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User-Perspective AR Magic Lens from
Gradient-Based IBR and Semi-Dense Stereo

Domagoj Baricevi¢, Student Member, IEEE, Tobias Hollerer, Senior Member, IEEE,
Pradeep Sen, Senior Member, IEEE, and Matthew Turk, Fellow, IEEE

Abstract—We present a new approach to rendering a geometrically-correct user-perspective view for a magic lens interface, based on
leveraging the gradients in the real world scene. Our approach couples a recent gradient-domain image-based rendering method with a
novel semi-dense stereo matching algorithm. Our stereo algorithm borrows ideas from PatchMatch, and adapts them to semi-dense
stereo. This approach is implemented in a prototype device build from off-the-shelf hardware, with no active depth sensing. Despite the
limited depth data, we achieve high-quality rendering for the user-perspective magic lens.

Index Terms—Augmented reality, magic lens, user-perspective, image based rendering, gradient domain, semi-dense stereo

1 INTRODUCTION

HE metaphor of the magic lens is used to describe a

common interface paradigm in which a display region
reveals additional hidden information about the objects the
user is interacting with. This metaphor was originally intro-
duced for traditional GUIs, but it has also been adopted as
an intuitive interface for some VR applications. More promi-
nently, today it is the de facto standard interface for Aug-
mented Reality due to the wide adoption of hand-held
computing devices such as smartphones and tablets.
Indeed, it is these devices that are largely responsible for
bringing AR into the mainstream consumer market.

However, while the concept of the magic lens is a natu-
ral fit for hand-held AR, the typical approach falls short of
the full vision of the metaphor. At issue is the perspective
of the augmented scene. While concept imagery for AR
often presents the magic lens as an almost seamless trans-
parent display, in reality nearly all current magic lens
implementations rely on video-see-through methods where
the device displays and augments video captured by the
camera on the back of the device. As a result the AR scene
is presented from the perspective of the device, instead of
that of the user.

This device-perspective approach does not provide a
fully intuitive and seamless experience for the user. There is
a clear break between what is in the real world and what
is mediated by the device. Furthermore, the sometimes
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dramatic change in perspective can have negative effects on
usability and spatial understanding. As an example, con-
sider an AR application for visualizing interior design and
furniture arrangement (see Fig. 1); this is a popular use case
for AR. The entire purpose of AR in this type of application
is to give the user a better sense of what the space will look
like with the new décor or furniture. However, device-
perspective AR will distort the perspective and scale of the
room (Fig. 1b) so the user will not get a true feel for the
future remodeled room. On the other hand, a true magic
lens would show the augmented scene at the same human
scale as the real world. Ideally there would be no perspec-
tive difference between the scene inside and outside the
magic lens (Fig. 1c). This type of interface is referred to as a
user-perspective magic lens.

Scene reconstruction has been at the heart of the problem
of creating a user-perspective magic lens. Since the scene is
mediated by an opaque display, it has to be re-rendered
from a scene model. Reconstruction is still a challenging
research problem. While active depth sensors provide good
results and have recently become commonplace, they have
constraints such as range limits and inability to work out-
doors in strong sunlight. Another approach to scene recon-
struction is stereo vision, where the depth of the scene is
reconstructed by matching two views of a stereo camera
pair. The advantage of stereo reconstruction is that it can
work with standard cameras, it does not need active illumi-
nation, and there are no major restrictions with regard to
outdoor scenes.

Some stereo reconstruction algorithms can provide quite
accurate depth maps, but this comes at a performance pen-
alty. Fully accurate depth maps cannot yet be achieved at
frame rate. Real-time stereo can produce depth maps that
are sufficient for many applications, but they are not very
good for the purpose of re-rendering a real world scene.
Typically, real-time stereo approaches achieve speed by
using a small depth range (limiting the number of different
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Fig. 1. An example Augmented Reality application showcasing the difference between user-perspective and device-perspective magic lens interfa-
ces. (a) Real world environment only. (b) Augmented Reality scene with the conventional device-perspective magic lens. (c) AR scene rendered with

our user-perspective magic lens prototype.

depth values), resulting in a scene model composed of dis-
tinct front facing planes. Re-rendering this model from a
new point-of-view can result in a scene composed of obvi-
ous distinct layers.

In this paper we extend our previous work [1] and pres-
ent a new approach to solving the problem of creating a
user-perspective magic lens. We observe that accurate
dense scene reconstruction is a requirement imposed by the
traditional rendering methods, and not an inherent require-
ment of creating a user-perspective view. By taking a differ-
ent approach to rendering, we lower the requirements for
reconstruction while also achieving good results. We do
this by using image-based rendering (IBR) [2]. IBR can pro-
duce high quality results with only limited scene models by
leveraging existing imagery of the scene. This fits very well
with the nature of our problem.

The key to our approach is the adoption of a recent gradi-
ent domain IBR algorithm [3] that is paired with a novel
semi-dense stereo matching algorithm we developed. The
IBR algorithm we use renders from the gradients in the
image instead of the pixel color values. It achieves good
results as long as the depth estimates of the strongest gra-
dients are good, even if the depths of the weak gradients
are incorrect. This fits well with the general behavior of ste-
reo reconstruction, but we exploit it further by using a semi-
dense stereo algorithm to compute depths only at the stron-
gest gradients.

With this approach we have created a geometrically-cor-
rect user-perspective magic lens with better performance
and visual quality than previous systems. Furthermore, we
use only passive sensing, and support fully dynamic scenes
with no prior modeling. Due to the use of face tracking, we
do not require instrumenting the user. Although our proto-
type system is tethered to a workstation and powered by a
GPU, we are confident that given the rate of advancement
of mobile hardware this will be possible on a self-contained
mobile platform in just a few years.

This paper extends our previous work [1] in several
ways. The stereo pipeline has been substantially reworked,
and the algorithm modified to make use of adaptive sup-
port weights. In order to improve overall rendering quality,
we have added explicit support for temporal coherency. We
also provide a more extensive evaluation of our results. We
include a comparison of our stereo results to those of other
algorithms, and we compare our user-perspective rendering
to ground truth references.

2 RELATED WORK

The “magic lens” metaphor was first introduced by Bier
et al. [4] as a user interface paradigm developed for tradi-
tional desktop GUI environments. The basic idea is that of a
movable window that alters the display of the on-screen
objects underneath it, acting like an information filter that
reveals hidden objects or information.

This concept of an information filtering widget was
quickly adopted outside traditional desktops. Viega et al.
developed 3D versions of the magic lens interface, both as
flat windows and as volumetric regions [5]. The Virtual Tri-
corder [6] was a interaction device for an immersive VR
environment that featured a mode in which a hand-held
tool revealed altered views of the 3D world. In [7], Rekimoto
and Nagao introduced hand-held Augmented Reality with
the NaviCam system. The NaviCam was a video-see-
through AR system consisting of a palmtop TV with a
mounted camera and tethered to a workstation. This hand-
held video-see-through approach soon became the norm for
Augmented Reality interfaces [8]. Optical see-through AR
approaches (e.g., [9], [10], [11]) can implement perspectively
correct AR magic lenses without the need for scene recon-
struction but have to cope with convergence mismatches of
augmentations and real objects behind the display unless
they use stereoscopic displays.

There have been efforts in the AR community to design
and develop video see-through head-worn displays that
maintain a seamless parallax-free view of the augmented
world [12], [13]. This problem is slightly simpler than cor-
rect perspective representation of the augmented world on
hand-held magic lenses since the relationship between the
imaging device and the user’s eyes is relatively fixed.

With the proliferation of smartphones and tablets AR has
reached the mainstream consumer market; this has made
hand-held video-see-through the most common type of AR
and it is what is often assumed by the term “magic lens”
when used in the context of AR [14], [15]. Since the display
of the augmented environment from the perspective of the
device’s camera introduces a potentially unwanted shift of
perspective, there is renewed interest in solutions for seam-
less user-perspective representation of the augmented
world on such self-contained mobile AR platforms. User
studies conducted using simulated [16] or spatially con-
strained [17], [18] systems have shown that user-perspective
views have benefits over device-perspective views. Several
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systems have attempted to create a user-perspective view
by warping the video of a video-see-through magic lens
[19], [20], [21]; however these approaches can only approxi-
mate the true user-perspective view as they are unable to
change the point of view and therefore do not achieve the
geometrically correct view frustum.

The most directly relevant work to this paper is the geo-
metrically-correct user-perspective hand-held augmented
reality magic lens system in [16], which used a Kinect depth
sensor and a Wiimote to track the user’s head position. The
approach relies on the fairly high quality depth information
provided by the Kinect to obtain an accurate 3D model of the
real world; the final scene is then rendered using conventional
rendering methods (raycasting and scanline rendering).
While the approach is fairly straightforward, it has certain
constraints. First, the system does not gracefully handle
dynamic scenes as the scene is rendered in two layers with
different real time characteristics. Second, active depth sen-
sors like the Kinect cannot operate well under strong sunlight
(or any other strong light source that emits at their frequency).

Stereo reconstruction is one of the most well researched
areas of computer vision. A full overview is well beyond
the scope of this paper. For an excellent review of the field
we refer the reader to [22]. In recent years, a number of algo-
rithms have been proposed that take advantage of GPU
hardware to achieve real-time performance [23], [24], [25],
[26]. While these algorithms can produce fairly accurate
dense disparity maps, the real-time speeds are achieved for
relatively low resolutions and narrow disparity ranges. Our
stereo algorithm is inspired by PatchMatch [27], an iterative
probabilistic algorithm for finding dense image correspond-
ences. Bleyer et al. [28] proposed a stereo matching algo-
rithm based on PatchMatch primarily designed to support
matching slanted surfaces, although it also supports front
facing planes. In [29] this was adapted for real-time 3D
shape reconstruction by using a faster matching cost and
relying on a volumentric fusion process to compensate for
the noisy per-frame depth maps.

Image-based rendering techniques create novel views of a
scene from existing images [2]. These novel views can be ren-
dered either purely from input image data [30], or by using
some form of geometry [31], [32]. Our approach is based on
the gradient-domain image-based rendering work by Kopf
et al. [3]. Their method creates novel views by computing
dense depth maps for the input images, reprojecting the gra-
dients of the images to the novel view position, and finally
using Poisson integration [33] to generate the novel view.

3 OVERVIEW

As mentioned above, our approach is based on the gradient
domain image-based rendering algorithm by Kopf et al. [3].
For a detailed description of the algorithm we refer the
reader to the original paper; here we will only give a brief
high level overview in order to introduce the idea. We also
give a more detailed explanation of how we adapted the
method for our system in Section 5 below.

The main idea behind gradient domain methods is that an
image can be reconstructed from its gradients by performing
an integration. Therefore, if one needed to generate an image
corresponding to a new viewpoint of a scene (as in a user-
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perspective magic lens), one could do so by integrating the
gradient images for those viewpoints. These gradient images
can be obtained by reprojecting the gradients computed for
an existing view of a scene for which there is scene geometry
information. Since strong gradients are generally sparse in a
scene, and since stereo matching algorithms work best at
strong gradients, this approach provides a way to create a
high quality image even without a fully dense and accurate
depth map as long as the strongest gradients are correctly
reprojected. While there will be errors in the reprojected gra-
dient image, they will be mostly confined to weak gradients
that do not have a large effect on the integration of the final
solution. In contrast, a standard reprojection method would
result in a noisy solution with much more noticeable artifacts.
Using a rendering method that only requires good depth
information at the gradients gives us the opportunity to opti-
mize our stereo reconstruction. Instead of the standard
approach of computing a dense depth map across the input
image pair, we can compute semi-dense depth maps that only
have information at the parts of the image that have strong
gradients. The depth of the rest of the image can then be
approximated by filling in depth values extrapolated from the
computed parts of the depth map. As long as the depth infor-
mation for the strongest gradients is correct, the final rendered
solution for the novel view will not have significant artifacts.
In order to achieve this goal we have developed a novel
semi-dense stereo matching algorithm inspired by Patch-
Match [27]. The algorithm is simple and fast, but it com-
putes accurate results over the areas of interest. A detailed
description of the algorithm is given in Section 4 below.

3.1 Creating a Novel View

The basic steps to generating a novel view with our
approach are shown in Fig. 2. The input to the pipeline is a
stereo pair (Fig. 2a shows left image) and a desired position
for the novel view.

The first step (Fig. 2b) is to filter the input image pair in
order to produce a mask that marks the pixels that are at the
strong gradients. We define the gradients as forward differ-
ence between neighbors. The overall strength of the gradi-
ent is computed by taking the maximum between the
horizontal and vertical strengths, which are defined as the
average of the per channel absolute differences.

We then apply a threshold to this gradient strength
image to create a gradient mask. We use a global threshold
for the entire image. The threshold can be either a set fixed
value or the current average gradient magnitude. In prac-
tice, we find a fixed threshold between 5 and 10 to work
well. We first clean the mask by removing pixels that have
no neighbors above the threshold and then perform a dila-
tion step (Fig. 2¢).

Next, our stereo matching algorithm is run over the
masked pixels. This results in a semi-dense disparity map
(Fig. 2d) with good depth estimates for the masked areas
with strong gradients, and no data for the rest of the image.
We then perform a simple extrapolation method to fill-in
the disparity map across the image (Fig. 2e). Then the 3D
position of each pixel is computed from the disparity map.
The renderer takes the 3D position information, as well as
the desired novel view’s camera parameters (position, view
frustum, etc.) and generates the final image (Fig. 2f).
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Fig. 2. The steps to rendering a novel view: (a) input image, (b) gradient
magnitudes of input, (c) mask of strongest gradients, (d) disparity
map for masked area, (e) filled-in disparity map, (f) final solution.
(Note: (a)-(e) are for left camera, (f) is for final pose)

4 STEREO RECONSTRUCTION

One of the most important considerations in the develop-
ment of our algorithm was the need to run as fast as possi-
ble. This led to a parallel GPU-based approach, which in
turn set additional constraints. One of the principal tenets
of GPU computing is to avoid code path divergence. That
is, each thread in a concurrently running group of threads
should execute the same steps in the same order at the same
time, just using different data. This demand led to several
design decisions regarding our algorithm.

41 Mask Indexing

The mask computed from the gradient magnitudes deter-
mines the pixels for which the stereo algorithm will com-
pute disparities. However, since the algorithm is
implemented on the GPU using CUDA, using this mask
directly would be inefficient. A naive approach would be to
run a thread per pixel and simply exit the thread if the pixel
is not in the mask. However, this is very inefficient, as these
threads will not truly exit. The SIMT (Single Instruction
Multiple Threads) nature of the GPU hardware requires all
the threads that are concurrently running on a core to follow
the same code path. If even one thread in that group is in the
mask and needs to run the algorithm, then all the threads in
the group might as well run since they would introduce
(almost) no overhead. In order to get any performance gain,
all the pixels in the image region covered by the group
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would have to be outside the mask. This is rare in natural
images, as there are almost always a few strong gradient
pixels in any part of the image. This means that the naive
approach to the gradient-guided semi-dense stereo algo-
rithm degenerates to a dense algorithm.

In order to prevent this waste of computational power we
re-group the gradient pixels so that they cluster together, by
performing per-line stream compaction. We process the mask
image to create an array of pixel indices. Each row of the
mask is traversed in parallel, and when a pixel that is inside
the mask is encountered, its index is saved in the output array
at the same row and in the next available column. Pixels out-
side the mask are simply ignored. As a result the indices of
the masked pixels are densely stored in the output array. The
count of masked pixels in a row is saved in the first column of
the output array. This process creates a mask whose blocks
are mostly completely full or completely empty, with only a
few that are partially full. This mask is much more suitable
for parallel processing on GPU architectures.

This compact representation of the masked areas also
serves a second purpose. Since it indexes the strong gra-
dients in the image, it is used as a look-up table for potential
matches during the Random Search step (see Section 4.3.2).

4.2 Matching Cost

A key aspect of stereo reconstruction algorithms is the
matching cost. The matching cost is a measure of the error
in matching a pixel from the left image to a pixel in the right
image. Stereo algorithms work by minimizing this error in
order to produce an accurate disparity map. Here we will
give an overview of the matching cost we adopted. These
details will be particularly relevant to the discussion of the
Spatial Propagation step in Section 4.3.3.

Local stereo algorithms (such as ours) typically compute
the matching cost for a pixel by considering the areas
around the pixel and its match (the support window). This
consists of two parts: per-pixel dissimilarity, and cost aggre-
gation. The first computes a dissimilarity of the individual
pixels in the support window, the second aggregates these
into a final matching cost for the pixel of interest.

Given an image pair Ij.5; and 1,4, consider a pixel p in
the left image ;.5 for which we want to compute the match-
ing cost M(p,d) given a disparity d. We define a support
window W), around this pixel, and each pixel ¢ € W), has a
per-pixel dissimilarity D(g,d). This dissimilarity is com-
puted between ¢ and its corresponding pixel in Iy
denoted as ¢’ where ¢ = g — d. The simplest form of this is
the absolute color difference between the color intensities of
g and ¢/, but a common addition is to consider the difference
in the gradients as well.

With the dissimilarities D(q, d) computed for every g € W,
the next step is to aggregate them into a matching cost M (p, d)
for pixel p. A simple aggregation strategy is to compute a sum
of the per-pixel dissimilarities:

M(p,d)= ) D(q.d). M

q€W,

If D is computed as an absolute color difference this
becomes the common SAD (sum of absolute differences, also
known as the L' norm) matching cost metric. This
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aggregation strategy is simple and computationally efficient,
but leads to edge fattening because each pixel in the support
window is given equal consideration. In [34] Yoon and
Kweom introduced a simple strategy to overcome the edge
fattening problem. The idea is to assign individual weights
to the per-pixel dissimilarities during the aggregation:

M(p,d) = > W(p,q)- D(g,d). 2

€W,

This adaptive support weight aggregation strategy has led
to local stereo matching approaching the quality of much
slower global algorithms, with researchers proposing a
number of competing methods to computing the support
weights [35]. Among these, the best performing ones are the
original method proposed by Yoon and Kweaom, and the
cost volume filtering by Hosni et al. [36]. Although the
method in [36] is faster, it is not well suited to our stereo
matching approach. It assumes dense stereo, and computes
the entire cost (per-pixel dissimilarity) volume for a limited
disparity range. By contrast, our semi-dense approach is
designed to avoid computation for known invalid dispar-
ities, and so enable a wider disparity range. Therefore, we
adopt a modified version of the support weight proposed in
[34] as it is better suited to our approach.

Yoon and Kweaom proposed a weight W(p, ¢) based on
the color and spatial distance between p and g¢:

Wp,q) :exp<_<|1(p);I(C1)\ N HPJ;CIH)) 3)

Their matching cost aggregation used two such weights
per pixel ¢, one for the left side and one for the right side of
the matching pair (W(p,q) and W(p',q')). However, Hosni
et al. [35] show that the overhead of this symmetric
approach can be avoided, and that a single weight can be
used. Furthermore, [35] also shows that omitting the spatial
component does not have a significant effect on the results.
Hence, we adopt a single weight based only on the color
distance, and our final matching cost is therefore:

M(p,d)= e \ 7 /- Dlg.d). @

qew,

We compute this cost over a 7 x 7 patch centered around
the pixel of interest. We set y, to 1/7 of the maximum color
distance. The matching cost is normalized by the sum of the
weights.

4.3 Stereo Matching
We implemented a simple, fast, and accurate stereo match-
ing algorithm inspired by PatchMatch. Our algorithm takes
the basic ideas of random search and propagation from
PatchMatch and applies it to the domain of semi-dense ste-
reo matching at the gradients and in parallel. Although
inspired by PatchMatch, the specific details are somewhat
different due to the nature of the problem.

The algorithm consists of three main intra-frame steps:
Random Search, Spatial Propagation, and Local Sweep.
There is also an inter-frame step: Temporal Propagation.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.23, NO.7, JULY 2017

The Random Search and Spatial Propagation steps are iter-
ated. Each step (and each iteration in a step) is fully parallel
at the individual pixel level. Only the steps themselves and
their iterations are serialized.

4.3.1 Data and Initialization

The algorithm takes as its input the stereo image pair and
the arrays with the mask indices. It outputs the disparity
values and matching costs for each camera of the stereo
pair. Before the algorithm starts, the disparities are initial-
ized to zero, while the costs are initialized to the maximum
possible value. In our current implementation we use
unsigned 8-bit values to store the disparities, with a dispar-
ity range of [0, 255]. Although the raw matching costs val-
ues are floating point, they are rescaled and stored as
unsigned 16-bit integers. This gives a maximum range of
[0, 2'-1] which is more than sufficient for our needs. We
reserve the top of that range so that the maximum possible
value for a matching cost is always below the upper limit of
the range. This then enables us to initialize the cost to Oxffff,
which simplifies the search for the minimum cost disparity
since there is no need to treat the first candidate disparity
differently from the rest.

4.3.2 Random Search

The random search step consists of generating a random
disparity value, computing the matching cost given that dis-
parity, and keeping it if the cost is lower than the current
cost. This can then be repeated a number of times before
continuing to the propagation step.

Regular PatchMatch [27] initializes fully randomly from
all possible correspondences, and the random search is
done by randomly searching from all possible correspond-
ences within a shrinking window centered on the current
solution. Our approach is different. First, the initialization
and random search is a single unified step. Second, the ran-
dom disparity is not generated from the disparity range but
from the valid indices for that epipolar line. We are match-
ing only the strong gradients that are within our masks.

In general, if a part of the scene is labeled as a strong gra-
dient in the left image it will also be labeled as a strong gra-
dient in the right image (and vice-versa). This is not the case
for parts that are occluded in one image of the pair, but
those do not have a correct match anyway. If follows that a
pixel within the gradient mask of one image will have its
corresponding pixel within the gradient mask of the other
image. Since the gradients are generally sparse, this signifi-
cantly reduces the possible valid disparities. This reduction
in search space means that each random guess has a higher
probability of being correct, which improves convergence.

Therefore, when generating a random disparity we sam-
ple from the space of valid indices, not from the full dispar-
ity range. As mentioned above, the first column of each row
in the mask index stores the number of valid pixels. This
value is used as the range of a uniform random distribution.
We generate a random integer from this distribution, this
number gives us the column in the mask index row to sam-
ple. The index stored in that column gives us our random
match candidate. We then compute the matching cost for
this candidate correspondence, if the cost is lower than the
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current cost we save the disparity and the cost as the current
best match. This process can be iterated, in our current
implementation we run two iterations.

4.3.3 Spatial Propagation

The random search step will generate a very noisy disparity
map where most of the disparities are wrong, but some are
correct. The propagation step serves to propagate the good
matches across the image. Here our algorithm also differs
significantly from PatchMatch.

Taking the standard PatchMatch approach to propagation
would present several problems for our application scenario.
Firstly, the computation cost is too high. In the serial version
the image is processed linearly from one corner to the next.
At each pixel the disparities of the preceding horizontal and
vertical neighbors are used as possible new disparities and
new matching cost are computed. If the cost of a candidate
disparity is lower than the current one, the new disparity is
adopted. Computing the matching cost is expensive in gen-
eral, and doing it serially is prohibitive. The performance
would be far too slow for real-time use. Parallel versions of
PatchMatch have been proposed, but they are still not well
suited to our application. Although the computations are
done in parallel, much more are needed per pixel. Even the
parallel versions require too many expensive matching cost
computations per frame.

Secondly, PatchMatch is meant for computing dense cor-
respondences. We only compute disparities within the
masked areas. This means there are large gaps in the image.
Although it is possible in principle to propagate by skipping
those gaps, this would violate the assumption of propagat-
ing between neighbors and it is unlikely that that kind of
propagation would be useful. In the case of parallel imple-
mentations of PatchMatch, the propagation is limited in
radius so it would not be able to skip gaps anyway.

We take a different approach to the propagation step.
Instead of propagating serially through the entire image, we
have each pixel in parallel check its neighborhood. How-
ever, we do not compute another matching cost for each of
the neighbor’s disparities as that would be prohibitively
expensive (fora 7 x 7 patch it would require up to 48 match-
ing cost computations). We observe that we are not really
interested in the matching costs for all the possible candi-
date disparities. Instead, we simply want to find the best
disparity among those proposed by the pixel’s neighbors. It
would be ideal if this disparity could be found without a lot
of expensive computation.

Recall that the matching cost is aggregated over a sup-
port window, and that it is computed from two parts: the
per-pixel dissimilarities, and the per-pixel support weights.
For a pixel p and one of its neighbors g € W), (with a current
disparity d = disp(q)) there is an overlap between the sup-
port window W, of p and the support window W, of ¢. The
per-pixel dissimilarities in this overlapped region will be
the same for both support windows, therefore their contri-
butions to the matching costs of p and ¢ will be the same.
This leads to the question of whether it is possible to com-
pute an approximation of the matching cost M(p,d) from
the cost M(q, d). One issue with this is that the summation
in the matching cost computation is not a reversible opera-
tion, and so it would not be possible to entirely remove the
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influence from the pixels outside the overlapping region.
However, the bigger influence on the matching cost are the
support weights which are computed with respect to the
center pixel of the support window. Although the per-pixel
dissimilarities are shared between overlapping support
windows, the support weights in general are not.

While this makes computing an actual approximation of
M(p,d) from any general M (g, d) infeasible, it leads to a possi-
ble criterion for choosing among the candidate disparities.
The support weights in the matching cost are based on the
color difference between the center of the support window
and the pixels in the window. Therefore, the pixels ¢ in the
neighborhood of p whose matching costs M(q,d) are most
likely to be similar to M (p, d) will be those whose color I(g) is
similar to I(p). Conversely, the neighborhood pixels whose
colors are dissimilar to /(p) will have matching costs that are
not applicable to p. The criterion for choosing a candidate dis-
parity should therefore bias toward pixels of similar color,
and away from dissimilar ones. We accomplish this by apply-
ing an additional weight to the neighbors” matching costs,
lowering the cost of similar pixels and penalizing dissimilar
ones. This weighted matching cost M’(g, d) is given as:

() ~1(q)|
M'(q7 d) = (1 —e e ) - M(q,d). 5)

Note that the disparity d above is different for each
q € W,, and that M’(g,d) is in no way an approximation of
M(p,d). One potential addition to this would be a spatial
weight to account for the greater support window overlap
between nearby pixels. However, given our relatively small
window size, this would lead to either biasing too much
toward the immediate neighbors, or not having much effect
at all except for the corners. Therefore, we omitted this from
our current implementation.

From here, we choose the neighbor with the lowest
M’ (q, d), and take its disparity d = disp(q) as a candidate solu-
tion for p. We only now compute a new matching cost M (p, d).
If this new cost is lower than our old cost we accept the new
disparity, otherwise we keep the old one. Of course, this selec-
tion criteria does not guarantee that the chosen disparity will
truly be the best one among the neighbors. In practice how-
ever, we find that this method moves the disparity toward the
correct solution, while only needing a single matching cost
computation in an iteration of propagation (instead of 48). We
found that spatial propagation tends to nearly converge after
about four iterations.

4.3.4 Local Sweep

While spatial propagation quickly moves toward the correct
disparity, it does not always converge at the correct solu-
tion. This can be simply because the exact disparity for a
particular pixel does not appear as a candidate in the pixel’s
neighborhood, or because our approximate criteria does not
select it. Also, sometimes propagation does not converge in
the 4 iterations used.

However, often the solution provided by spatial propa-
gation is near the correct one. We therefore perform a refine-
ment by conducting a local sweep. Four more disparity
levels are considered in the neighborhood of the current
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solution d. First, a matching cost is computed for disparities
d—1 and d+ 1. Then, these two costs are compared and a
sweep direction is chosen in the direction of the disparity
with the lower cost. Finally, two more disparities are con-
sidered in that direction.

In other words, if M(p,d —1) < M(p,d+ 1) the dispar-
ities d — 2 and d — 3 are considered, otherwise disparities
d+2 and d+ 3 are tried. During this sweep, if the new
matching cost is lower than the previous one, the new dis-
parity and cost are accepted as the current disparity and
cost.

At the end of the local sweep we have an initial raw semi-
dense disparity map.

4.4 Post Processing

Most stereo algorithms have a post-processing step that fol-
lows the initial computation of the disparity map. The pur-
pose of this step is to further refine the disparities. We take a
fairly simple approach to post processing. The goal is to deter-
mine which of the computed disparities are likely correct.
Then the rest of the image is filled in with extrapolated values.

The simplest way to determine good disparities is to run
a consistency check. This involves comparing the left and
right disparity map and only keeping the values for those
pixels whose target points back at them, i.e., only keep cor-
respondence pairs. This eliminates the parts of the image
that are occluded in the other view, and therefore cannot
have a good match. Although this works fine for most algo-
rithms, in our case it could in principle cause errors because
our search is probabilistic and it is technically possible for
only one pixel of the pair to point to its match, while the
other one points elsewhere. In practice, this happens
extremely rarely and even then can be corrected by later
refinement. Therefore, we simply run a consistency check
and label pixels that are not part of a correspondence pair
as invalid.

Since the invalid pixels are in the masked area, they are
important so we do not want to naively fill them in the
same way as the unmasked pixels. Instead we attempt to
grow the valid disparity values into the invalid ones. This is
a parallel process where each invalid pixel checks it direct
neighbors and adopts the lowest valid disparity from the
neighbors, this invalid pixel is now marked valid but its
cost is set to maximum. Each iteration of this further grows
the disparity, we settled on five iterations for our system.
The operation contributes somewhat to the disparity edge
fattening, but it improves the disparity map overall.

Finally, after the previous steps we can fill in the remain-
der of the disparity map. We assign new values to any pix-
els that are still left as invalid, or were not in the gradient
mask. To extrapolate the disparity map we use a simple lin-
ear search across the epipolar lines. For each line (in paral-
lel) we search first left and then right in order to record the
closest valid pixels to the left and right for each pixel. We
also note whether there is a masked but invalid pixel along
the path from a pixel to its closest valid pixel. If there is not,
we compute an interpolated disparity from the closest valid
pixels. If there is a masked but invalid pixel in the path, we
simply adopt the lower disparity value. This is perhaps an
overly simplistic approach, and it can result in streaks in the
disparity map. However, these are mainly over low
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gradient strength areas and therefore do not cause many
artifacts in the final re-rendered image.

4.5 Temporal Propagation

In addition to the previously described intra-frame steps
that compute the disparity map within a frame, we also use
another step in order to propagate disparity information
between successive frames. This main purpose of this step
is to help with temporal coherency.

An important issue with the stereo algorithm as
described above is that its probabilistic nature can cause
some temporal incoherency. The base algorithm can cause
the disparity map to experience changes between frames
even if there was no change in the input stereo pair. This
then results in flickering artifacts in the final rendering.

This is particularly noticeable if there are pixels for which
the computed disparity is incorrect. While the rendering arti-
facts caused by disparity errors may not be very objectionable
for a static image, they can become quite distracting if they
flicker between frames as human vision is sensitive to motion.

In order to combat this, we propagate the disparity map
from one frame to the next. This simultaneously achieves
two objectives. First, it ensures that the disparity map is
more stable between frames, reducing overall flicker. Sec-
ond, it keeps already computed good solutions from being
discarded, and gives more chances for a pixel to find its cor-
rect disparity. Thus, a pixel is not only considering dispar-
ities propagated from its neighbors, but also disparities that
have been propagated across time from the pixel’s previous
incarnation.

In order to achieve this, we use feature based tracking to
compute a pose change between successive frames. For effi-
ciency reasons, we only track the left frame but propagate
both sides based on the calibrated relative pose of the left
and right camera. We use this computed pose to reproject a
point cloud created from the previous frames disparity into
the current frame, and render a new propagated disparity
map computed for the new pose. We then compute the
matching costs for this propagated disparity map given the
new input stereo pair. This disparity map is then used as
the initial solution for the base stereo algorithm described
above, starting with the random search step.

This process greatly improves the quality of the disparity
map by helping it to converge to a good solution. Even in
the case of pixels that do not resolve to a good disparity,
temporal propagation provides inter-frame stability. This
then eliminates the flickering of rendering artifacts caused
by disparity errors, making them much less noticable.

4.6 Performance and Accuracy
As described above, our algorithm performs very few
matching cost computations: two for random search, four
for spatial propagation, four for local sweep, and one for
temporal propagation. This means that in total we only per-
form eleven matching cost computations per frame per
masked pixel. Despite this we get accurate disparity results.
Table 1 gives the timings and error rates for the Teddy and
Cones pairs from the Middlebury dataset [37]. Figures 3
and 4 show the disparity maps and disparity errors.
Because of the probabilistic nature of the algorithm we
have an effective disparity range of 256, even though we
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TABLE 1
Per-Frame Timings and Error Rates
for the Teddy and Cones Datasets

Teddy Cones

Timings
Computing mask 1.99 ms 1.92 ms
Stereo matching 13.08 ms 17.04 ms
Post-processing 3.75ms 3.20 ms
Error rate 13.95% 5.9%

Resolution is 450x375. Error rate is percentage of pixels within unoccluded
masked areas with a disparity error greater than 1 pixel.

only compute the cost for 11 disparity levels. To achieve the
equivalent precision a more traditional plane sweep algo-
rithm would have to check all disparity levels and perform
an order of magnitude more matching cost computations
(256).

Table 2 shows a comparison of run times and error rates
between our method and other stereo algorithms (both
GPU and CPU-based). We compare to OpenCV’s [38]
implementations of CSBP (Constant Space Belief Propaga-
tion) and SGBM (Semi-Global Block Matching), the imple-
mentation of ELAS (Efficient Large-scale Stereo Matching)
[39] publicly available from the authors, and published
results for PatchMatch Stereo. Note that the error rates
shown are for the semi-dense strong-gradient unoccluded
areas of interest, although these algorithms can produce
dense disparity maps. All methods except PatchMatch Ste-
reo were run on the same system, and (where applicable)
use the same number of disparity levels (256) and the same
support window size (7 x 7). Other algorithm parameters
are at their default values.

The results in Table 2 show that while our method does
not achieve the accuracy of offline methods, we are competi-
tive with other (near) real-time methods. Our error rates are

Fig. 3. Stereo matching for Teddy dataset. (a) Left input image. (b) Raw
disparity. (c) Final (filled-in) disparity. (d) Disparity error: white—correct,
black—error greater than 1 pixel, gray—not in mask or excluded
because of occlusion.

Fig. 4. Stereo matching for Cones dataset. (a) Left input image. (b) Raw
disparity. (c) Final (filled-in) disparity. (d) Disparity error: white—correct,
black—error greater than 1 pixel, gray—not in mask or excluded
because of occlusion.

slightly lower than the other fast algorithms, while our run-
times are much better. We are not only faster than state-of-
the art CPU methods (SGBM and ELAS), but also faster
than the GPU-based CSBP from OpenCV.

4.6.1 Prototype

In our prototype system the stereo camera has a native reso-
lution of 1024 x 768, but in order to improve performance
we reduce this to 512 x 384 for the stereo matching algo-
rithm. We do, however, use a color image for the matching,
instead of the common grayscale reduction. Although the
stereo matching is at half resolution, this is upscaled back to
full resolution before computing the gradient positions and
calling the IBR algorithm.

5 RENDERING

As mentioned above, the basicidea of the method is to create a
novel view by integrating gradient images that are formed by
reprojecting the gradients of the original view. Integrating
a solution just from the gradients is a computationally
expensive operation, even with a GPU-based parallel

TABLE 2
Comparison with other Algorithms
on the Teddy and Cones Datasets

Teddy Cones
time error time error
Our method 18.82ms 13.95% 22.16ms  5.90%
OpenCV CSBP 61.83ms 14.62% 6196 ms  9.03%
OpenCV SGBM  162.19ms  16.19% 163.75ms  7.99%
ELAS 58.98 ms 22.02% 61.13ms 12.97%
PM Stereo (~1min) (3.78%) (~1min) (2.80%)

Resolution is 450x375. Error rate is percentage of pixels within unoccluded
masked areas with a disparity error greater than 1 pixel.
PM Stereo values based on published results
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implementation. It can take many iterations for the integration
to converge to a solution, partly due to the unknown constant
of integration. The method by Kopf et al. [3] uses an approxi-
mate solution (the data term) as an initial solution in order to
significantly reduce the number of iterations.

The key to the approximation step is to consider that when
a gradient changes position from the original view to the new
view it should alter the color of the regions that it passes over.
To clarify, consider a quadrilateral whose two opposing edges
are the gradient’s original position and the new position. This
quad can be drawn over the original view, and the gradient
value can be applied to the pixels that the quad covers. This
may add or subtract to those pixels” value. If this process is
done for all gradients, the resulting image will be very similar
to what the correct image should be from the new view. For a
more in-depth description, please see [3].

5.1 Performance Considerations

While developing our prototype system we aimed to strike
a balance between real-time performance and good image
quality. The various bottlenecks were identified through
profiling, and adjustments were made to reduce the run-
time while minimizing any loss of quality. Here we give
some details about those considerations.

The IBR algorithm can be divided into three distinct steps
that have different performance behaviors.

The first step is the rendering of the data term, which is
surprisingly the most expensive. The performance hit here
comes from the number and size of the quads. Each quad
corresponds to a gradient, so there are twice as many quads
as there are pixels (one horizontal and one vertical). Further-
more, the nature of the shifting gradients means that each
quad will typically generate a large number of fragments.
The cost of this step changes considerably based on the
novel view position.

The second (also fastest) step is rendering the gradients
images, i.e., simply reprojecting the lines of the gradients at
their new positions.

Finally, the third step is the integration of the final solu-
tion from the gradients, initializing with and biasing toward
the data term. This step is fairly expensive, but its runtime is
mostly constant, depending mainly on the number of
iterations.

The original work by Kopf et al. used a super-resolution
framebulffer for rendering all the steps in the algorithm, i.e.,
the framebuffer size is several times larger than the input
resolution. They also bias the final solution toward the
approximate solution. We take a somewhat different
approach. We observe that we can treat the approximate
solution as simply the low frequency component of the final
solution, while the reprojected gradients can provide the
high frequency detail. We then use the approximate solu-
tion just as a initial solution, and do not bias towards it dur-
ing the integration. This then allows us to use a much lower
resolution image for our data term, since it only needs to
capture low frequency information. By using a lower resolu-
tion data term we significantly improve performance. We
set the data term resolution to a quarter of the regular fra-
mebuffer resolution. We also reduce the number of integra-
tion steps to five, and use a framebuffer size smaller than
the original image. Although our framebuffer size (640 X

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,

VOL.23, NO.7, JULY 2017

H -

Fig. 5. Our user-perspective magic lens prototype hardware.

480) is smaller than the raw input resolution, it does not
actually lower the quality of the final results. This is because
the field of view of the user’s frustum is usually narrower
than that of the camera. As a result, the input image is effec-
tively scaled up when shown on the magic lens and there-
fore still oversampled by the framebuffer.

The final augmented image is rendered at 800 x 600,
which is the resolution of our display. The various resolu-
tions in our pipeline were empirically determined to give a
good balance of performance and quality for our system.

6 PROTOTYPE

Our system consists of a hand-held magic lens rig tethered
to a workstation. The rig, shown in Fig. 5, was built using
common off-the-shelf parts. The central component of the
magic lens is a Lilliput 10.1” LCD display. We mounted a
PointGrey Bumblebee2 stereo camera, used for the scene
reconstruction, to the back of the display. A PointGrey Flea3
with a wide angle lens is mounted on the front and is used
to track the user.

The magic lens is tethered to a workstation with two
NVIDIA Quadro K5000 GPUs. These GPUs provide most of
the processing power and do most of the computational
work. The workstation also has 16 GB of RAM, and an Intel
Core i7 CPU. The software stack of the system is built on
Linux (Kubuntu 14.04), using CUDA 5.5 and OpenGL 4.3.

6.1 Calibration

In order to ensure a properly aligned view, the various com-
ponents of the magic lens rig needed to be calibrated, both
individually and to each other. First, using standard meth-
ods we acquired the intrinsic camera parameters for the
Flea3, and the stereo camera parameters of the Bumblebee2.
These parameters are loaded by our system in order to
undistort the captured video. In the case of the stereo cam-
era, the parameters are also used to rectify the input so that
the epipolar lines are aligned with the horizontal axis.

Secondly, we needed to calibrate the positions and orien-
tations of all the cameras and the display. We use the left
camera of the stereo pair as our reference coordinate system.
The right camera is already calibrated to the left from the
stereo calibration. Calibrating the user-facing camera and
the display required more effort.

Since the stereo camera and the user-facing camera are fac-
ing opposite directions, they cannot be easily calibrated by
using a simple common target. There are several methods for
getting the relative pose of cameras with non-overlapping
views, our approach was to use a calibration environment
with known geometry. We prepared a small workspace as a
calibration area, covering it with coded fiducial markers. The
area was arranged so that it had markers on opposing sides.
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The area was captured with a calibrated camera and the rela-
tive transformations between the markers were computed,
with one of them used as a reference. We then placed the
magic lens rig inside the calibration area and captured simul-
taneous views from the front and back cameras. From the
pose of each camera relative to the reference, we computed
the transformation between the cameras.

With the user-facing camera calibrated to the stereo
camera, the only remaining part was calibrating the dis-
play. The display was calibrated to the user-facing camera,
which by extension calibrated it to the the stereo camera.
We used the mirror-based method by Takahashi et al. [40].
A fiducial marker was shown on the display, while the
user-facing camera observed the display through a mirror.
Three of the marker’s corners were defined as the reference
points, and the marker was observed with three mirror
poses. This gives the pose of the display relative to the
user-facing camera, and therefore relative to the reference
left camera as well.

6.2 Face Tracking

In order to create a user-perspective view, we need to be
able to acquire the user’s perspective. That is, we need to
capture the position of the user’s eyes relative to the display.
We achieve this with face tracking, which requires a user-
facing camera, available on most smartphones and tablets.

We implemented face tracking with FaceTracker [41],
[42], a real-time deformable face tracking library. The
library provides us with the user’s head position, from
which we compute an approximate 3D position for the
user’s “middle eye” (i.e., the point halfway between the
left and right eye). Due to monocular scale ambiguity and
the differences in the dimensions of human faces, this posi-
tion is only approximate, but it is sufficient for our proto-
type. This size ambiguity can be resolved by introducing
user profiles with the exact facial features of the user, and
using face recognition to automatically load such a profile.
We leave that for future work. Alternatively, using two or
more camera’s for the face tracking can also resolve the
scale ambiguity.

The user tracking is implemented as a separate system
running in its own process and communicating with the
main software through a loopback network interface. This
allows us to easily swap out the tracking system if needed.
We used this feature to implement a marker based tracker
for the purpose of capturing images and video of the
magic lens. The images in this paper were taken by attach-
ing a fiducial marker to the camera, and using this alter-
nate tracker.

7 RESULTS

Some examples of the type of results we get can be seen in
Figs. 1c, 2, and Figs. 6 through 8. Fig. 2 shows the main
steps of our approach for a somewhat cluttered live scene
with various different features: dark areas, bright areas,
textured surfaces, homogenous surfaces, specularities, and
thin geometry. The stereo matching is only run on a small
percentage of the image, and the filled-in disparity map is
very coarse. However, the final rendering has relatively
minor artifacts.
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Fig. 6. Results for Arch1 scene. (a) The scene. (b) Device-perspective
magic lens. (c) Our user-perspective magic lens. (d) Reference user-
perspective magic lens. (e) Screengrab of our user-perspective magic
lens. (f) Screengrab of reference user-perspective magic lens.

7.1 Evaluation

Figs. 6 and 7 provide a comparison of our method and sys-
tem with both the traditional device-perspective magic lens
approach and a ground truth reference user-perspective
view. In each figure, the top row shows the unaugmented
direct view of the scene (left), and the device-perspective
view (right). Below is a comparison of user-perspective
views, left is our method, right is the reference. The middle
row show the user’s view, the bottom row shows the corre-
sponding screen capture from the magic lens display. The
figures show that the view frustum for our magic lens is
well aligned with the outside and the perspective of the
scene matches that of the outside. Due to small inaccuracies
in the prototype calibration and the viewer tracking, the
frustum alignment isn’t perfect, but this equally effects both
our method and the reference.

The reference view was created using a reconstructed 3D
model of the scene, captured in an offline pre-process. This
model was acquired with a depth sensor and an implemen-
tation of the KinectFusion algorithm, which provides a
state-of-the-art reconstruction of the scene. During the scene
capture, the scene model is registered to the fiducial marker
which allows us to later easily correctly position it in the AR
view. To create the reference view, the scene model is
loaded by our software and used to render the real world
background (in place of the re-rendered background from
our method). To get the best possible quality results, we
additionally use projective texturing to texture the captured
scene model with the live video from the camera. This
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Fig. 7. Results for Office scene. (a) The scene. (b) Device-perspective
magic lens. (c) Our user-perspective magic lens. (d) Reference user-
perspective magic lens. (e) Screengrab of our user-perspective magic
lens. (f) Screengrab of reference user-perspective magic lens.

approach provides a reference that is of near ground truth
quality. This reference represents the best that can be
achieved with the current state-of-the-art (however the
approach only works for completely static scenes). As can
be seen by the side-by-side images in Figs. 6 and 7, our
method compares quite well with the ground truth refer-
ence. The image quality is good, with mostly minor render-
ing artifacts. Notably, we achieve these results in real time
with no pre-processing of the scene.

Fig. 8 shows our magic lens working outside in the sun
and with distant objects. This would not be possible for a

Fig. 8. Results for outdoor scenes showing examples of strong sunlight,
dynamic scenes, and distant objects. Top: view through magic lens. Bot-
tom: corresponding screen capture.

Fig. 9. Comparison between result using ground truth versus our stereo
matching. Top is with ground truth, bottom is with our stereo algorithm.

depth-sensor based system, as they cannot work in strong
sunlight and have range limits (hence, we cannot provide a
reference comparison). Furthermore, the figure shows that
our method also works for fully dynamic scenes with fast
moving objects (cars). Dynamic scenes cannot be handled
well by approaches based on scene reconstruction, such as
the one used above for the reference.

7.1.1 Additional Evaluation

Figs. 9 and 10 illustrate the effects of the individual parts of
our approach using the standard images from the Middle-
bury dataset.

The effect of using an approximate disparity map can be
seen in Fig. 9. The top shows the results of our rendering
when using ground truth data for the disparity map. The
bottom show the results with a disparity map produced by
our stereo algorithm. Despite the much coarser disparity

Fig. 10. Comparison between full resolution and reduced resolution. Left
is data term, right is solution. Top is full resolution, bottom is reduced
resolution.
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map, the final results are fairly similar, with the most seri-
ous artifacts confined to the pencils in the mug.

A comparison of the rendering from using full resolution
(in this case 640 x 533) images for everything, versus using
a half-resolution disparity map and a quarter-resolution
data term is given in Fig. 10. As can be seen, the reduced
resolution does not have a significant effect on the quality of
the final rendering.

7.2 System Performance and Optimizations
Compared to [1], the changes to our system and newly
introduced features (in particular the adaptive support
weights) add to the overall computational load. To maintain
performance, some optimizations were made. Various bot-
tlenecks were identified through profiling, and the GPU
resources were better allocated. This reduced the computa-
tional cost of some steps and regained overall system per-
formance. The average performance of the steps in the
pipeline can be seen in Table 3 (note that these are wall-
clock timings with instrumentation enabled). The largest
aggregate cost and about half the total cost is the image-
based rendering. The stereo matching is very fast at less
than 7 ms. However post-processing adds another 2.23 ms,
mostly for growing and filling in the disparity. Feature-
based pose tracking, which is currently CPU powered, has a
rather high cost of 16.32 ms. This overhead can be reduced
with some optimization, and in particular by moving fea-
ture tracking to the GPUs. The pose tracking is a new step
introduced to support the temporal coherency feature. If
this feature is disabled, then the overall system works at
about 20 FPS (which is the camera frame rate). The full fea-
tured system has an overall average framerate of about 16
FPS, on par with the previous system.

It is worth noting that the second GPU in our system is
not yet fully utilized, and is mostly used for computing the
disparity maps of the right image. Therefore, there is a lot of
room for further performance gains. The first step toward
that is to more evenly spread out the computational load
across GPUs.

7.3 Discussion

Overall, our system provides quite satisfactory results but it
does have some remaining challenges. From a user perspec-
tive, the challenges are issues with the view frustum, and
issues with the image quality. From a technical standpoint
these are caused by issues with face tracking, stereo recon-
struction, rendering, and calibration.

7.3.1  View Frustum

The heart of the user-perspective magic lens problem is pro-
viding a correct view frustum for the user. While our system
generally accomplishes this goal, it has some constraints.
Since it is a fully live system it can only show what the ste-
reo cameras currently see. Although we use cameras with a
fairly wide field of view, it is still possible for the user to ori-
ent the magic lens in such a way that the user’s view frustum
includes areas that the cameras do not see. This problem is
somewhat mitigated by the fact that the best way to use a
user-perspective magic lens is to hold it straight in order to
get the widest view. This then keeps the desired view
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TABLE 3

Average Per-Frame Timings for our Prototype Implementations
Timing (ms)
Frame total 63.88
Prepare input pair 3.69
Pose tracking 16.32
Stereo matching 6.60
Post-processing 2.23
Consistency check 0.14
Grow disparity 0.84
Fill disparity 1.25
Compute and update positions 2.42
Image-based rendering 32.38
Data term 9.86
Gradients 5.40
Merge left and right 0.91
Conjugate gradient solver 16.12
Other 0.24

Average framerate is about 16 FPS.

frustum within the region visible by the cameras. Neverthe-
less, this issue warrants some discussion. Currently our sys-
tem simply fills in those areas using information from the
known edges. A possible simple solution to this problem
could be to use fisheye lenses or additional cameras in order
to get a 180 degree view of the scene behind the display. In
[16] the approach was to create a model of the environment
and render from the model, this way the out-of-sight areas
could still be rendered if they were once visible. This type of
compromise approach where currently visible areas are ren-
dered from live data, while out-of-sight areas are rendered
from a model could also be a promising solution here. Since
we use image-based rendering, the scene model can simply
be a collection of keyframes with depth maps.

The view frustum can be slightly misaligned due to inaccu-
racies with the face tracking. We use a free off-the-shelf face
tracker and only estimate an approximate position using a
general model of the human face. Better results could be
achieved by using a more robust face tracker and by using
per-user face profiles.

7.3.2 Image Quality

The overall quality of our system is quite good. However,
we do not yet achieve a level of quality that would be satis-
factory for mainstream commercial applications. The visu-
als are not as clean as with systems that only approximate
the user-perspective view through image warping [19], [21]
but they are generally as good as the geometrically-correct
user-perspective magic lens in [16].

The artifacts we get are primarily caused by errors in
stereo reconstruction. In general, when the correct stereo
correspondence has a higher matching cost than another
incorrect correspondence, an error in the disparity map
will occur. This can occur with highly specular surfaces
or occlusion boundaries where the background is differ-
ent between the stereo views. Another cause is when
there is a low texture or periodic feature that is aligned
with the epipolar lines of the stereo camera. While our
use of adaptive support weights helps mitigate some
problems due to occlusion boundaries, it does not entirely
solve them. Issues due to specularities are common to
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Fig. 11. Synchronized (a) screen capture and (b) and user view, showing
artifacts that can occur due to failure cases. These include streaks/
breaks caused by disparity errors, and blurriness at the edge of the
observed scene. (Note: the bright spots on the screen are reflections of
the room lights.)

stereo algorithms, as they implicitly assume that surfaces
are diffuse. There have been many proposed methods for
tackling the issue of specularities, and exploring those is
of interest for future work.

In general, the artifacts are not very severe. They are
mostly unnoticable in the weak gradient areas, and occur
primarily when there is an error with the disparity of a
strong gradient. Due to the nature of the gradient domain
image-based rendering algorithm, any errors are usually
blurred out which helps in making them less objection-
able. Furthermore, the temporal propagation of depth val-
ues helps maintain temporal coherency in the rendering
and so reduces the visibility of artifacts. In most cases the
artifacts are either fuzzy waves along some straight
edges, or occasional blurry streaks from some occlusion
boundaries. In areas that are visible from the viewer’s
position but not seen from the cameras, the gap is filled
by smooth streaks connecting the edges. Fig. 11 shows
examples of these failure cases.

8 CONCLUSION AND FUTURE WORK

We have presented a new approach to creating a geometri-
cally-correct user-perspective magic lens, based on leveraging
the gradients in the real world scene. The key to our approach
is in the coupling of a recent image-based rendering algorithm
with a novel semi-dense stereo matching algorithm. We have
extended our previous work in this area, made improvements
to our prototype device, and performed additional evalua-
tions. These improvements include a reworked stereo algo-
rithm, better temporal coherency, and better performance.
We have compared our stereo results with those of the other
algorithms, and have shown a comparison of our real-time
user-perspective magic lens renderings to results from an off-
line reference.

In addition to making further improvements to the proto-
type, we would also like to evaluate the system with a for-
mal user study. Previous user studies on user-perspective
magic lenses have either been in simulation [16] or with
approximations [17], [18]. We expect that with additional
improvements and a better prototype we will be able to do
a fair comparison between device-perspective and user-per-
spective magic lenses with a full real system.
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