entire family of swapped networks in Section 5.

2.1 Recursive Construction of RSNs

An [-level recursive swapped network, RSN(l,G),
begins with a nucleus G, which forms an RSN(1,QG)
and can be any connected graph or hypergraph (of
more than one node) such as a mesh, hypercube, com-
plete graph, HCN, star graph, or buslet. For simplic-
ity, we always refer to G as the nucleus “graph”.

To build a 2-level recursive swapped network,
RSN(2,G), we use N identical copies of the nucleus
G, each of which has N; nodes. Fig. 1 shows three
types of 2-level recursive swapped networks based on
4-node nuclei (2-cube, complete graph, and 1-D mesh).
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Fig. 1. Structure of 2-level recursive swapped networks.
(a) nucleus 2-cube, Q.. (b) RSN(2,Q2). (c) nucleus com-

plete graph K4. (d) RSN(2,K4). (e) nucleus 1-D mesh,
Ma. (f) RSN(2, Ma).
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Fig. 2. Top-level connectivity of an I-level recursive
swapped network.

We give each nucleus a k;-bit string Y7 as its ad-
dress, where k; = [log, N1]; we also give each node
a ki-bit string Y} as its address within the nucleus
to which it belongs. Node Y;" within the nucleus Yy
has a ko-bit string ¥y’ = Y/'Y}" as its address within
the RSN(2,G), where ky = 2k;. Each of the N; nu-
cleus copies has a link connecting it to each of the
other N1 —1 nuclei, via which node XX}’ connects to
node X7 X]. These links are called level-2 inter-cluster
links, the connected nodes are called level-2 neighbors,
and nucleus copies are called level-2 clusters. The re-
sultant G-based 2-level recursive swapped network is
denoted by RSN(2,G).

To build an [l-level recursive swapped network,
RSN(I,G), we use Ni_; = N7, identical copies of



RSN(l -1, G), each of which has N;_; nodes. The top
view of an I-level RSN is shown in Fig. 2. Each copy
of RSN(I — 1,G) is viewed as a level-l cluster, and
is given a ky_1-bit string Y, as its address, where
ki—1 = 2k;_2; we also give each node a k;_;-bit string
Y} | asits address within the level-/ cluster to which it
belongs. Node Y;”, within the level-I cluster Y, ; has
a ki-bit string V)" =Y)' V)" as its address within the
RSN(l,G), where k; = 2k;_1. Each of the N;_; level-l
clusters has a link connecting it to each of the other
N;_;—1level-l clusters, via which node X;_; X/’ ; con-
nects to node X;" ; X/ ;. This connectivity, which is
illustrated in Fig. 3, is the reason we call such networks
“swapped networks.” The connecting links are called
level-l inter-cluster links, and the connected nodes are
called level-l neighbors.
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Fig. 3. The address of the level-i neighbor of node X is
obtained from level-i swap, 7 = 2, 3,4, where the address
of node X is (215,Z14,...,Z0)2. The example shown cor-
responds to each node having a 2-bit address within the
nucleus.

The node that does not have a level-l inter-cluster
link is called the leader of that level-l cluster. Lead-
ers can be used as I/O ports or be connected to
other leaders via their unused ports to provide bet-
ter fault tolerance or to improve the performance
and reduce the diameter of swapped networks with-
out increasing the node degree of the network. If
leader X; , X/ , connects to leader X' ; X;’ |, where

ity = Ni—y —X]_; —1, the average distance between
nodes and, in most cases, the diameter of the net-
work will be reduced. This type of swapped network
is called swapped network with diameter links, and the
links that connect level-l leaders are called level-I di-
ameter links. The resultant G-based [-level recursive
swapped network with diameter links is referred to as
RSN(l,G) with diameter links. This recursive defi-
nition allows us to construct arbitrary-level recursive
swapped networks based on any type of nucleus.

2.2 Subclasses of RSNs

It is worth noting that two recently proposed in-
terconnection networks, hierarchical cubic network
(HCN) [4] and hierarchical folded-hypercube networks
(HFN) [3], are subclasses of 2-level recursive swapped

networks: HCN(n,n) is a hypercube-based 2-level re-
cursive swapped network, RSN(2, @, ) with diameter
links, where the nucleus @, is an n-dimensional hyper-
cube; HFN(n,n) is a folded-hypercube-based 2-level
recursive swapped network, RSN(2, FQ,,), where the
nucleus F@p is an n-dimensional folded-hypercube.
Our results show that by increasing the number of re-
cursive levels, swapped networks can be constructed
with node degrees as small as O(loglog N), while re-
taining good algorithmic properties and possessing
even smaller diameters.
2.3 Network Size and Level

Let the nucleus G be a graph with Ny nodes. The
number of nodes in a recursive swapped network is
squared when the level is increased by 1. Thus, the
size (i.e., the number of nodes) N of an RSN(l,G) is

-1
N=NZ, =N . (1)

From Eq. (1), the number of levels of RSN(l, G) having
N nodes is

l = log, logy N — log, log, N1 + 1. (2)

2.4 Node Degree

Let the nucleus G be a graph with node degree
d;. According to the definition of recursive swapped
networks, the node degree is increased by 1 with each
additional level. Thus, the node degree of RSN(I,G)
is

d=d; +1—-1=log,log, N —log,log, N1 +dy. (3)

2.5 Packet Routing

In this subsection, we present a recursive routing
algorithm to route a packet from node X to node ¥V
in an RSN((, G).

Suppose that a routing algorithm for the nucleus
G is known and that the routing algorithm for an
RSN(7, G) network is also known for 1 < § < [ — 1.
Then, here is how routing is done at level {.

Let the addresses of nodes X and Y within the
RSN(I,G) be X' X" and Y'Y", respectively, with the
bit-strings X' and Y’ being the addresses of the level-
clusters to which nodes X and Y belong.

e Casel: X' =Y': Nodes X and Y belong to the
same level-/ cluster. We use the routing algorithm
for RSN(I — 1, @) to route the packet, since any
level- cluster is also an RSN(I — 1,G).

e Case 2: X' # Y’: Nodes X and Y belong to differ-
ent level-l clusters. The level-! inter-cluster link
that connects clusters X’ and Y is (X'Y',Y'X")



in a recursive swapped network. To route a packet
from node X to node Y, we use the routing algo-
rithm for an (I — 1)-level recursive swapped net-
work, RSN(l — 1,G), to route the packet from
node X'X" to node X'Y”’, send the packet from
node X'Y' to node Y'X' via the level-l inter-
cluster link in a step, and then use the routing
algorithm for RSN(l — 1,G) again to route the
packet from node Y’ X’ to node Y'Y".

If the routing algorithm in RSN(i, G) takes at most
Trg(i) time steps, and the routing algorithm on nu-
cleus G takes Tg(1) time steps, the recursive routing
algorithm on RSN(I, G) requires time at most

TrR() =2TR(I -1 +1=2"1Tp() + 271 —1. (4)

If we use an optimal algorithm for routing in a nu-
cleus (i.e., Tr(1) = Dg), we obtain an upper bound
for the diameter of RSN({,G)

D <27 (Dg+1) -1,

where Dg is the diameter of the nucleus G. It can be

proved that if the distance between nodes X and Y in

a nucleus G is D¢, then the distance between nodes

XX---X and YY ---Y in an RSN(I,G) without di-
21—1 2!—1

ameter links is 2871 (Dg + 1) — 1. Thus, the diameter

of an RSN(I, G) without diameter links is

Dg+1
10g2 N1

3 Hypercube-Based RSNs

In this section, we show the desirable properties
of hypercube-based recursive swapped networks. We
then present algorithms for emulating a hypercube on
such networks under different assumptions. We also
outline the structure of elegant ascend/descend algo-
rithms on such networks.

3.1 Basic Properties

Let the nucleus G be an n-dimensional hypercube
@,. Then the number of nodes NV; in the nucleus @,
is 2™, its node degree d; is n, and its diameter is n.
As a consequence, a recursive swapped network based
on the n-cube, RSN(I, Q,), has N = 227'" nodes,
node degree n + [ — 1 = log, log, N + n — log, n, and
diameter (14 1/n)logy, N — 1 from Egs. (1), (3), and
(5). If the number of levels is a constant, say, | = 3,
then we have the number of nodes N = 2%", node
degree n + 2 = ;logy N + 2, and diameter log, N + 3.

From Eq. (5), we have

D=2"'Dg+1)~1= logg N~1. (5)

Dy <2Dp_1 +1<272Dy + 202 1.
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If a recursive swapped network has level-1 diameter
links, we can obtain a better upper bound on its di-
ameter by using a result originally proved for HCN [4]:
a packet can be routed in no more than n+ [n/2] +1
time in an RSN(2, Q) with diameter links (denoted
by HCN(n,n) in [4]) using the OPT algorithm given
in [4]. However, if all the packets are routed using
the OPT algorithm congestion may occur around the
diameter links when the load is not very light.

3.2 Ascend/Descend Algorithms

“Ascend/descend” algorithms [9] require successive
operations on data items that are separated by a dis-
tance equal to a power of 2. Many applications, such
as fast Fourier transform, bitonic sort, matrix multi-
plication, and convolution, can be formulated using
algorithms in this general category. Ascend/descend
algorithms can be performed efficiently on hypercube-
based recursive swapped networks.

We first present an elegant ascend algorithm on re-
cursive swapped networks based on hypercubes, and
then modify the algorithm for performing the descend
algorithm. It is obvious that the ascend algorithm
can be performed on the nucleus RSN(1,Q,). The
following algorithm uses inter-cluster links to bring
data which belong to nodes separated by a distance
2!, 4 > n into the same nucleus n-cube, and then
makes use of the nucleus hypercube links within the
nucleus to perform ascend operations. This recursive
ascend algorithm for RSN(I, Q) has 4 phases:

e Phase 1: Perform the ascend algorithm on each
level-l cluster, which is an RSN(l — 1, Q).

e Phase 2: All nodes, except level-l leaders, ex-
change data via their level-l inter-cluster links.

¢ Phase 3: Perform again the ascend algorithm on
each cluster, which is an RSN(Il — 1,Q,,).

e Phase 4: All nodes, except level-l leaders, ex-
change data via their level-! inter-cluster links
again.

By performing the exchange step via level-l inter-
cluster links in Phase 2, node X’ X" will hold the data.
item from node X" X', where bit-strings X" and X'
are addresses of two connected nodes within the level-
I clusters X' and X", respectively, to which they be-
long. In essence, this moves data items separated by a
distance of 29, j =n2=2,n2i2 41, ..., n2""1 — 1, into
the same cluster, such that they are now separated
by a distance of 29-"2"". Thus, we can then use the
ascend algorithm on RSN(I — 1,Q,) to emulate steps
needed in the higher n2!~? dimensions.



Let T,s.(1) denote the time required for the ascend
algorithm on RSN({,G). Then we have

Tosc(l) = 2Tae(l — 1) + 2 = 2171T,,.(1) + 24

If the time required for the ascend algorithm on the
nucleus n-cube (RSN(1,Q,,)) is Tys.(1) = n, then

Tosc(l) = (1+2/n)logy N.

It can be seen that performance of the ascend algo-
rithms on RSN(l, @,,) will be close to that of a hyper-
cube of the same size for large n.

To perform the descend algorithm with the same
time complexity, we simply reverse the order of the
phases in the ascend algorithm and replace each oc-
currence of “ascend” with “descend.”

3.3 Emulating a Hypercube with Single-
Dimension Communication

In this subsection, we assume single-port communi-
cation, with all the nodes only capable of using links
of the same dimension at the same time. This assump-
tion, used in SIMD architectures and their algorithms
in order to reduce the cost of implementation, is called
single-dimension communication in this paper. We
show that N-node RSN(l,Q,) can emulate a hyper-
cube of the same size in O(l) = O(loglog N — logn)
time, which is much better than the results achieved
by CCC, butterfly network, and most other hypercu-
bic variants under this assumption. We present this
emulation algorithm in recursive form.

Assume that the emulated computation-routing
step is along dimension j in a 2!~!n-dimensional bi-
nary hypercube, where 1 < j < 2/~1n,

Emul(j,1,n)
o Step 1: If j > 2/72n, each node exchanges data

via its level-l inter-cluster link, and sets j' := 5 —
2!-2p,

o Step 2: Perform the emulation algorithm Emul(j’,
1 —1,n) on each level-l cluster RSN(l — 1,Q,).

e Step 3: If Step 1 was executed, each node ex-
changes data via its level-I inter-cluster link again.

The time required for the emulation algorithm
Emul(j,!,n) on RSN(l,Q,) is at most

T,()=T,(1-1)+2="T,(1) +2(1—1) =21 — 1,

where T4(1) = 1 is the time required for the emulation
on a nucleus n-cube, REN(1,Q,).
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The worst cases of this algorithm occur when
(271 - )n < j < 2"71n. In this case, exchanging
data via inter-cluster links is required at all levels (i.e.,
levels 1,1 — 1,...,2). Thus, any step of a 2'~In-cube
algorithm with single-port communication can be em-
ulated in at most 2/ — 1 steps on an RSN({,Q@,). To
emulate a step of a 2!~ 'n-cube algorithm with all-port
communication, we simply perform the Emu(j,[,n)
algorithm for all j, j = 1,2,...,2"'n with proper
scheduling. The time required for an N-node system
is O(log N), which is the same as that required on an
HCN(2!-1n,2!=n). The time required for emulating
a hypercube on an RSN is much better than what
can be done on a CCC, shuffle-exchange, or other re-
lated hypercubic networks, assuming either the single-
dimension or all-port communication model.

4 RSNs Based on Other Graphs

RSNs based on complete graphs or generalized hy-
percubes can achieve asymptotically optimal diam-
eters; RSNs based on 2-D meshes can take advan-
tage of the area-efficiency of 2-D meshes using current
VLSI technology. Using algorithms similar to those for
hypercube-based RSNs, these networks can emulate
generalized hypercubes or high-dimensional meshes ef-
ficiently, assuming single-dimension communication.
4.1 Complete-Graph-Based RSNs

When recursive swapped networks use complete
graphs (of at least Q(loglog N) nodes) as nucleus
graphs, they gain the desirable topological property of
having asymptotically optimal diameters with respect
to their node degrees. They also possess desirable al-
gorithmic properties, such as emulating efficiently a
binary hypercube or a generalized hypercube of radix
Ny > 2.

An l-level recursive swapped network based on a
complete graph is denoted by RSN(l, Ky,), where
Ky, is a complete graph with N; nodes. The node
degree of an RSN{{,Kn,) is Ny +1 -2 = N; +
log, logy N — log, log, N1 — 2 from Eq. (3). The di-
ameter of RSN(/, Kn,) is no more than 2! — 1 =
2log, N/log, N1 — 1 from Eq. (5). It can be seen that
the diameter of an RSN(I, Kn,) (with/without diam-
eter links) is always smaller than that of a hypercube
of the same size for Ny > 4.

It is well known that the diameter of any N-
node network with maximum node degree d is
Q (log N/logd). Substituting the node degree d =
N; + 1 — 2, the lower bound on the diameter of an
RSN(l, K n,) becomes

D= < log N >—Q( log N
log(N1 +1)) ~ " \log(N; + loglog N)




For a nucleus of size N; = Q(loglog N), the diam-
eter D = O(log N/ log N;) matches the lower bound
log IV log N

b=9 <log(N1 +10glogN)) = <logN1> )

Thus, the diameter ©(log N/log N1) of an RSN(I,
Ky,) is always asymptotically optimal with respect
to its node degree for N; = Q(loglogN). The
diameter is comparable to that of the star graph
for Ny = O(logN/loglog N) and is better than
hypercube. Moreover, recursive swapped networks
based on a complete graph offer much wider range
of optimal diameters. They can not only achieve
optimal ©(log N/logloglogN) diameter for Ny
O(loglog N), but also as constant diameter ©(1/¢) for
N = ©(N¢), where € = 27!+, when the number I of
hierarchical levels is a constant.

An RSN(l,Kn,) can emulate a 2'~!-dimensional
hypercube of radix N; using an algorithm similar to
the algorithm Emul given in Subsection 3.3. The only
difference is to replace each occurrence of “n” with “1”
and “Q,” with “Ku,” in the algorithm Emul. The
time required is equal to 2{ — 1.

4.2 Generalized-Hypercube-Based RSNs

When recursive swapped networks use generalized
hypercubes (GQ) as nucleus graphs, they can pos-
sess optimal diameter if the nucleus size and the
dimension of the nucleus generalized hypercube are
properly chosen. They can also emulate a corre-
sponding generalized hypercube efficiently. For ex-
ample, let GQn, n, be a 2-dimensional GQ with
mixed-radix (ni,n2). Then an RSN({l,GQn, n,)
can emulate a 2/-dimensional GQ with mixed-radix
(n1,n2,n1,ng, ...,n1,ng) with 21 —1 slowdown, assum-
ing single-dimension communication.

4.3 Mesh-Based RSNs

The compact layout of a 2-D mesh on a VLSI chip
makes it also an attractive candidate for the nucleus
graph of an RSN-configured multicomputer. For a
constant number of hierarchical levels [ and a nucleus
n-D mesh M, an RSN(I, M) has constant node degree
l+2n-1.

Let the nucleus M be an n-D m; X mg X -+ X my,
mesh. Then an RSN(l, M) can emulate a 2'~'n-D
My XMy X+ XMy X+ XM XMy X -+ XM,y mesh
efficiently with a slowdown factor 2! — 1, assuming
single-dimension communication.

5 General Swapped Networks

In this section, we generalize the definition of recur-
sive swapped networks to the entire family of swapped
networks.
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An [-level swapped network, SN(l, G), begins with
a nucleus G, which forms an SN(1,G) and can be
any connected graph or hypergraph (of more than
one node), such as mesh, hypercube, complete graph,
HCN, star graph, or buslet. To build a 2-level swapped
network, SN(2,G), we use M, identical copies of the
nucleus G, each of which has N; nodes. We give
each nucleus an hy-bit string Y; as its address, where
hs = [log, M>); we also give each node a k;-bit string
Y} as its address within the nucleus to which it be-
longs, where k1 = [log, N1|. Node Y, within the nu-
cleus Y] has a ko-bit string Y3’ = Y{Y}" as its address
within the SN(2, G), where k3 = hg + k1. Each of the
M, nucleus copies has at least one link connecting it
to each of the other My — 1 nuclei. These links are
called level-2 inter-cluster links, the connected nodes
are called level-2 neighbors, and nucleus copies are
called level-2 clusters. The resultant G-based 2-level
swapped network is denoted by SN(2,G).

To build an I-level swapped network, SN(I,G), we
use M, identical copies of SN(I — 1,G), each of which
has N;_; nodes. Each copy of SN(I—1, Q) is viewed as
a level- cluster, and is given a hy-bit string Y}’ ; as its
address, where h; = [log, M;]; we also give each node
a kj_1-bit string ¥, as its address within the cluster
to which it belongs. Node Y ; within level-/ cluster
Y/, has a k;-bit string ¥V}" =Y, , V)", as its address
within the SN(I, G), where k; = h; + k;—1. Each of the
M; level-l cluster X;_, has at least one link connecting
it to each of the other M; —1 level- cluster X;’ ;. The
connecting links are called level-l inter-cluster links,
and the connected nodes are called level-l neighbors.
The nodes that do not have a level-l inter-cluster link
are called the leaders of that level-I cluster. Leaders
can be used as I/O ports or be connected to other
leaders via their unused ports to provide better fault
tolerance or to improve the performance and reduce
the diameter of swapped networks without increasing
the node degree of the network.

This recursive definition allows us to construct
arbitrary-level swapped networks based on any type
of nucleus. The addresses of the neighbors of a node
X are still obtained from “swapping” bit string in the
address of node X. However, there are many different
ways for swapping bits in the address of node X. We
can give also some restrictions to “mask” the nodes
that have inter-cluster links of a certain level. More-
over, the size of a general swapped network does not
have to be squared when the level is increased by 1.
By relaxing the composition rule, we obtain a wide
class of interconnection networks, which share many
topological and algorithmic properties in common.



5.1 Swapped Networks with Smaller Step
Sizes

A possible drawback of recursive swapped networks
is that their step sizes may be too large to be practical.
Increasing the level of a recursive swapped network
by one leads to squaring of the size of the resultant
network. To remedy this problem, we allow the use
of fewer copies of the clusters at the last level. For
instance, we can connect 16 (rather than 256) copies
of an RSN(3,Q2) to form a 4-level swapped network.
Level-4 links connect nodes X, Y, where the address of
Y is obtained from swapping the most significant 4 bits
with the least significant 4 bits of X. Note that each
small cluster (i.e., RSN(2,@Q2)) in this construction
has links connecting it to all other level-4 clusters. We
can, of course, obtain swapped networks using even
smaller step sizes. For instance, we can connect two
SN(4,Q2) to form a 5-level swapped network using
similar construction rules.

As another example, 3-HCN uses /N identi-
cal copies of a VN2-node HCN as basic modules,
each pair of which is connected through YN links,
via which node X’'X"X'" is connected to node
X"X"X'. Since HCN is a recursive swapped net-
work RSN(2,Q,) with diameter links, and the top-
level inter-cluster links of a 3-HCN are obtained by
“swapping” the most significant n bits X’ of a node’s
address with the least significant ones X', 3-HCN
(SN(3,Q.)) is a subclass of this family of swapped
networks. Hierarchical swapped networks (HSN) [14],
which include 3-HCN, HCN, and HFN as special cases,
are also a subclass of SNs with smaller step sizes.
Emulation of a hypercube on this family of swapped
networks can be done in a manner similar to recur-
sive swapped networks. The details can be found in
[12, 14].

5.2 Partially-Linked Swapped Networks

In a partially-linked swapped network, only part
(say, about 1/3 or 1/4) of its nodes have inter-cluster
links of certain level (say, level 4), rather than each of
the nodes except leaders having a link for each level
as in recursive swapped networks. We present another
way for swapping addresses, which is more suitable for
this class of swapped networks.

We connect 16 copies of an RSN(3, Q2) to construct
a 4-level swapped network as in the preceding exam-
ple, while using different connection rules. Let Y be
the level-4 neighbor of node X. The address of YV
is obtained from swapping the most significant 4 bits
of the address of node X, (z1, 10,9, Zs), with bits
(z7,x6,x5,4), and the remaining bits of the address
of node Y are the same as those of node X. One can

236

arrange such that only some of the nodes have level-4
links; for example, only nodes whose least significant
bit zo is zero may be given level-4 inter-cluster links.
As a results, approximately half of the nodes do not
have a level-4 link, and this is the reason we call the
resultant networks “partially-linked.” An example is
illustrated in Fig. 4.

level-4 swap level-2 swap

h - —~ — .
e Bl Edif=]

e — e g —— —— [

- .l
&
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Neighbor of node X at:

we2lz] [ (2] [ (B (B @ B B 6 & B
B HDEEEEEREEEHE
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Fig. 4. The neighbors of node X in a 4-level partially-
linked swapped network. Note that the level-4 neighbor of
node X exists if and only if o = 0, where the address of
node X is (w15, 714, ..., To)2-

If the nodes with least significant address bit zg = 1
have packets that need to be sent via level-4 links,
these nodes can first send the packets to their dimen-
sion 1 intra-nucleus neighbors, where they gain access
to level-4 links. It can be seen that only routing within
a nucleus (or a lowest-level cluster) will be needed for
nodes to share the higher-level links in this construc-
tion. This property makes it a better construction
(swapping scheme) for partially-linked swapped net-
works than the previous one. Hypernet, symmetric
hypernet, and WK-recursive networks are subclasses
of partially-linked swapped networks. In what follows,
we briefly establish these topologies as subclasses of
partially-linked swapped networks. Detailed analysis
and comparison of such networks will be reported in
future.

Symmetric hypernets and WK-recursive networks
use the Nj-node hypercube and complete graph, re-
spectively, as 1-level basic modules. An [-level sym-
metric hypernet or WK-recursive network uses N;
identical copies of an (I — 1)-level network, each pair
of which is connected through exactly one link, via
which node X'X”X"..-X" is connected to node
X"X'X'"...X'. The top-level inter-cluster links are
obtained by “swapping” the most significant k; bits
X' of a node’s address with the second most signifi-
cant k; bits X", where k1 = [log, V1], and then ar-
ranging that only nodes whose second most significant
k1 bits of the address are the same as the third most,



fourth most,..., least significant k; bits are allowed to
have level-l inter-cluster links. Thus, symmetric hy-
pernets and WK-recursive networks are subclasses of
partially-linked swapped networks based on different
nucleus graphs. Of course, there exist other differences
between them. For instance, symmetric hypernets use
two different types of physical nodes (i.e., I/0 nodes
and processing nodes), and the use of gN; (I —1)-level
symmetric hypernets to construct an [-level symmetric
hypernet is allowed, where g > 1 is an integer.

Hypernets based on cubelets or buslets are also
subclasses of partially-linked swapped networks. An
Ni-node cubelet (buslets) is viewed as a 1-level hy-
pernet. An [-level hypernet uses 2~'+1N,_; identical
copies of an N;_j-node (I — 1)-level hypernet, each
pair of which is connected through exactly one link,
via which node X’X"011---1 is connected to node
X"X'011---1. The top-level inter-cluster links are
obtained by “swapping” the most significant h; bits
X' of a node’s address with the second most signifi-
cant hy bits X", where hy = [logo, Nj—1] -1+ 1. We
arrange that only nodes with least significant k — 2h;
bits of their addresses equal to 011---1 are allowed
to have level-l inter-cluster links, where & = [log, N
and N = 271N?2 | is the number of nodes in the
l-level hypernet. Thus, it can be seen that hypernets
based on cublets or buslets are also a subclass of the
partially-linked swapped networks.

These networks have the advantages of fixed node
degrees and better scalability compared with recursive
swapped networks. However, performance and the
simplicity of algorithms on partially-linked swapped
networks are inevitably traded off for the lower cost.

6 Conclusion

In this paper, we have proposed a new class of in-
terconnection networks for modular construction of
massively parallel computers. Swapped networks not
only have desirable algorithmic and topological prop-
erties, but also use nodes of low degree, requiring only
a small number of links per node, and are highly mod-
ularized, making them considerably less expensive to
implement. Several emulation algorithms have been
developed. It was shown that swapped networks can
emulate several high-degree interconnection networks
efficiently. By using a few data permutation steps, in-
ternode communications can be largely restricted to
nodes within a much smaller cluster. As a conse-
quence, the communication patterns of swapped net-
works tend to be localized. These results demonstrate
that swapped networks are attractive candidates for
the realization of high-performance scalable networks
with reasonable cost.
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