Optimal Sorting Algorithms on Incomplete Meshes
with Arbitrary Fault Patterns

Chi-Hsiang Yeh and Behrooz Parhami
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106-9560, USA

Abstract

In this paper, we propose simple and efficient algorithms
for sorting on incomplete meshes. No hardware redundancy
is required and no assumption is made about the availabil-
ity of a complete submesh. The proposed robust sorting al-
gorithms are very efficient when only a few processors are
Sfaulty and degrade gracefully as the number of faults in-
creases. In particular, we show that 1-1 sorting (1 key per
healthy processor) in row-major or snakelike row-major or-
der can be performed in 3n+ o(n) communication and com-
parison steps on an n X n incomplete mesh that has an arbi-
trary pattern of o(\/n) faulty processors. This is the fastest
algorithm reported thus far for sorting in row-major and
snakelike row-major orders on faulty meshes and the time
complexity is quite close to its lower bound.

1 Introduction

A d-dimensional mesh consists of nyn,---ny; proces-
sors of degree 2d arranged in an ny X ny X n3 X --+ X ng
grid. When wraparound links are used for all dimensions,
a d-dimensional torus results. Because of their scalability,
compact layout, constant node-degree, desirable algorith-
mic properties, and many other advantages, meshes and tori
have become popular topologies for the interconnection of
parallel processors.

Sorting is one of the most important and useful build-
ing blocks in the development of parallel applications. Var-
ious algorithms have been developed for sorting on mesh-
connected computers [4, 5, 6, 8, 9. These algorithms usu-
ally assume that a fault-free mesh is available. For com-
puting on incomplete meshes, Cole, Maggs, and Sitaraman
[1] have shown that an » X n mesh can be emulated with
constant slowdown on an n x n mesh that has n!~¢ faulty
processors for any fixed € > 0. In [2], Kaklamanis et. al.
showed that almost every n X n p-faulty mesh and any mesh
with at most 7/3 faults can sort n> packets in O(n) time.

0190-3918/97 $10.00 © 1997 IEEE

These results are of great theoretical importance but the al-
gorithms are quite complicated and the leading constants for
the running times are large. In [7], an elegant but subop-
timal robust sorting algorithm based on shearsort has been
proposed. However, the robust shearsort can only be exe-
cuted on meshes with bypass capacity over faulty processors

(7]

In this paper, we propose efficient algorithms for sort-
ing on incomplete meshes. No hardware redundancy or by-
pass capability is required and no assumption is made about
the availability of a complete submesh. The proposed algo-
rithms can be executed at high speed in the presence of a
small number of faults and degrade gracefully as the number
of faults increases. They may even work on meshes whose
rows and columns are all incomplete and meshes without
any complete submesh. In particular, we show that sort-
ing in row-major or snakelike row-major order can be per-
formed in 3n + o{n) communication and comparison steps
(excluding precalculation time) on an n x n bidirectional
mesh that has an arbitrary pattern of o(1/n) faults, assuming
that each healthy processor has one of the keys to be sorted.
These are the best results reported thus far for sorting on
incomplete meshes under the assumed fault conditions and
ranking orders. The techniques and results given in this pa-
per can be easily extended to higher dimensional meshes and
tori as well as to a variety of other fault-tolerant algorithms,
such as semigroup and prefix computation, selection, per-
mutation, fast Fourier transform, and matrix multiplication.

The remainder of the paper is organized as follows. In
Section 2, we introduce the basic scheme and several tech-
niques for efficient sorting on incomplete meshes. We also
develop simple and efficient algorithms for sorting on a sub-
set of healthy processors which we call a virtual submesh.
In Section 3, we derive efficient subroutines for redistribut-
ing data from/to all healthy processors to/from virtual sub-
meshes. We then develop a robust sorting algorithm and an-
alyze its complexity for several fault assumptions. In Sec-
tion 4 we conclude the paper.



2 Sorting on a subset of healthy processors

In this section, we introduce a simple and efficient
scheme based on virtual submeshes for solving various
problems on incomplete meshes without hardware redun-
dancy. We then develop several techniques for performing
sorting on virtual submeshes with negligible overhead com-
pared with fault-free meshes.

2.1 Virtual submeshes (VSMs)

The basic scheme for the proposed robust sorting algo-
rithms is to redistribute the data on the original mesh to a
subset of the healthy processors, which we call a virtual sub-
mesh, and then use the virtual submesh to emulate algo-
rithms on the corresponding mesh. In this subsection, we
describe the simplest version of virtual submeshes.

We first select a p; x p; submesh within the original in-
complete mesh. The selected submesh is called a boundary
mesh (BM). A row (or column) within the boundary mesh
that has no faulty processor is called a complete BM-row (or
a complete BM-column, respectively). The mym, proces-
sors at the intersections of the m) complete BM-rows and the
my complete BM-columns within the boundary mesh form
the virtual submesh (VSM). A row (or column) within the
boundary mesh with at least one faulty processor is called
an incomplete BM-row (or an incomplete BM-column, re-
spectively). Note that a complete BM-row (or BM-column)
may be part of an incomplete row (or column) of the en-
tire mesh. Two examples for simple VSMs are illustrated
in Figs. 1 and 2a. Fig. 1 shows a virtual submesh within
an n; X ny = 6 X 7 incomplete mesh with 6 faulty proces-
sors. The shaded circles represent the m; X my =3 x4 VSM
within the p; x p» = 5 x 6 boundary mesh. The numbers in
circles represent the logical processor addresses in the VSM.
In Fig. 2a, the entire 6 x 7 mesh is selected as the bound-
ary mesh and the 4 X 5 VSM is comprised of the 20 shaded
nodes.

Let M be the total number of items to be sorted and a be

the load factor, the maximum number of items per proces-
sor, in the VSM. Then we have load factora = {ﬁl when
the data are spread approximately evenly on the VSM. When
there is only one item to be sorted per healthy processor and
the number of faults is not large, we can have a = 2. The
load factor for the VSM in Fig. 1 is 3 and the one for the
VSM in Fig. 2a is 2, assuming one key per healthy proces-
SOr.

The proposed basic scheme for performing robust sort-
ing involves 3 stages, as described below. We assume that
a preprocessing stage has identified a virtual submesh to be

used (perhaps at reconfiguration time).

Figure 1. A 3-by-4 VSM represented by
shaded circles. The intersections of rows
2-6 and columns 1-6 form the 5-by-6 bound-
ary mesh.

Virtual-Submesh Emulation:

e Stage 1: The data items to be sorted are redistributed
evenly to the processors on the VSM such that a pro-
cessor has at most g items. On the VSM, a processor
that has fewer than g items pads its list with o as its
“dummy element(s)”.

o Stage 2: The VSM emulates a-a sorting on anm; X m;
mesh.

e Stage 3: The sorted data items are redistributed back
to healthy processors of the original n; X ny incom-
plete mesh with proper ordering.

Since processors of the VSM belong to complete BM-
rows and complete BM-columns, a naive method to imple-
ment Stage 2 is to directly emulate a transmission over the
N (or E, W, S) link of a processor by sending the data item
over a path consisting of all the N links between the proces-
sor and its virtual N (or E, W, S) neighbor in the VSM. When
the boundary mesh is complete (that is, no faulty processor
exists within it), no degradation is caused by Stage 2 using
the naive method.

Let fgy be the total number of faulty processors in the
boundary mesh. By using the previous naive method, sort-
ing on the m; x my VSM requires O((a + fau)(m; +my))
time in the worst case by emulating an optimal sorting algo-
rithm. In the following subsections, we will develop several
techniques to significantly reduce the slowdown factor.

2.2 Compaction/expansion (C/E) techniques
In this subsection, we present a useful technique, which

we call the compaction/expansion (C/E) technique, that can
significantly reduce the time required for sorting on a VSM.



Figure 2. A 4-by-5 VSM (a) and its compacted
rows (b), columns (c), and snake (d).

Sorting on each row of the VSM based on the C/E tech-
nique involves 4 phases:

C/E-Row Sort (CERS):

e Phase 1 (precalculation): Each complete BM-row
performs semigroup and prefix computation to deter-
mine the total number ¢ of incomplete BM-columns
within the boundary mesh and, for each processor the
number ! of incomplete BM-columns to its left.

e Phase 2 (compaction): The items in each processor of
the VSM are shifted to the left by I — [¢/2] positions
if [ — [t/2] > 0 and the items are shifted to the right
by [t/2] ~ I positions if I - [¢/2] < 0.

¢ Phase 3: A row sort is peformed within each of the
mgy-node linear arrays (compacted rows).

e Phase 4 (expansion): The sorted items in each of the
my-node compacted rows are shifted back to proces-
sors of the VSM, this is the inverse of Phase 2.

Phase 1 can be done in O(p,) time using algorithms for
semigroup and prefix computation on a fault-free p,-node
linear array. This precalculation phase only needs to be ex-
ecuted once after a new processor or link failure. Phases 2

and 4 can each be done in a[t/2] time. The integer ¢ is usu-
ally small and we have ¢t < p; and ¢ < fgyy, where fpy is the
total number of faults within the boundary mesh. Clearly,
Phase 3 can be done in O(am,) time using odd-even trans-
position sort, neighborhood sort, or their modified versions.

Compared with sorting on an my-node linear array,
Phases 1,2 and 4 are the overhead for performing row sort on
the VSM. Since Phase 1 is a precalculation phase and only
needs to be executed once, Phases 2 and 4 constitute the ef-
fective overhead. Compared with the naive method which
in the worst case has O(fpyp2) effective overhead, that of
CERS is significantly reduced to O(afppy). As a case in
point, the naive method that does not use the C/E technique
has overhead ©®(m,) even when there is only one faulty pro-
cessor within the boundary mesh; while algorithm CERS
has overhead 2a when there are one or two faulty proces-
sors within the boundary submesh. Column sort can be ex-
ecuted in a manner similar to the row sort algorithm CERS.
Figure 2 provides an example for sorting on a VSM based on
the C/E technique. The shaded circles in Fig. 2a represent
a4 x 5 VSM within a 6 x 7 mesh with 3 faulty processors.
The shaded circles in Fig. 2b represent the positions of data
items for performing row sort based on the C/E technique
upon completion of Phase 2 of algorithm CERS. The pro-
cessors that hold the data elements from a row of the VSM
are collectively called a compacted row. The number i in a
circle represents the position for the data item that was ini-
tially held by processor i of the VSM. The shaded circles in
Fig. 2c represent the positions of data items for performing
column sort based on the C/E technique. The processors that
hold the data elements from a column of the VSM form a
compacted column.

Sorting 2m; elements on an mp-node bidirectional linear
array requires m; communication steps and 2m; comparison
steps by directly emulating odd-even transposition sort on a
2my-node linear array [4, 6]. As a result, algorithm CERS
can be performed using m; + o{my) communication steps
and 2m;, comparison steps (excluding precalculation time)
when a = 2 and fgy = o(my). Clearly, when fpyr = o{my),
the slowdown factor for row sort on the VSM is 1 +o(1) for
any fault pattern.

2.3 A simple sorting algorithm on VSMs

By using the C/E technique, sorting on a VSM can be
easily done by emulating shearsort on meshes. More pre-
cisely, we can sort on the VSM by performing row sort in
Phases 1,3,5,...,2log, m; — 1 and column sort in Phases
2.4,6,...,21log, m;, using algorithm CERS and the column-
sort version of algorithm CERS. Since each pair of steps
can be done in O(a(m; + my +1)) time, sorting on an m; x
my, VSM can be done in O(a(m; + my + t)logm,) time.



Similarly, if we emulate Revsort [9] using the C/E tech-
nique, sorting on VSMs can be performed in O(a(m; +
my + t)loglogm,) time. The resultant overhead is negli-
gible when fgy = o(min(m,m,)) (that is, the overhead
is only o(a(m; + my)logm;) compared with shearsort and
only o(a(m; +m;)loglogm; ) compared with Revsort on an
my X my complete mesh).

2.4 (Qdd-even transposition on the snakelike path

Although sorting based on emulating shearsort is simple,
the required time is suboptimal. To obtain optimal sorting
algorithms on VSMs, we have to emulate optimal sorting
algorithms on meshes. These algorithms need to perform
odd-even transposition sort on the overall snakelike path and
may result in significant degradation using the naive method
described in Subsection 2.1. In this subsection, we present
a more complicated compaction/expansion process for odd-
even transposition on the overall snakelike path of a VSM.

Similar to the CERS algorithm, the items to be sorted will
be “compacted” onto part of the snakelike path consisting
of all the m; complete subrows and the processors bridg-
ing two complete subrows if they are not physically contigu-
ous. For simplicity, we consider sending the items to the first
mymy processors of the snake. Performing k steps of odd-
even transposition along the overall snake of the VSM based
on the compaction/expansion process involves 4 phases:

C/E-Snake Odd-Even Transposition (CEST):

¢ Phase 1: (precalculation) Prefix computation is per-
formed along the snakelike path of the VSM to deter-
mine, for each processor, the number u of processors
before it that do not have any item to be sorted.

¢ Phase 2: (compaction) The items in each processor
are sent to the processor u positions before it.

o Phase 3: k odd-even transposition steps are performed
along the m;my-node subsnake (compacted snake).

e Phase 4. (expansion) The sorted items in the mm;-
node compacted snake are sent back to processors be-
longing to the VSM; this is the inverse of Phase 2.

Figure 2d shows a compacted snake of a VSM, which is
comprised of the processors that hold the data elements from
the entire snake of the VSM. The numbers in circles repre-
sent the original positions of the data items in the VSM.

Phase 1 can be performed using a variant of parallel pre-
fix computation on a mesh by ignoring the processors on
incomplete BM-rows except for those on the rightmost (or
a middle) complete BM-column. Note that the prefix val-
ues of processors in a BM-row is computed either from left

to right or from right to left according the direction of the
snake. This precalculation phase requires O(p; + p;) time.
If we have the results of the precalculation phases for both
algorithm CERS and its column-sort version available, the
prefix values for Phase 1 can be determined directly by the
numbers of incomplete BM-rows and BM-columns and the
position of a processor in O(1) time.

If we implement Phase 2 by shifting the items along the
snake, the time required can be as large as ©(fgym,) in
the worst case. One way to implement Phase 2 in consid-
erably shorter time is to first send each item to the com-
plete BM-row to which it belongs or the immediately fol-
lowing complete BM-row if the new position of the item
is not on a complete BM-row. Then we route data items
on each complete BM-row and the vertical segment before
it, until the addresses of processors originally holding the
items are in ascending order and each processor (except for
the last u processors along the snakelike path) has a items.
Upon completion, all the items to be sorted along the snake
of the VSM are redistributed to a subsnake of length m;m;
within the snakelike path of the boundary mesh. Phase 2 can
thus be performed in O(fpp) (for routing on BM-columns)
+ max(pz,aps/2) + O(fgy) (for routing on BM-rows and
vertical segments) = max(pz,ap;/2) + O(fsum) steps.

Thus, Phase 2 and its inverse phase, Phase 4, can each be
done in py + o(p,) time whena = 2 and fgp = o(p,). Phase
3 clearly requires O(k) time.

Based on these C/E techniques, various optimal algo-
rithms for sorting on VSMs can be obtained by simply em-
ulating optimal sorting algorithms (e.g., several recursive
sorting algorithms and the (modified) Schnorr/Schamir sort-
ing algorithm [5, 6, 9]).

2.5 General VSMs

In some cases, VSMs of the type used thus far may be-
come quite small with a relatively small number of faulty
processors, leading to a large load factor a, and thus a sig-
nificant slowdown, in emulating mesh algorithms. In such
cases, we can use pairwise complete rows and pairwise com-
plete columns to simulate complete rows and columns, re-
spectively. We briefly introduce the techniques as follows.

Pairwise complete columns are defined as two adjacent
columns that contain at least one path from the top row to
the bottom row. Pairwise complete rows are defined analo-
gously. We can then define a more general version of VSMs
by selecting a processor from each of the intersections of
these (pairwise) complete rows and columns. An example
is shown in Fig. 3. Detection of a pairwise complete column
can be easily done as follows. By sending two signals origi-
nating from the left and right columns in the column pair, up
to two paths are obtained if the signals do not switch column



Figure 3. Pairwise complete rows/columns.
(a) Pairwise complete rows. (b) Pairwise com-
plete columns. (¢) A resultant 3-by-4 VSM. (d)
Compacted rows of the VSM.

unless a faulty processor or link is encountered. At least one
of the two constructed paths is guaranteed to have the short-
est length among all possible paths within the two columns.
To emulate a complete column on a pairwise complete col-
umn, we can use the C/E technique on the constructed path
in a manner similar to algorithm CERS. Figure 3d provides
an example where each row of a VSM is compacted to speed
up row Ssort.

This technique can be easily generalized to utilize all
(reasonably short) nonoverlapping paths from the top BM-
row to the bottom BM-row and nonoverlapping paths from
the leftmost BM-column to the rightmost BM-column to ob-
tain a larger VSM at the intersection of these paths. The
top/bottom row and the leftmost/rightmost column of a
boundary mesh can also be paths that are not straight. The
analysis for algorithms on the simplest version of VSMs can
be extended to the general version of VSMs by substituting
P1, P2, and t with py 4, P2 max, and g, respectively, where
P1,max A0d P73 gy are the maximum lengths of column paths
and row paths, respectively, within the generalized bound-
ary mesh, and tg = max(p; max — M1, P2,max — M2)- When
Pl max = O(my) and pj yay = ©(my), optimal sorting algo-
rithms for the VSM can be obtained by simply emulating op-
timal sorting algorithms on meshes using C/E techniques.

3 Robust sorting on incomplete meshes

In this section, we derive fast algorithms to perform 1-
1 sorting on an n X n incomplete mesh that has f = o(y/n)
faulty processors, where each healthy and connected proces-
sor holds one of the keys to be sorted.

3.1 Mapping an incomplete mesh onto a VSM

In this subsection, we describe how to select a proper
VSM and map the incomplete mesh onto it.

We use the entire incomplete mesh as the boundary mesh.
We select m; = n — o(n) complete rows and the middle
my = n/2+ o(n) complete columns, such that m; x my >
(n* — £)/2. We also require that the selected complete rows
be separated by no more than f + 1 hops if some complete
rows are not selected. Then the intersections of the selected
my rows and m, columns form a desired VSM. Since there
are no more than o(+/n) faulty processors, the existence of
such VSMs is guaranteed. Obviously, the number of items
per processor is a = 2 for 1-1 sorting on such incomplete
meshes. For simplicity of algorithm description, we assume
that /7 is an integer. We call each of the n \/n-by-+/n sub-
meshes of the incomplete mesh a block, and a 1/n-node com-
plete row (or column) within a block a complete block-row
(or complete block-column). A block is crossed by at least
\/n— f complete block-columns and complete block-rows.

To sort the items in row-major order, we first perform
a prefix computation in row-major order to determine the
number of healthy processors that precede each of the
healthy processors. Then the i healthy processor is mapped
onto the [i/2]** processor in the VSM in snakelike row-
major order. Figure 4 illustrates such a mapping fora 6 x 7
mesh with 3 faulty processors (as shown in Fig. 4a) onto a
4 x 5 VSM (Fig. 4d). To sort the items in snakelike row-
major order, blockwise order, or other orderings, we per-
form a prefix computation in the respective order, and map
each healthy processor onto the VSM in snakelike row-
major order.

3.2 Data redistribution

In this subsection, we introduce an efficient algorithm
for performing data redistribution, which moves data from
healthy processors, each having one data item, to the corre-
sponding processors in the VSM. We then analyze its perfor-
mance and show that it is optimal for row-major and snake-
like row-major mapping orders.

The algorithm DR for data redistribution is comprised of
4 phases:



Data Redistribution (DR):

e Phase 1: In each block, all data items are routed to a
nearby complete block-row.

¢ Phase 2: In each block, all data items are spread ap-
proximately evenly along the block-row onto pro-
cessors at the intersections of complete columns and
complete block-rows.

e Phase 3: Each data item is sent along the complete
column to which it currently belongs to the complete
row to which the data item will belong in the VSM.

¢ Phase 4: Each data item is sent along the complete
row to which it currently belongs to the desired po-
sition in the VSM.

Phase 1 can be done by first routing any data item to one
of the complete block columns/rows that surround the item,
and then routing it along the complete block-columns to a
nearby complete block-row within its block. The desired lo-
cation for each data item at the end of Phase 2 can be deter-
mined by performing prefix computation in each complete
block-row, which is a precalculation step and requires only
O(+/n) time. If a processor in a complete column has a con-
stant number of data items at the end of the initial step for
Phase 1, it can skip the latter step and Phase 2 without in-
creasing the leading constant of the running time. Figure 4
provides an example for moving data from a 6 x 7 incom-
plete mesh with 3 faulty processors (Fig. 4a)toa 4 x 5 VSM
(Fig. 4d) using algorithm DR. In Fig. 4b, the original incom-
plete mesh is partitioned into 6 blocks. The number { in a cir-
cle represents the current position for the data item that was
held by processor i of the original incomplete mesh upon
completion of Phase 2. Note that processors belong to com-
plete columns have skipped the second step of Phase 1 and
Phase 2. Figure 4c shows the intermediate positions for data
items upon completion of Phase 3.

Lemma 3.1 Data redistribution from an n X n incomplete
mesh with o(\/n) faulty processors in row-major or snake-
like row-major orders onto an appropriate VSM in snake-
like row-major order (as described in Subsection 3.1) can
be performed in 3n/4 + o(n) steps.

Proof: Since complete block rows/columns are separated
by no more than o(+/n) hops, at most o(n) data items are sur-
rounded by nearby complete block-columns and complete
block-rows. Therefore, the first step of Phase 1 of algo-
rithm DR can be executed in o(n) time, and at the end of
this step, no more than o(n) data items will be located be-
tween 2 nearest intersection nodes of complete block rows
and columns along a column. Since the distance between
two complete block-rows is o(1/n), the second step of Phase

(c) (d)

Figure 4. Data redistribution from the incom-
plete mesh to a VSM using algorithm DR.
(a) The 39 data elements. (b) Positions after
Phase 2. (c¢) Positions after Phase 3. (d) The
final positions.

1 requires o(y/n) + o(n) = o(n) time. Since no more than
o(n) data items will be routed along a complete block-row
during Phase 2 and the length of a block-row is 1/n, Phase
2 requires no more than o(n) time. Upon completion of
Phase 2, there are v/n+ o(+/n) data items in every complete
block-column. Since an item only needs to be routed for no
more than o(n) hops during Phase 3, this phase requires o(n)
time. The maximum distance for a data item to be routed
during Phase 4 is 3n/4 + o(n). For row-major and snake-
like row-major orders, a 1/n-node complete block-row will
holds no more than 2+/7 items at the end of Phase 3 since it
is impossible for data items from three different rows to be
mapped onto the same row of the VSM for either of the or-
ders. This property is sufficient to show that the maximum
number of items that can cross a processor in one direction
during Phase 4 is no more than 3n/4 + o(n). The worst pos-
sible case occurs at a processor X in the %”-th column of
the incomplete mesh (i.e., the (% + o(n))-th column in the
VSM), when the healthy processors at the intersections of
two nearby rows and columns 52/8 4+ 1,5n/8+2, ..., n are
mapped to processors that are to the left of processor X in the
VSM. As aresult, Phase 4 can be performed in 3n/4 + o(n)
time for row-major and snakelike row-major orders. O

Note that for some ranking orders (e.g., blockwise order),
the maximum number of items that will cross a processor



in one direction during Phase 4 is n+ o(n). Therefore, al-
gorithm DR requires n + o(n) time for such ranking orders.
We can, however, modify the data-redistribution algorithm
to reduce its running time to 3n/4 + o(n) for blockwise or-
dering.

By reversing the process of algorithm DR, data redistri-
bution from a VSM to all healthy processors can be done in
the same time for respective ranking order.

If we use algorithm DR and its inverse process based on
the previous mapping orders as subroutines to perform 1-
1 robust sorting, Stages 1 and 3 of virtual-submesh emula-
tion require 3n/2 + o(n) communication steps. The required
time can be reduced to n + o(n) by using different mapping
strategies for Stage 1 of virtual-submesh emulation. In what
follows, we describe an algorithm for obtaining such map-
ping and performing data redistribution.

Mapping and Data Redistribution (MDR):

e Phase 1: In each block, all data items are routed to a
nearby complete block-column.

¢ Phase 2: In each block, all data items are spread ap-
proximately evenly along the block-column onto pro-
cessors at the intersections of complete rows and com-
plete block-columns.

o Phase 3: Each data item is sent along the complete
row to which it currently belongs until each proces-
sor of the middle n/2 + o(n) complete columns has 2
items (except for the leftmost or rightmost ones).

e Phase 4: An appropriate VSM has to include all the
processors that currently have at least one item. If
a processor in the VSM has fewer than 2 items, it is
padded with dummy values co.

Lemma 3.2 Data redistribution from an n X n incomplete
mesh with o(+/n) faulty processors onto an (n — o(n)) x
(n/2+ o(n)) VSM can be optimally executed in n/4 + o(n)
steps.

Proof: From algorithm MDR, it can be seen that the row
number of the new position in the VSM for a data item is
at most o(4/n) from the row number of its original position,
and the column number of the new position in the VSM for
a data item is at most n/4 + o(n) from that of its original po-
sition. Moreover, data elements can be concentrated at the
middle /2 + o(n) complete columns in a pipelined manner
so that no more than n/4 + o(n) data elements need to be
sent across a link. The required time is clearly n/4 + o(n)
for algorithm MDR. O

10

3.3 A 3n-step robust sorting algorithm

In this subsection, we show that 1-1 sorting can be per-
formed in 3n + o(n) communication and comparison steps
on an n X n incomplete mesh that has an arbitrary patterns
of o(y/n) faults.

For simplicity of algorithm description, we choose m;
and m, to be the sixth powers of integers. (There exist
o(n1/®) possible integers for both m, and my.) The bound-
ary mesh for the VSM is partitioned into (m,m;)'/® blocks,
which we call VSM blocks. More precisely, each VSM block
contains exactly (m;m,)5/® processors of the original VSM

5/6 5/6
arranged as an m;’ -by-m;,
have more than mf/ 6mg/ 6 processors in it. A “column of
VSM blocks” is called a vertical VSM slice.

The proposed robust sorting algorithm first redis-
tributes the data items to the VSM, then emulates the
Schnort/Schamir sorting algorithm [5, 91 modified for 2-2
sorting using larger blocks on the VSM, and finally redis-
tributes sorted data back to healthy processors.

The robust sorting algorithm is composed of 10 phases:

small virtual submesh, but may

Robust Sorting (RS):

e Phase 0: Redistribute data items from each of the
healthy processors in the incomplete mesh to an ap-
propriate VSM using algorithm MDR.

e Phase 1: Sort each VSM block.

e Phase 2: Perform an m;/ 6-way unshuffle of the VSM-
columns. (That is, permute the columns such that
the mg/ 6 columns in each VSM block are distributed

evenly among the m;/ ® vertical VSM slices.)

o Phase 3: Sort each VSM block into snakelike row-
major order.

e Phase 4: Sort each column of the VSM in linear order
using the C/E technique. (That is, sort the 2m; data
items in each VSM-column as an m; x 2 mesh in row-
major order.)

e Phase 5: Collectively sort VSM blocks 1 and 2, VSM
blocks 3 and 4, VSM blocks 5 and 6,..., of each verti-
cal VSM slice into snakelike row-major order.

e Phase 6: Collectively sort VSM blocks 2 and 3, VSM
blocks 4 and 5, VSM blocks 6 and 7,..., of each verti-
cal VSM slice into snakelike row-major order

o Phase 7: Sort each row of the VSM in linear order ac-
cording to the direction of the overall snake using al-
gorithm CERS.



¢ Phase 8: Perform 2,/m odd-even transposition steps
on the overall snake of the VSM (without using the
C/E technique).

o Phase 9: Redistribute each of the data items from the
VSM in snakelike row-major order to the appropri-
ate healthy processor in the incomplete mesh in row-
major order for row-major sorting (or in snakelike
row-major order for snakelike row-major sorting) us-
ing the inverse process of algorithm DR.

Theorem 3.3 1-1 sorting (1 key per healthy and connected
processor) in row-major or snakelike row-major order on
an n x n bidirectional mesh that has an artibrary pattern of
o(+/n) faulty processors can be performedin 3n+ o(n) com-
munication and comparison steps (excluding precalculation
time).

Proof: The correctness of algorithm RS can be proved using
0-1 principle [3] and the proof is similar to those given in [5,
pp- 148-151] and [9]. From Lemmas 3.1 and 3.2, Phases 0
and 9 can be performed in n/4 + o(n) and 3n/4 + o(n) com-
munication steps, respectively. To perform 2-2 sorting on all
VSM blocks for Phases 1 and 3 of algorithm RS (or VSM
block pairs for Phases 5 and 6) in parallel, each VSM block
(or VSM block pair, respectively) is sorted by emulating
shearsort on it. These phases require O(n*/¢logn) time as
shown in Subsection 2.3. Phase 2 requires n/2 + o(n) com-
munication steps since the width of the VSM is n/2 + o(n)
hops and no more than n/2 + o(n) items will cross a link
in the same direction during this phase. From the analy-
sis given in Subsection 2.2, we know that Phase 4 requires
my + o(n) = n=% o(n) communication steps and 2m; = 2n—
o(n) comparison steps while Phase 7 requires m; + o(n) =
n/2+ o(n) communication steps and n + o(n) comparison
steps (without precalculation time). Since two neighbor-
ing processors of the VSM are separated by no more than
f+1=o0(+4/n) hops, Phase 8 requires at most o(n) commu-
nication steps and O(+/n) comparison steps by directly per-
forming the odd-even transposition steps (that is, by using
the naive method mentioned at the end of Subsection 2.1).
O

When data are input/output to/from VSMs directly, sort-
ing can be performed in 2.5n + o(n) communication steps
and 3n + o(n) comparison steps on an n x n VSM within
an incomplete mesh that has an arbitrary pattern of o(+/n)
faults. This result can be easily generalized to incomplete
meshes with o(n) faults by using larger VSM blocks. The
running time has the same leading constant as the best
known algorithms for 1-1 sorting on an n x n fault-free mesh
[4, 6].

We can generalize algorithm RS for incomplete meshes
with larger f by using larger blocks for Phases 0 and 9 (i.e.,

11

algorithms MDR and DR). The time required for sorting on
an n x n incomplete mesh with f faults is O(n + f?), where
f < (1—g)n for any fixed € > 0. The extra O(f2) commu-
nication steps are required by algorithms DR and MDR for

worst-case fault patterns. '

4 Conclusion

In this paper, we have proposed efficient robust algo-
rithms for sorting on incomplete meshes. The proposed al-
gorithms are efficient when the number of faults is not large
and degrade gracefully as the number of faults increases. In
particular, we showed that sorting on an n x n incomplete
mesh that has o(y/n) faulty processors can be performed in
3n+ o(n) communication and comparison steps. This is the
fastest algorithm reported thus far for sorting on an incom-
plete mesh in row-major and snakelike row-major orders.
These techniques can also be applied to a variety of other
important problems to obtain robust algorithms with negli-
gible overheads. Details of these results will be reported in
the future.

References

[1] Cole, R., B. Maggs, and R. Sitaraman, “Multi-scale self-
simulation: a technique for reconfiguring arrays with faults,”
ACM Symp. Theory of Computing, 1993, pp. 561-572.

Kaklamanis, C., A.R., Karlin, ET. Leighton, V. Milenkovic,
P. Eaghavan, S. Rao, C. Thomborson, and A. Tsantilas,
“Asymptotically tight bounds for computing with faulty ar-
rays of processors,” Proc. Symp. Foundations of Computer
Science, vol. 1, 1990, pp. 285-296.

Knuth, D.E., The Art of Computer Programming, vol. 3, Sort-
ing and Searching, Reading, Mass., Addison-Wesley, 1973,

(21

(3]
[4] Kunde, M. “Concentrated regular data streams on grids: sort-
ing and routing near to the bisection bound,” Proc. Symp. on
Foundations of Computer Science, 1991, pp. 141-150.

Leighton, F.T., Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes, Morgan-Kaufman,
San Mateo, CA, 1992.

Nigam, M. and S. Sahni, “Sorting n% numbers on n X n
meshes,” IEEE Trans. Parallel Distrib. Sys., vol. 6, no. 12,
Dec. 1995, pp. 1221-1225.

Parhami B. and C.-Y. Hung, “Robust shearsort on incomplete
bypass meshes,” Proc. Int’l Parallel Processing Symp., 1993,
pp 304-311.

Park, A. and K. Balasubramanian, “Reducing communica-
tion costs for sorting on mesh-connected and linearly con-
nected parallel computers,” J. Parallel Distrib. Comput., vol.
9, no. 3, Jul. 1990 pp. 318-322.

Schnorr, C.P. and Shamir, A., “An optimal sorting algorithm
for mesh connected computers,” Proc. Symp. Theory of Com-
puting, 1986, pp. 255-263.

[5

—_

(6]

(71

(8]

9]



