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Abstract—In this paper we consider a mobile cooperative fact that significant parts of it will not be sampfedrhis is
network that is tasked with building a map of the spatial g considerably important problem as it enhances our ability

variations of a parameter of interest, such as an obstacle npa {4 ¢ollect information and allows us to keep up with the high
or an aerial map. We propose a new framework that allows . L .
volume of information in the environment.

the nodes to build a map of the parameter of interest with a : ) ]
small number of measurements. By using the recent results ithe If we can understand the core information present in the

area of compressive sensing, we show how the nodes can exploidata and can show that it has a dimension far less than
the sparse representation of the parameter of interest in tb  the data itself, we can then reduce our sensing considerably
transform domain in order to build a map with minimal sensing.  \ypile considerable progress has been made in the area of

The proposed work allows the nodes to efficiently map the area ) -
that are not sensed directly. To illustrate the performance of mobile networks, a framework that allows the vehicles to

the proposed framework, we show how the nodes can build reconstruct the parameter of interest based on a severggy-un
an aerial map or a map of obstacles with sparse sensing. We determined data set is currently missing. In most relatedkwo
furthermore show how our proposed framework enables a novel only areas that are directly sensed are mapped. The rich
non-invasive approach to mapping obstacles by using wireless |iieratyre on Simultaneous Localization and Mapping (SLAM

channel measurements. . . . .
Index Terms—mobile networks, compressive sensing, mapping and its several variations fall into this category [4]-[3LAM

of obstacles, cooperative mapping approaches mainly focus on reducing the uncertainty in the
sensed landmarks by using a Kalman filter. Similarly, ap-
I. INTRODUCTION proaches based on generating an occupancy map also address

Mobile intelligent networks can play a key role in emer-SenSing uncertainty [8]. Another set of approaches, seitab

gency response, surveillance and security, and battledigld m_ainly for mapping obstacles, are based on the Next Best
erations. The vision of a multi-agent robotic network caepev'ew (NBV) problem [1], [9]-{12]. In NBV approaches, the

atively learning and adapting in harsh unknown environmerfim IS t0 move to the positions “good” for sensing by guiding
to achieve a common goal is closer than ever. In this paper, W€ Vehicles to the perceived next safest area (area with the
are interested in the cases where a mobile cooperative rietw/§0St Visibility) based on the current map [1]. However, area

is tasked with collecting information from its environmentthat are not sensed directly are not_mapped In NBV' .
More specifically, we consider scenarios where the network!" this paper, we presentampressive cooperative mapping

is in charge of building a map of the spatial variations of §amework for mobile exploratory networks. By compressive
parameter (or a number of parameters) cooperatively, tolwhcOOPerative mapping, we refer to the cooperative mappireg of
we refer to ascooperative mapping Such problems can spatial function based on a considerably §mal| ob_servaBMn
arise in several different applications. For instance|dinij vv_here a large percentage of the area o_f interest is not se_nsed
a map of the indoor obstacles [1], ocean sampling [2] &lrectly. Our proposed theory and des_lgn tools are inspired
aerial mapping [3] all fall into this category. A mobile netik by the recent breakthroughs in non-uniform sampllng theory
tasked with a certain exploratory mission faces an aburelangs): [14]- The famous Nyquist-Shannon sampling theorem
of information. In such an information-rich world, there ig12] revolutionized several different fields by showing ttha
simply not enough time to sample the whole environmeHPde_r certain conditions_, it is indeed possible to recomestr
due to the potential delay-sensitive nature of the apjdinat a unlform_ly samplgd signal perfectly. The new theory of
as well as other practical constraints. A group of unmann&gMPressive sampllng'also known by other terms such as
air vehicles, for instance, may need to cooperatively baiid COMPressed sensing, compressive sensing or sparse $ensing
aerial map of an area in a limited time. It is not practical t§hOWS thatunder certain conditions, itis possible to retat

wait for the collective sampling of the vehicles to coverrgve & Signal from a considerably incomplete set of observations
single point in the terrain. A fundamental open question |&- with a number of measurements much less than predicted

then as followsWhat is the minimal collective sensing neededy the Nyquist-Shannon theorem [13], [14]. This opens new

to accurately build a map of the whole terrain despite thénd fundamentally different possibilities in terms of info
mation gathering and processing in mobile networks. In this

This work is supported in part by NSF CAREER award # 0846483.  paper, we develop the fundamentals of cooperative senaihg a



mapping in mobile networks from a compressive sampling per-In this paper, we show how the new theory of compres-
spective. While our proposed framework would be applicabs&ve sampling can result in fundamentally different segsin
to several mobile network applications, in this paper wenlyai approaches in mobile cooperative exploratory networks.
focus oncooperative mapping of a spatial functi@uch as
collective aerial or underwater mapping, collective magpi
of the communication signal strength or cooperative magppin The new theory of sampling is based on the fact that real-
of the obstacles. world signals typically have a sparse representation irrtaice
The paper is organized as follows. In Section Il we digransformed domain. Exploiting sparsity, in fact, has @ ric
cuss the compressibility of the signals of interest in mebihistory in different fields. For instance, it can result idueed
exploratory networks. In Section Ill we provide a brief mtr computational complexity (such as in matrix calculations)
duction to the theory of compressive sensing. In Section [ better compression techniques (such as in JPEG2000).
we consider cooperative aerial mapping as well as mappingtd®wever, in such approaches, the signal of interest is fitist f
obstacles. In particular, we propose a novel compresside &@mpled, after which a transformation is applied and ondy th
non-invasive technigue for mapping of the obstacles, bagedcoefficients above a certain threshold are saved. This, Vewe
wireless channel measurements. We conclude in Section Visanot efficient as it puts a heavy burden on sampling the
list of key variables used in the paper is provided in Table &ntire signal when only a small percentage of the transfdrme
coefficients are needed to represent it. The new theory of
Il. SIGNAL COMPRESSIBILITY INCOOPERATIVEMOBILE ~ COmpressive sampling, on the other hand, allows us to sense
NETWORKS the signal in a compressed manner to begin with.
Consider a scenario where we are interested in recovering
We first define what “sparse” and “compressible” signalg vectorz € RY. We refer to the domain of vector as

Ill. COMPRESSIVE SAMPLING THEORY

refer to. the primal domain. For 2D signals, vectorcan represent the
Definition: A sparsesignal is a signal that can be repreeolumns of the matrix of interest stacked up to form a vector
sented with a small number of non-zero coefficients. (a similar approach can be applied to higher-order signals)

Definition: A compressiblesignal is a signal that has alLet y € RX where K < N represents the incomplete linear
transformation where most of its energy is in a very fewneasurement of vector obtained by the sensors. We will
coefficients, making it possible to approximate the reshwihave
zero. In this paper, we are interested in linear transfaonat y = dx, 1)

The new theory of compressive sampling shows that, undel[] fer tab as the ob i trix. Clear] Vi
certain conditions, a compressible signal can be recartsttu where we reter i as the observation matrix. Liearly, soving

using very few observations. Most natural signals are idde%ﬁr v ba;sed on the ObefVithf:ijlS an gpos;d p|_r|0blem as
compressible. The best sparse representation of a signal & System 1S Severely under-determin « ). However,

pends on the application and can be inferred from analyziﬁ bpose that has a sparse representation in an.other domain,
similar data. Our analysis of aerial maps, obstacle mabt: it can be represented as a linear combination of a small

(indoor or outdoor) as well as maps of communication sign _Tx 9
strength, for instance, has shown them to have a consigerabl = ’ @

sparse representation. Fig. 1 shows two maps based on {g@&re ' is an invertible matrix andX is S-sparse, i.e.
data, an aerial map and an obstacle map. By applying a Ilnwpg){” = S < N where suppK) refers to the set of
transformation to the signals, it can be seen that most jafices of the non-zero elements &f and | - | denotes its
the signal’s energy is contained in a small percentage of thgrdinality. This means that the number of non-zero element

transform coefficients. Howevehis energy is not necessarilyin x is considerably smaller thaN. Then we will have
confined to a consecutive set of transform coefficjembsch

makes reconstructing the signal based on a considerably y=vX, 3)

small numb.er of observf’:\tlons challenging. In. general, Eourwhere\IJ — & xT. We refer to the domain ok as the sparse
transformation can provide a good compression for thezslpagjomain (or transform domain). 1§ < K and we knew the
variations of the communication channel or a height map. F86sitions of the non-zero coefficients af, we could solve

the maps that have localized non-stationary features, aach\%S problem with traditional techniques like least-sasarin

?t of vectors:

an _obstacle dr_r;fap (seebFig. dl b), Wa\;]elet transfo_:jm or to neral, however, we do not know anything about the stractur
variation (a di erence-based approac ) can provide am €y except for the fact that it is sparse (which we can validate
better compression. A map of the obstacles is also sparsg,| analyzing similar data). The new theory of compressed
the spatial domain. It should be noted that in the compres sing allows us to solve this problem

mapping of the obstacles, an object-based approach is Notheorem I(see [13] for details and the proof): i > 29

swtqble. Ins_tead, we consider the space of m_te_zrest asa myblnand under specific conditions, the desitéds the solution to
spatial function that takes on values of 0 or 1 (itis also jiss following optimization problem:
d :

to make it non-binary and include the properties of the dbje
as we shall see in Section IV). min|| X||o, such thaty = ¥ X, (4)



(b)

Fig. 1. (a) Height map of Sandia Mountains in New Mexico — tesy of U.S. Geological Survey (left), and its transformegresentation (Fourier) where
more than 99.9999% of energy is in less than 3% of the coeffiigight). (b) An obstacle map with the obstacles denatedthite (left), and its transformed
representation (wavelet) where 100% of energy is in less 8 of the coefficients (right).

N size of the original signal in the primal domain intuitive interpretation, i.e. it aims at making every séto

S size of the support of the signal in the sparse domain columns of the matrixt' as orthogonal as possible. Other
K number of measurements taken to estimate the signal conditions and extensions of Theorem 2 have also been
x signal in the primal domain, afv x 1 vector developed [22], [23]. While it is not possible to define akth

y K x 1 measured vector of in the primal domain classes of matriced that satisfy RIC, it is shown that random
X N x 1 vector representing a linear transformof partia| Fourier matl‘ices [24] as We” as random Gaussiaﬂ]‘ [25
® K x N observation matrix, s.ly = &z [26] or Bernoulli matrices [27] satisfy RIC (a stronger vierg

T N x N linear projection matrix, s.tr =T'X with the probabilityl — O(NiM) if

' Hermitian of K > ByS x log° VN, (7)

\ K x N matrix (defined asl = & xI'), s.t.y = UX

whereB); is a constant) is an accuracy parameter and-YO(
TABLE | is Big-O notation [13].
KEY NOTATIONS USED IN THIS PAPER . . - . .
While the recovery of sparse signals is important, in pcacti
signals may rarely be sparse. Most signals, however, will be
compressible. In practice, the observation vegtaiill also be
corrupted by noise. Thé, relaxation and the corresponding
v)\éhere||X||0 = |supr.X)| represents the zero norm of Vecm?equired RIC condition can be easily extended to the cases of

: noisy observation with compressible signals [18].
Theorem 1 states that we only ne2d S measurements

to recoverX and thereforer fully. This theorem, however, A. Basis Pursuit: Reconstruction Usirfg Relaxation

requires solving a non-convex combinatorial problem, Whsc ~ The ¢, optimization problem of Eq. 5 can be posed as a
not practical. For over a decade, mathematicians have wWorkear programming problem [28]. The compressed sensing
towards developing an almost perfect approximation tolthe algorithms that reconstruct the signal based poptimization
optimization problem of Theorem 1 [16]- [17]. Recently, Bucare typically referred to as “Basis Pursuit” [14]. Reconstion

efforts resulted in several breakthroughs. _ through ¢, optimization has the strongest known recovery
More specifically, consider the following, relaxation of guarantees [21]. However, the computational complexity of
the aforementioned, optimization problem: such approaches can be high, which resulted in further at-

min||X||1, subject toy — UX. ) tempts tQ re_constru_ct the signal th_rough different apgreac
as we will discuss in the next section.

Theorem 2:(see [18], [13], [19], [20], [14] for detalils,

the proof and other variations) Assume thatis S-sparse.

The ¢; relaxation can exactly recoveX from measurement

y if matrix ¥ satisfies the Restricted Isometry Condition for The Restricted Isometry Condition implies that the columns

B. Matching Pursuit: Reconstruction using Successiverinte
ference Cancellation

(25,v/2 — 1), as described below. of matrix ¥ should have a certain near-orthogonality property.
Restricted Isometry Condition (RIC) [21Matrix ¥ satis- L€tV = [¥1Wz... Uy], where W, represents the" column
fies the RIC with parametersZ(e) for € € (0,1) if of matrix . We will havey = >, ¥; X;, whereX; is the
4™ component of vectoX . Consider recovering;:
(1= e)llell2 < |[Tell2 < (1 + €)l[c]]2 (6) N
ity X ‘I’fi‘l’jX 8
for all Z-sparse vectoe. I, i+ Z g, N (8)

The RIC is mathematically related to the uncertainty prin- desired term  J=LJ7E ¢
ciple of harmonic analysis [21]. However, it has a simple nterforence



If the columns of & were orthogonal, then Eq. 8 wouldAlgorithm 1 A Summary of Matching Pursuit Approaches
have resulted in the recovery &f;. For an under-determined(OMP [31], ROMP [21] and I-ROMP [33])

system, however, this will not be the case. Then there dreput: measured vectog € R, target sparsityS, and size
two factors affecting recovery quality based on Eq. 8. First of full signal N

how orthogonal is the™ column to the rest of the columnsOutput: set of indiceslse: C {1, ..., N} of non-zero coeffi-
and second how strong are the other componentsXof cients inX with |Ise < S, and X, the estimatedy.

In other words, it is desirable to first recover the strongesiitialize: Iset= 0 andy™W =y

component ofX, subtract its effect frony, recover the second 1: while stop criteria not metlo

strongest component and continue the process. Adopting the Y = F(y"")

terminology of CDMA (Code Division Multiple Access) in 3: Xpm]- = \pfy?ew

communication literature, we refer to such approaches as choose a subset of indices frai}; based on a

Successive Interference Cancellatidn fact, if X; # 0, one utilized criteria for deciding the significant coefficients
can think of; coding X;. If the i!" code is used as in Eq. 8, s: update index sefse

then X, for j # ¢ can not be decoded properly and ooy 66 X = argmin ||y — UX||2

can be recovered. X 2 supp (X)=1set

Such successive cancellation methods have been used 7n yneW% y—vX
the context of CDMA systems in communication literature8: end while
for recovering the signals of different users at the badiosta

[29], [30]. While the context of the two problems may seem . ) . _ .
different, they share a very core fundamental form. Reyenﬂhe steps involved in Matching Pursuit approaches. Functio

Tropp et al. independently proposed using a version of sue- 1N the second step is an upsampling function (such as
cessive interference cancellation in the context of cosgive 2N interpolator) for I-ROMP and ig'(y™") = y"** for
sampling and derived the conditions under which it can tes@P/ROMP. Consequentlyy; of the third step is the full

in almost perfect recovery [31]. They refer to it as Orthaglon’¥ * IV ¥ matrix for I-ROMP and is the originak’ x N
Matching Pursuit (OMP). Similar to Successive Interfegendn@lrix for OMP/ROMP (as discussed previously).

Cancellation, the basic idea of OMP is to iteratively muitip While ¢, relaxation of the pr_evious part can solve the com-
the measurement vectog, by U¥, recover the strongestpressed sampling problem with performance guarantees, the

component, subtract its effect and continue again. Let computational complexity of the iterative greedy apprasch

denote the set of indices of the non-zero coefficient¥ ahat ©f thiS part can be considerably less [31]. In the next sactio
is estimated and updated in every iteration. Once the loesti we use both approaches when reconstructing the signal.
of the S nonzero components of are found, we can solve |V. COMPRESSIVECOOPERATIVEMAPPING IN MOBILE

directly for X by using a least squares solver: NETWORKS
X =  argmin |ly— UX|.. 9) In th|s section we show how the new_theory o_f compressive
X supp (X)=Iset sampling and reconstruction can result in the efficient nrapp

of a spatial function in mobile cooperative networks. In

OMP, however, has various significant drawbacks, most N icular, we discuss two cases, cooperative aerial mappi
tably lack of performance guarantee for partial Fourierrmat ;. mapping of the obstacles.

ces [21]. Regularized Orthogonal Matching Pursuit (ROMP),

an extension of OMP, was then introduced by Needell & Compressive and Cooperative Aerial Mapping

al. as a way to overcome problems with OMP [21]. The Consider a case where a group of Unmanned Air Vehicles
main difference in ROMP as compared to OMP is that i(UAVs) are tasked with building an aerial map of a region.
each iterative step, a set of indices (locations of vector Thenz of Eq. 1 represents the aerial map of interest in the
with non-negligible components) are recovered at the samatial domain. The vehicles make measurements in theabpati
time instead of only one at a time [21]. Other variations afomain, i.e. vectoy consists of the few measurements made
this work (some under different names) have also appeat®dthe vehicles. Then Fourier transformation, for instames
[21]- [32]. In [33], we proposedinterpolated ROMP(I- be used for sparse representation and reconstruction.
ROMP), an extension of ROMP [21] with a considerably Fig. 2 (left) shows an aerial map of a portion of the Sandia
better performance for certain applications. Both OMP aridountains in Albuquerque, NM. Fig. 2 (right) shows our
ROMP do not consider the progression of the reconstructegtonstruction when only 30% of the area is sensed. We used
signal in the primal domain and only process the signal in thdROMP of Algorithm 1 for reconstruction and exploited the
sparse domain. We showed in [33] that this can result insparse representation of the signal in the Fourier domdia. T
reconstructed signal with undesirable properties in thmgr normalized MSE of this reconstruction 75 x 1078, It can
domain. In order to address this, we proposed I-ROMP, whitle seen that the reconstructed map is almost identical to the
combines upsampling the measurement signal in the prirnahl map. The result indicates the potentials of compressiv
domain and successive interference cancellation appesackampling framework for efficient and cooperative mapping in
(see [33] for more details). Algorithm 1 shows a summary a@hobile networks.



Fig. 2. Demonstration of the reconstruction of a height mepapplicable to UAV applications) with only 30% measuretsersing compressed sensing. (left)
the original height map of a portion of Albuquerque Sandiauktains data set (courtesy of U.S. Geological Survey)htyigeconstruction using I-ROMP

technique with only 30% random samples. The normalized MSEhe reconstruction i§.5 x 10~8. For clarity, refer to the original PDF for the color
version of this image.

B. Compressive Cooperative Mapping of Obstacles We will have
In this section we show how a group of mobile nodes g(u,v) :{ 1if (u,0) islan obstacle (10)
can build a high-quality map of the obstacles with minimal 0 eise

sensing and without directly sampling a high percentage ©bnsider communication from Transmitter 1 to Receiver 1,
the area. Accurate mapping of the obstacles is considerabfy marked in Fig. 3 (left). A fundamental parameter that
important for the robust operation of a mobile network. Yet t characterizes the performance of a communication channel
high-volume of the information presented by the environmeis the received signal power, which is measured in every
makes it prohibitive to sense all the areas, making accuraéseiver [37]. There are three time-scales associated thvith
mapping considerably challenging. In this part, we show hospatio-temporal changes of the channel quality and thexefo
the nodes can cooperatively build a map of the obstaclesibageceived signal strength [38], as indicated in Fig. 4. The
on a considerably small set of observations. We furthermastowest dynamic is associated with the signal attenuatien d
propose a non-invasive mapping strategy which is enabled toythe distance-dependent power fall-off (path loss). Tthene

the theory of compressive sampling. Since the non-invasiigea faster variation referred to as shadow fading (shadgwin
case is more challenging and not addressed previously €to Which is due to the impact of the blocking objects. This means
best of authors’ knowledge), this part will mainly focus tvet that each obstacle along the transmission path leaves its ma

non-invasive case. on the received signal power by attenuating it to a certain
1) Compressive Non-Invasive Mapping of Obstacles — gegree characterized by its properties. Finally, dependm
New Possibility for Non-Invasive Mapping: the receiver antenna angle, multiple replicas of the tréiteth

In this part we show how the theory of compressivéignal can arrive at the receiver due to the reflection from
sensing enables newon-invasivemapping possibilities. By the surrounding objects, resulting in multipath fadingastér
non-invasive mapping, we refer to a mapping technique thération in the received signal power.
allows the vehicles to map inside a building, for instance, A communication from Transmitter 1 to Receiver 1 in
before entering it. In general, devising non-invasive mapi9- 3 (left), therefore, contains implicit information dlfie
ping strategies can be considerably challenging. Motivate obstacles along the communication path. Pét, t) represent
computed tomography approaches to medical imaging [3\1‘?? received signal power in the transmission along the ray
geology [35], and computer graphics [36], we show ho ine) that corresponds t8 andt, as shown in Fig. 3 (left).
our proposed compressed mapping framework can result if¥§ can then model IR(6,¢) as follows [38]
new and efficienhon-invasive sensingechnique for mapping InP(0,t) = InPy + 8 — alnd(6, t)
indoor obstacles, based on wireless channel measurements. ~—~~

. . . transmitted power in dB
Consider a case where a number of vehicles want to build P path loss(<0)

a map of the obstacles inside a building before entering it. + Zri(e, t)n;(0,t)
non-invasive mapping allows the nodes to assess the situati i

before entering the building and can be of particular instre shadow fading effect due to blocking objects0)

in several applications such as an emergency respdngais T w(8,1), (11)
part, we consider building a 2D map (our proposed approach ~——

can be extended to 3D maps as well). Figure 3 (left) shows multipath fading + noise

a sample indoor 2D map where a number of vehicles wanhere Pr is the transmitted powerj(6,t) is the distance
to map the space before entering it. lggt:, v) represent the between the transmitter and receiver across thataand 3
binary map of the obstacles at positi¢n, v) for u,v € R. are constants;; is the distance travelled across tifeobject



Transmitter 1

Fig. 3. An indoor obstacle map with the obstacles marked ifiendnd the illustration of compressed non-invasive mapjieft), Reconstruction of the map
using the proposed framework with only 4% measurementsdigidReconstruction of the map using the proposed framewtih only 11.7% measurements
(right) — only shadowing and path loss are considered.

along the ¢,t) ray andn; < 0 is the decay rate of the wireless 1
signal within thei" object. Furthermore, the summation of Eq. a;:
11 is over the objects across the ray. Then we have 28 path loss
0%
A(6,t) £ InP(6,t) —InPr — (5 — alnd(6,1)) £5 multipath fading
—_— £ED ~
path loss g o
= Y n.om0.0+  w.t). (12 Sl W Shadow fading
- / =l el
multipath fading + noise | W, R

shadow fading effect

Path loss and shadowing effects represent the signal degrad
tion due to the distance travelled and obstacles respégctive  Fig- 4. A multi-scale representation of the received sigraber
andw(0, t) represents the impact of multipath fading, sensing
noise and modeling errors. Then then pose the problem in a compressive sampling framework.
By measuring the received signal power across the rays, the
A0,t) = // f(u,v)dudv +w(0,t).  (13) vehicles can then compute samplesA(,t) and apply the
line (6,¢) Fourier Slice Theorem to effectively sample the Fouriengra

distance

where i _1 formation of the 2D map. In this case,of Eq. 1 represents
Flu,v) = { n(%’v) ! g(u’lv) - (14) the samples of the Fourier transform of the mdfju( v))
elise acquired using the Fourier Slice Theorem. By utilizing the

with g(u,v) representing the binary map of the obstaclesparse representation of the signal in the spatial domain (o
(indicated by Eq. 10) and(u,v) denoting the decay rate ofwavelet), the vehicles can solve for the map cooperatively,
the signal inside the object at positiém, v). By changing at based on minimal measurements, and more importantly in
a specificd, a projection is formed, i.e. a set of ray integralsa non-invasive manner. For instanck, can be the vector
as is shown in Fig. 3 (left). representation off (u,v). Since the changes in the map is
Fourier Slice Theorem [34]Consider the case where therdypically sparser than the map itself, a better approaclo is t
is no multipath fading and noise. The Fourier transformmaticonsider X to be the variations in the map. This approach
of A(f,t) (with respect tot) is equal to the samples of theis referred to as Total Variation (TV) [13], which we will
Fourier transform off (u, v) across anglé. use later in our simulation results. Wavelet transformmatio
The Fourier Slice Theorem allows us to measure the sampéas potentially result in even a sparser representation tha
of the Fourier transform of the map by measuring the receivéd® in some cases. By sampling in the Fourier domain and
signal strength and as a result(d,t) across rays. We canreconstructing based on the sparsity in the spatial or wavel



102 , | as well as averaging the received signal over a very small
distance. It should be noted that the compressive sensing

10+ 1 framework enables the possibility of non-invasive mapping
in ways that was not feasible beforehand. By utilizing the

10°F 1 proposed compressive mapping framework, the map can be

built with a considerably small set of measurements. This
allows for more measurements to go towards averaging over
fading and noise. Such efficient fading mitigation appr@ach
5 7] A : 10 12 22 would not have been possible without utilizing the compress
% of measurements taken sampling theory framework. In our previous work [40]-[44],
we have also developed other multipath fading mitigation
Fig. 5. Normalized Mean Square Error for the reconstructbihe map of - tachnjques in the context of mobile communications. Such
Fig. 3 (left) as a function of the % of measurements taken ¥ shadowing e
and path loss are considered. approaches can also be utilized to develop a framework where
the vehicles cooperatively learn the impact of all the otieta
domain, the resultingl’ matrix of Eq. 3 will have good (not only the ones along the communication path) and remove
isometry properties. the effect of interference (caused by multipath) from their
Fig. 3 (middle and right) shows our preliminary results ifeceived signals. It should also be noted that an estimateeof
a simplified setting (only shadow fading and path loss) fgjosition of the transmitting vehicle (or the distance betwe
non-invasive compressed mapping of the obstacles of the lgfe transmitter and receiver) as well as an approximation of
figure. For this result, no noise and multipath fading is cofhe path loss component (which can be acquired by averaging
sidered. Furthermore, path loss model as well as the distamige received signal) is also needed to implement the non-inv
between the transmitter and receiver is assumed known. Qdive approach. Once the vehicles map the obstacles from
reconstruction is based on minimizing Total Variation,ngsi outside, they can safely enter the building and improve tap m
¢1 magic toolbox [39]. It can be seen that with only 11.7%y using typical sensing devices and utilizing the proposed
measurements (right figure), the map can be built almasimpressive mapping framework of this paper.
perfectly. Even with 4% measurements (middle figure), the
reconstruction is very close to the original. Fig. 5 shows- Note on the Decentralized Nature of Compressive Mapping
the normalized MSE of the reconstruction of the obstacle It should be noted that the nature of our proposed compres-
map of Fig. 3 (left) as a function of the percentage of theive mapping framework is reconstruction based on minimal
measurements taken. It can be seen that a cooperative ketw@hsing. Therefore, it naturally lends itself to deceiteal
can build a high-quality and non-invasive map of indocsipproaches where every node can estimate the map based on
obstacles with a considerably small set of measuremerits.own observations as well as the observations of whiagheve
While this is a preliminary result, it shows the potential ohode it can receive information from. This is particularly
compressive mapping for non-invasive mapping of obstaclenportant in mobile cooperative networks since they tylhyca
1) Practical Challenges of Non-Invasive Mapping and Furack a leader and the underlying graph of the network is not
ther Extensions:In this part, we proposed a non-invasivenecessarily fully connected.
compressive and cooperative mapping framework for mapping
indoor obstacles. In practice, there can be several clyken
in implementing a non-invasive approach, which necegsitat In this paper, we considered a mobile cooperative network
further research and implementation in this area. The gbalthat is tasked with building a map of the spatial variatioha o
this part was to propose the foundations of this approadw shparameter in its environment. We developed the foundatibns
that the compressive sampling framework enables the gbssibompressive cooperative mapping, a new mapping framework
ity of non-invasive mapping, and initiate further investign for mobile cooperative networks. By using the recent resalt
in this area. the area of compressive sensing, we showed how the nodes can
The main challenge in implementing the proposed noexploit the sparse representation of the parameter ofdster
invasive mapping approach is multipath fading, i.e. midtipin order to build a map with minimal sensing, and without
replicas of the transmitted signal will be received at theirectly sensing a large percentage of the area. We showed
receiver due to the reflection from the objects inside thhe application of our proposed framework to aerial mapping
building. This will result in the information of the obstasl as well as mapping of the obstacles. We also proposed a
that are not along the direct path from the transmitter twew non-invasive mapping technique for cooperative mappin
the receiver to interfere with the desirable information. lof the obstacles. Our simulation results showed the superio
general, multipath fading can result in a non-invasive bgerformance of the proposed framework.
noisy reconstruction of the indoor obstacle map. However, i
several applications it may still be useful to have a rough
map before entering the building. The effect of multipath The authors would like to thank Soheil Darabi and Alireza
fading can also be reduced by using directional antenn@baffarkhah for helping with some of the initial simulatson

normalized mean square error
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