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Abstract
Although many adaptive sampling and reconstruction techniques for Monte Carlo (MC) rendering have been proposed in
the last few years, the case for which one should be used for a specific scene is still to be made. Moreover, developing
a new technique has required selecting a particular rendering system, which makes the technique tightly coupled to the
chosen renderer and limits the amount of scenes it can be tested on to those available for that renderer. In this paper, we
propose a renderer-agnostic framework for testing and benchmarking sampling and denoising techniques for MC rendering,
which allows an algorithm to be easily deployed to multiple rendering systems and tested on a wide variety of scenes. Our
system achieves this by decoupling the techniques from the rendering systems, hiding the renderer details behind an API.
This improves productivity and allows for direct comparisons among techniques originally developed for different rendering
systems. We demonstrate the effectiveness of our API by using it to instrument four rendering systems and then using them
to benchmark several state-of-the-art MC denoising techniques and sampling strategies.

Keywords Monte Carlo rendering · Adaptive sampling and Reconstruction · Denoising · Benchmarking

1 Introduction

Rendering is one of themost important problems in computer
graphics and has been the subject of over half a century of
research. In particular, there has been a tremendous amount
of exploration on Monte Carlo (MC) physically based ren-
dering systems [10] such as path-tracing [17] and its various
extensions [41]. To address shortcomings in Monte Carlo
rendering, more than three decades of research has explored
a wide variety of different ideas, including adaptive sam-
pling and reconstruction algorithms [14], faster acceleration
structures and intersection algorithms [35], improved sam-
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pling patterns [15], and Monte Carlo denoisers [18,33,39],
to name a few broad categories.

Although developing a new algorithm that successfully
improves Monte Carlo rendering in some way is a challeng-
ing task in itself, researchers face two further challenges.
First, they must integrate their algorithm into an actual ren-
dering system so they can test it on complex scenes. After all,
renderers have several key components required to produce
high-quality images (e.g., scene I/O, samplers, ray-traversal
acceleration data structures, primitive-ray intersectors, shad-
ing systems, and reconstruction filters), and many of these
components are often orthogonal to the algorithm being
explored. Therefore, rendering researchers often leverage the
infrastructure provided by existing rendering systems. How-
ever, integrating a new algorithm into a rendering system is
often a time-consuming task, precluding its deployment on
multiple renderers to properly test the technique.

Second, researchers must find several high-quality scenes
to test their algorithm and demonstrate their performance.
Since most rendering researchers are not digital artists,
constructing complex aesthetically pleasing scenes is often
a non-trivial, time-consuming task, and “programmer-art”
scenes do not tend to be of the same quality as those con-
structed by professional artists. Moreover, rendering systems
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tend to adopt proprietary scene-description formats. Thus,
researchers tend to stick to a handful of test scenes available
for the selected rendering system.

The consequence of these two challenges is that most
researchers are often only able to demonstrate their algorithm
on a single rendering system using a small number of test
scenes. This significantly limits their ability to thoroughly
test and explore the proposed method, and for reviewers to
properly evaluate its performance. Furthermore, it is often
difficult to compare against existing methods, since they
often have been implemented in other rendering systems and
tested on different scenes. Having good “apples-to-apples”
comparisons is important when trying to gauge the benefits
of a new method.

Finally, porting a recently published algorithm to a new
rendering system is not easy, since the developers performing
the port are usually not experts on the new algorithm, even
though they may be very familiar with the target rendering
system.Therefore, theyusually have to translate the available
implementation (or the algorithm described in the paper) to
the new rendering system. This can introduce bugs in the pro-
cess and may not produce ideal results, since the algorithmic
parameters that worked successfully for one rendering sys-
tem might not work for the new one. Trying to determine the
optimal parameters for an algorithm that one did not develop
can be a very time-consuming task.

To address these problems, we present a novel framework
that allows researchers to develop, test, compare, and even
deploy sampling and denoising algorithms for Monte Carlo
rendering. Specifically, we propose an application program
interface (API) that allows developers to easily port their
algorithms to different rendering systems by providing the
necessary communication between such algorithms and the
other components of an existing rendering system. In other
words, instead of having the researchers port their algorithms
to multiple rendering systems, we have done the leg work
for them by instrumenting rendering systems to provide the
necessary services through our API.

Therefore, with our framework a researcher only needs
to implement an algorithm once, and can immediately use
it with all rendering systems that support our framework.
This allows researchers to rapidly test and deploy their algo-
rithms on a range of rendering systems, and test them on a
wide variety of scenes. This also enables automatic, inde-
pendent benchmarking of algorithms, which is quite useful
when submitting new techniques for publication.

As a proof of concept, we have initially instrumented four
rendering systems (PBRT-v3, PBRT-v2, Mitsuba, and a pro-
cedural renderer) with ourAPI, as well as implementedmany
MCdenoising algorithms and three sampling techniques.We
plan to open-source our framework so that otherMonte Carlo
renderers can support the API directly themselves. This will

also allow third-party rendering systems to rapidly adopt
recently proposed algorithms that conform to our API.

To demonstrate the effectiveness of our framework, we
conduct a case study involving Monte Carlo (MC) denoising
algorithms. Such a study illustrates key aspects of our system:
(1) to provide easy integration of algorithms and rendering
systems (by means of just a few calls to the API); (2) to
provide an independent benchmark for MC techniques that
works across various rendering systems; and (3) to allow
developers to evaluate the performance of rendering systems
with various algorithms, and vice versa. These are desirable
features for algorithm and rendering system developers, as
well as for the academic, industry, and end-user communities,
who should be able to make better informed decisions when
choosing a technique and/or a rendering system to render a
given scene.

For our study, we have instrumented many state-of-the-art
MC denoising algorithms (e.g., NFOR [7], LBF [18], RHF
[11], LWR [23], RDFC [33], RPF [39], SBF [21], NLM [32],
and GEM [31]), allowing them to be used with the four ren-
dering systems, even though most of these algorithms have
originally been developed for a single renderer. Furthermore,
our system’s ability to automatically generate benchmark
reports allows for the comparison of the different methods on
an even playing field. In our study, we compare the perfor-
mance of different MC denoising methods and discuss some
of their identified potential limitations.

Although this paper does not propose a new MC render-
ing algorithm per se, this kind of meta-research system (i.e.,
a system designed to aid the research process) is not new
to the graphics and vision communities. Successful exam-
ples include the Middlebury benchmark [36,37], which has
transformed the way two-frame dense stereo correspondence
algorithms are developed and compared, aswell as the bench-
marks on Alpha Matting [29,30], optical flow [2,3,5], and
video matting [12,13]. More recently, Anderson et al. [1]
proposed a framework to compile PDF sampling patterns for
Monte Carlo.

Inspired by these works, our system provides test scenes
intended to stress the limits of Monte Carlo techniques and
reveal their potential limitations. It is extensible, allowing
for easy support of new rendering systems, as well as sam-
pling and denoising strategies. The community should be
able to contribute new scenes and techniques in a simple way.
Our system is publicly available through our project web-
site, providing valuable feedback to the research and industry
communities.

In summary, the contributions of our work include:

– A framework for developing, testing, and benchmark-
ing sampling and denoising Monte Carlo algorithms
(Sect. 3). Our framework decouples the algorithms
from rendering systems by means of an API, allowing
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researchers to implement their techniques once and run
themon any rendering system supporting our framework.
It easily incorporates new algorithms, rendering systems,
and testing datasets;

– An automatic and independent benchmarking system for
comparing Monte Carlo algorithms across multiple ren-
dering systems and supporting a large number of scenes
(Sect. 3). This should be a useful tool for assessing the
quality of new Monte Carlo algorithms against estab-
lished ones, especially for submission purposes;

– A detailed evaluation of the state-of-the-art Monte Carlo
denoising algorithms using our framework and a discus-
sion of their performance and limitations (Sect. 4).

While the use of an API might reduce the performance of
an application, a careful design of the API minimizes such
an impact. Nevertheless, the benefits provided by our frame-
work highly supersede a potential performance reduction,
specially in off-line rendering environments. Once tested on
different rendering systems and on a variety of scenes, one
can decide to provide native implementations for specific
rendering systems.

2 Related work

Webegin by discussingmeta-research systems in both graph-
ics and vision which, like our own framework, have been
developed to facilitate/improve the research process. After-
ward, we focus on previous work on Monte Carlo denoising,
which is the application that we use in our case study to
illustrate the benefits of our framework.

2.1 Meta-research in graphics

Several systems have been proposed over the years to facil-
itate research development in graphics. Some of the most
popular ones include Cg [22], Brook [8], and Halide [27]. Cg
is a general-purpose, hardware-oriented, programming lan-
guage and supporting system designed for the development
of efficient GPU applications, and providing easy integration
with the two major 3D graphics APIs (OpenGL and Direct
3D). Brook [8] is also a system for general-purpose com-
putation that allows developers to use programmable GPUs
as streaming co-processors, while abstracting GPU architec-
tural details. Halide [27] tries to optimize image-processing
algorithms by decoupling the algorithm’s description from
its schedule. This allows for an algorithm to be described
once, while specific schedules are provided for different
target platforms (e.g., CPUs, GPUs, mobile devices). Auto-
matic generation of optimized schedules in Halide has been
addressed in a follow-up work [24].

While the primary goal of these systems is to generate
efficient code while abstracting hardware details from devel-
opers, our focus is on decoupling Monte Carlo algorithms
from rendering systems. This greatly simplifies the task
of porting algorithms to multiple rendering systems, free-
ing developers from the burden of knowing implementation
details of specific renderers to be able to perform integration.
Our system also makes a wider range of scenes available for
testing, providing a comprehensive, multi-rendering system
benchmark for Monte Carlo algorithms. Recently, Ander-
son et al. [1] proposed an approach to compile sampling
BRDFs forMCapplications. Theirmethod is complementary
to our work, and one could potentially integrate both systems
in the future to provide even more flexibility for rendering
researchers.

2.2 Benchmarking systems in computer vision

Quantitative benchmarks have been proposed for several
computer visions areas, including optical flow [3,5], dense
two-frame stereo correspondence [36], and alpha matting
[30]. These initiatives have provided independent tools for
assessing the quality of the results produced by existing and
new algorithms and have led to significant progress in these
areas.

Optical flowBarron et al. [5] compared accuracy, reliability,
and density of velocity measurements for several established
optical-flow algorithms and showed that their performance
could vary significantly from one technique to another. Baker
et al. [3] proposed another benchmark for optical-flow algo-
rithms that considers aspects not covered by Barron et
al. These include sequences containing non-rigid motion,
realistic synthetic images, high frame-rate video to study
interpolation errors, and modified stereo sequences of static
scenes. The authors have made their datasets and evaluation
results publicly available and provide the option for one to
submit his own results for evaluation [2]

Stereo correspondenceThe Middlebury benchmark [36]
provided a taxonomy and evaluation for dense two-frame
stereo correspondence algorithms. The datasets and evalua-
tion are publicly available on theweb, and anyone can submit
results for evaluation [37].

Alpha mattingRhemann et al. [30] introduced a benchmark
system for alpha matting techniques. The authors provide
some training data and use a test dataset for which the cor-
responding ground truth has not been disclosed. Similarly
to the optical-flow and dense stereo correspondence bench-
marksmentioned before, the results are available on-line, and
anyone can submit results for evaluation [29].
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VideomattingErofeev et al. [13] extended the alpha matting
benchmark to videos, supporting both objective and subjec-
tive evaluations of video matting techniques. Training and
test datasets are provided, with results and submissions being
available through the web [12].

Unlike such systems, ours goes beyond rating submit-
ted results computed off-line. It provides an API that allows
Monte Carlo algorithms to be tested with different rendering
systems using a variety of scenes. Thus, it can compare differ-
ent techniques across multiple rendering systems, something
that was not previously possible without requiring the devel-
oper to createmultiple implementations tailored to individual
rendering systems.

2.3 Monte Carlo denoising algorithms

Although there has been a significant amount of work on
reducing the variance of MC rendered images through sam-
pling/reconstruction (see [26,42]), for brevity we shall only
focus on previous post-processing approaches that filter
general Monte Carlo noise (i.e., noise from any and all dis-
tributed effects, path-tracing, and so on).

Soon after the seminal paper by Cook et al. [10] raised
the problem of MC noise, there was some early work in
general MC filtering, including approaches using nonlinear
median and alpha-trimmedmean filters for edge-aware spike
removal [20] and variable-width filter kernels to preserve
energy and salient details [34]. However, in the years that
followed, researchers largely ignored general MC filtering
algorithms in favor of other variance reduction techniques,
due to the inability of these filters to successfully remove the
MC noise while preserving scene detail.

Recently, interest in general MC filtering algorithms has
enjoyed a significant revival when Sen and Darabi [38,39]
demonstrated that general, post-process image-space filters
could effectively distinguish between noisy scene detail and
MC noise and perform high-quality MC denoising. To do
this, theyusedmutual information to determinedependencies
between random parameters and scene features, and com-
bined these dependencies to weight a cross-bilateral filter at
each pixel in the image. Rousselle et al. [32] proposed to
use a non-local means filter to remove general MC noise.
Kalantari and Sen [19] applied median absolute deviation
to estimate the noise level at every pixel to use any image
denoising technique for filtering the MC noise. Finally, Del-
bracio et al. [11] modified the non-local means filter to use
the color histograms of patches, rather than the noisy color
patches, in the distance function.

Other approaches have effectively used error estimation
for filtering general distributed effects. For example, Rous-
selle et al. [31] used error estimates to select different filter
scales for every pixel to minimize reconstruction error. Fur-
thermore, Li et al. [21] proposed to use Stein’s unbiased risk

estimator (SURE) [40] to select the best parameter for the
spatial term of a cross-bilateral filter. Rousselle et al. [33]
extended this idea to apply the SURE metric to choose the
best of three candidate filters. Moon et al. [23] estimated the
error for discrete sets of filter parameters using a weighted
local regression. Bauszat et al. [6] posed the filter selection
problem as an optimization and solved it with graph cuts.
Bitterli et al. [7] used feature prefiltering, NL-Means regres-
sion weights and a collaborative denoising scheme to create
an improved first-order regression technique.

More recently, Kalantari et al. [18] introduced a machine
learning approach in which a neural network is used to drive
the MC filter. This work was later extended by Bako et al.
[4] by training end-to-end to produce high-quality denoising
for production environments, and by Chaitanya et al. [9] for
removing global illumination noise in interactive rendering.

All of these techniques have strengths and weaknesses
in terms of the scene features they can satisfactorily han-
dle, memory costs, execution time, etc. All these variables
make a direct comparison of the various algorithms diffi-
cult. Our framework is intended to fill this gap by enabling
easy deployment of an algorithm across multiple rendering
systems through our API. We hope our system will help
developers better understand the interplay among the vari-
ous involved elements and available metrics, shedding some
light on the occasional situations in which publications seem
to disagree about the quality rank of different techniques.

3 System design

A physically based rendering system has to perform sev-
eral tasks in order to generate an image. These include,
for instance, reading the scene description file, building the
internal scene representation data structure, generating well-
distributed sampling positions in a high-dimensional space,
computing global illumination, evaluating shading, recon-
structing the final image, and saving the result. Several of
those tasks hide a significant amount of complexity.

A good renderer implementation usually employs design
practices that allow some level of extensibility. For exam-
ple, it is common practice to facilitate adding new materials,
shapes, cameras, samplers, reconstruction filters, and inte-
grators, given they obey predefined interfaces. However,
although different renderers use similar abstractions, imple-
menting a new technique (e.g., a new denoising filter) still
requires choosing aparticular renderer (e.g., PBRT-v3orMit-
suba).Thismakes it hard to compare techniques implemented
in different systems, and time-consuming to implement a tech-
nique in multiple rendering systems.

Our framework seeks to avoid these limitations by decou-
pling the implementation of a new technique from any
specific rendering system. For this, it hides sample value
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Fig. 1 Main components of the system

computation details associated to individual rendering sys-
tems behind a general sampling evaluation interface. Thus,
it allows for any technique to be seamlessly integrated with
different rendering systems and provides a direct and simple
mechanism for comparing different techniques’ results on
multiple (rendering) systems.

MC denoising techniques [18,33,39] are responsible for
reconstructing images from sample values computed by the
renderer while removing any residual noise from the MC
estimation process. As such, they are a key component of all
Monte Carlo rendering systems. Thus, we have chosen MC
denoising algorithms to demonstrate the effectiveness of our
framework. One should note, however, that our system can
be used to implement/evaluate other MC techniques, such
as general sampling and reconstruction algorithms. In our
case study, we consider both adaptive and non-adaptive MC
denoising techniques. Next, we describe the main compo-
nents of our system and discuss how they are used to support
the integration of techniques and rendering systems, and to
perform benchmarks.

3.1 Main components

The architecture of the proposed system has three main com-
ponents (Fig. 1): the client process, the benchmark process,
and the renderer process. The client process implements the
technique being integrated. The renderer process interfaces
with the actual rendering system to evaluate the samples
requested by the client process. The benchmark process con-
trols the overall execution and saves the final image along
with useful metadata information, such as reconstruction and
rendering times.

Figure 2 shows a sequence diagram of a typical execution
of the system. The benchmark process is executed, receiv-
ing a list of scenes to be rendered, each scene with a list
of different sample budgets. For a given scene, the renderer
process is executed. The benchmark process forwards the
client’s request to the renderer process and keeps track of
the execution time and sample budget limits. Once the client
process receives the requested samples, it reconstructs the

Fig. 2 A typical execution of the system

final image and sends it to the benchmark process. The cycle
can start again with another request (e.g., for a different sam-
ple density for the same scene, a different scene, a different
technique, etc.). Note that we use the expression “bench-
mark process” to refer to this intermediate layer regardless
of the system being used to locally evaluate a single or mul-
tiple techniques, or to perform or complement an actual full
benchmark. The system also provides a web-based graphical
user interface (GUI) for visual exploration of the results.

The separation between client and renderer processes
allows us to provide a clean API to the client process, simpli-
fying the task of implementing a new technique. Once a new
technique is implemented using this renderer-agnostic API,
it can be readily tested on a variety of scenes and compared
against other techniques.

On the renderer side, this separation allows us to provide
different renderers as back-ends to the system. When ren-
dering a scene, the client process does not need to know the
specific renderer being used. This also test the robustness
of the technique to variations in sample values computed by
different renderers.

3.1.1 Client process

The system expects techniques to follow the template shown
in Fig. 3. Such a flow is general enough to cover a large
variety of techniques, including MC denoising—adaptive,
non-adaptive, a priori and a posteriori [42]—as well as sam-
pling techniques. If a particular technique does not provide
sampling positions, the renderer transparently supplies them.

When the client process starts, it is given a sample bud-
get. In the initial sampling step (Fig. 3), the technique decides
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Fig. 3 Template for techniques supported by our system

what portion of the sample budget to spend initially. If the
technique is non-adaptive, the entire budget is spent in this
step. Otherwise, one or more iterations of sample analy-
sis and adaptive sampling are performed, until the sample
budget is completely consumed. After the final image is
reconstructed, the client process finishes. Besides the sam-
ple budget, the client has access to more information about
the scene through a scene information querying API. This
information allows the technique to adjust its parameters
depending on the characteristics of the scene.

Our framework is general enough to support advanced
techniques with adaptive sampling, allowing them to gen-
erate sample positions based on information from previous
iterations. If the technique does not perform adaptive sam-
pling, the renderer itself generates the sample positions. The
API also allows the technique to specify which features it
needs for each sample. Some may require only color infor-
mation, while others may require geometric features like
normals and depth. The technique also specifies the exact
layout of sample components in memory.

3.1.2 Benchmark process

The benchmark process manages the system execution and
mediates the communication between client and renderer
processes (Fig. 2). It is responsible for starting the renderer
process, providing information about the sample layout and
additional renderingparameters, and later collecting the com-
puted samples to be forwarded to the client technique. The
benchmark process also keeps track of the current sample
budget, client process execution time, and saves the image
reconstructed by the client process along with an execution
log.

3.1.3 Renderer process

It consists of a common rendering system that has been instru-
mented to communicate with the benchmark process. It is
responsible for computing the samples needed by the client
process, as well as providing information about the current
loaded scene. To help instrumenting existing rendering sys-
tems, we provide a few auxiliary classes that implement the
necessary API and help collecting the sample data through-
out the system.

3.2 Scenes

Our system includes two general categories of scenes: pro-
duction, and experimental. The first category includes scenes
one would usually find in a production environment (e.g.,
most scenes shown in Fig. 10). They usually contain more
detailed geometry and textures, a bigger variety of illu-
mination settings, and aesthetically pleasing results. The
second category includes scenes designed specifically to
stress certain aspects of the filters. Figure 6 shows exam-
ples of experimental scenes. By including a variety of scenes
in both categories, we hope to avoid biases when comparing
different techniques.

When evaluating a scene, we consider two main aspects:
features andnoise sources. Features are legitimate details that
denoising techniquesmust preserve, like textures andmateri-
als, geometric details, shading highlights. Noise sources are
elements that introduce undesired noise artifacts, like cam-
era effects (motion blur and depth-of-field), glossymaterials,
area lights, and indirect illumination.

3.3 Implementation details

Instrumenting additional rendering systems for use with
our framework only requires implementing the endpoints
needed to communicate with the benchmark process. We
provide an auxiliary class called RenderingServer,
which implements the communication protocol and exposes
a higher-level API using a signal-slot mechanism. The
RenderingServer class and a few other auxiliary classes
make it easy to instrument a renderer.

Synchronization, control messages, and small messages
are implemented using TCP socket messages on a prede-
fined local port. Large buffers use shared memory, saving
memory and avoiding transfer overhead. They are used to
transfer samples to the client, and the reconstructed image to
the benchmark process (Fig. 1).

4 Results

We have implemented our framework in C++. As a proof of
concept, we have ported three well-known renderers, PBRT-
v2 [25], PBRT-v3 [26], and Mitsuba [16], plus a procedural
renderer to work as back-ends of our system. We have also
adapted many state-of-the-art MC denoising methods to run
on our framework: LWR [28], NFOR [7], LBF [18], RPF
[39], SBF [21], RHF [11], NLM [32], RDFC [33], and GEM
[31]. For this, we have instrumented the original source code
provided by the rendering systems’ developers and by the
authors of these techniques with calls to our API. In the case
of NFOR, we could not get the source code and implemented
it from scratch. All results shown in the paper were gener-
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Fig. 4 Rendering using geometric features. Reference image (left).
Overblurring on transmitted scene details caused by relying on fea-
tures at the first intersection point (center). Using features from the first
non-specular intersection allows the denoiser to preserve those details
(right)

Fig. 5 Images generated with our system using PBRT-v2 and the tech-
niques NFOR, RHF, and GEM, respectively

ated on a 4 GHz i7-4790K CPU with 32GB of RAM. This
section provides several examples illustrating the use of the
four rendering systems and eight state-of-the-art MC denois-
ing algorithms.We also demonstrate the support for sampling
techniques by adapting three commonly used ones: stratified,
Sobol, and low discrepancy.

Some techniques use geometric features from the first
intersection point to help them preserve scene details. This
strategy tends to perform poorly on scenes with transpar-
ent glass and mirrors, as shown in Fig. 4 (center). To make
comparisons among techniques fairer, we implementedmod-
ified versions of these techniques using the first non-specular
intersection point instead. We indicate the modified versions
by a suffix “-mf” (modified features)—Fig. 4 (right).

Figure 10 shows results of a benchmark createdwith seven
MC denoising techniques and nine scenes from our scene
pool. The scenes were selected as to form a representative
set of situations that can challenge a denoiser. Measure One
contains several glossy highlights, andMeasure OneMoving
adds motion blur on top of that. Crown in Glass contains
intricate bumpy textures with sources of caustics, all behind
a layer of glass. Furry Bunny and Curly Hair contain fine
geometric features that can easily be overblurred. Bathroom
is a typical interior scene with several fine textures reflected
by mirrors. Country Kitchen Night is a challenging global
illumination scene with hidden light sources, being prone to
fireflies (artifacts consisting of bright single pixels scattered
over the image). Finally, Glass of Water is a mostly specular
scene with many specular highlights.

Fig. 6 Examples of experimental scenes rendered with our system
using a procedural renderer. Mandelbrot set (left). Increasing sinusoidal
bands (sin(x2)) (right)

Fig. 7 Examples of images produced by different sampling tech-
niques using our system with the PBRT-v2 (top). The reference image
was generated with 811,008 spp, while the stratified, Sobol, and low-
discrepancy images used 64 spp. For comparison, the bottom row shows
zoomed-in versions of the highlighted regions shown on top

Fig. 8 Texture details in the specular component of somematerials (see
the checker pattern on the light gray rectangle in the reference image)
are not part of the “albedo” feature, making the denoisers to remove
such details

The first row of Fig. 10 shows thumbnails of the ground
truth images for the selected scenes. Although the image
resolutions vary, their typical size is about 1024× 1024 pix-
els. A small square highlights a challenging region in each
scene. The corresponding regions for the noisy result, for the
outputs generated by the various denoising techniques, and
for the reference images are shown in the subsequent rows.
From the scenes shown in Fig. 10, Bathroom,Glass of Water,
andCountry Kitchen Nightwere rendered usingMitsuba; the
remaining six were rendered using PBRT-v3. Figures 5 and
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Fig. 9 Use of our system’s GUI for interactive exploration of the quantitative results generated by a benchmark

6 show examples of images generated with our framework
using PBRT-v2 and a procedural renderer, respectively.

Our system can be used with and provides support for
testing and comparing different sampling strategies. Figure 7
shows a scene rendered using our framework with three sam-
pling techniques: stratified, Sobol, and low discrepancy. The
images were generated using PBRT-v2, with 64 SPP. The
reference image was rendered using 811,008 spp.

The results in Fig. 10 show that all techniques have
some degree of trouble with glossy highlights, as shown
in the scene Measure One. The glossy highlights are often
overblurred or contain patchy artifacts. Glossy highlights are
troublesome because the extra features used by the denois-
ers to tell legitimate scene details from noise do not help
detecting the highlights. Another instance of this problem
can be seen in Fig. 8. The subtle checker patterns seen on
the reference image [Fig. 8 (bottom right)] come from a tex-
ture applied to the specular component of the material. This
specular component is not part of the albedo feature used by
denoisers, causing them the remove the detail.

Back to Fig. 10, scene Measure One Moving is a motion
blur version of the previous scene. The strong motion blur
effect makes the overblurring of the glossy highlights less
visible, but it may also lend to other situations that may cause
denoisers to produce overblur. All techniques have trouble
preserving the fine motion blur details over the noisy glossy
background.

TheCrown inGlass scene contains bump-mapping details
behind a layer of glass. Some techniques do a good job at pre-
serving these details on the less noisy areas (e.g., NLM and
RDFC). In darker, noisier regions, all techniques introduce
some degree of overblurring.

Very fine geometry details, as commonly found in hair
(Curly Hair) and fur (Furry Bunny) is also a frequent source

of problems. Notice that even denoisers that rely on geo-
metric features, as in the case with LBF, can overblur these
details—although hair and fur are being captured by the geo-
metric features, the sub-pixel-level detail in the presence of
noise constitutes a challenge.

Scenes with very challenging illumination conditions—
which translates to high levels of noise—are also problem-
atic. High-energy spikes (fireflies) are very difficult to spread
out while preserving energy, causing blob artifacts. As the
Country Kitchen Night scene example shows, some tech-
niques like RDFC do a good job at spreading fireflies, but
small variations in the geometry of the scene can cause arti-
facts.

The results shown in Fig. 10 and the previous discussion
illustrate the potential of our framework to provide quali-
tative assessments of MC denoising techniques, as well as
to identify potential limitations of current approaches. As
such, our system provides relevant information for guiding
future research in the area. Our framework also contains a
GUI for interactive exploration of benchmark results, which
include quantitative assessments based on several metrics
(MSE, rMSE, PSNR, SSIM, and execution time—Fig. 9).
Table 1 shows the values of rMSE, PSNR, and SSIM for all
examples in Fig. 10.

The proposed system is available for download in our
project website.1 The interactive version of the benchmark
results corresponding to Fig. 10, using our web-based GUI,
is also available. We would like to encourage the reader to
explore such material. A video providing a brief tutorial on
how to interactively explore the benchmark results can be
found in the project website. Our GUI can be used with the
results obtained for any technique that uses our framework.

1 https://doi.org/10.7919/F46H4FGW.
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Fig. 10 Results from a benchmark including sevenMCdenoising techniques and nine scenes (from our scene pool) that pose challenges to denoising
methods. All results were generated with 128 samples per pixel
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Figure 9 shows a snapshot of some of the quantitative infor-
mation obtained when using our framework to render the
Bathroom scene using the seven denoising techniques shown
in Fig. 10. The graphs compare the performance of the tech-
niques according to PSNR, rMSE, SSIM, and execution time
for 16, 32, 64, and 128 spp.

4.1 Discussion

Communication overheadThis can be significant depending
on how a technique requests samples. If the entire budget is
requested in a single call, the overhead is negligible, but if
each call requests a single sample, as in the case of MDAS
[14], the overhead becomes prohibitive for anything but a
very small number of samples and image sizes.

Memory overheadThe current implementation of our system
requires that all samples be kept in memory at once, which
imposes a limit on the maximum sample budget. We plan
on avoiding this restriction by making blocks of samples
available to the client process as soon as they are produced
by the renderer.

Scene file formatRendering systems adopt proprietary scene
file formats. In addition, certain features (e.g., materials) sup-
ported by one renderer might not be available for others.
Thus, currently, in order to use a scene file with a differ-
ent renderer, one has to convert it to the format used by the
desired renderer.

5 Conclusion and future work

We have presented a novel framework for easy development
and evaluation of sampling and denoising MC algorithms
on multiple rendering systems. Conversely, it also allows for
rendering systems to quickly incorporate new algorithm that
conform to ourAPI. Thismakes it straightforward to perform
benchmarks involving various algorithms across different
renderers. We have demonstrated the effectiveness of our
system by instrumenting four rendering systems (PBRT-v3,
PBRT-v2,Mitsuba, and a procedural renderer), eight state-of-
the-art MC denoising algorithms, three sampling techniques,
and by benchmarking these denoising algorithms onmultiple
renderers.

Wehaveprovided a qualitative assessment of the evaluated
MC denoising techniques, identifying potential limitations
of existing approaches. This information might guide future
research in the area. The visual exploration of the quantitative
data collected during the benchmark also provides valuable
feedback for researchers and users, helping them to address
the practical question of identifying the most effective tech-
niques for rendering scenes with a given set of features.

5.1 Future work

We plan on releasing an on-line benchmarking service to
allow researchers to submit their techniques for evaluation
and ranking. This would be similar to other benchmark ser-
vices, such as the Middlebury benchmark [36].

To solve the current memory overhead problem, we plan
to group samples into smaller-sized chunks and send them
to the client process as soon as they are computed by the
renderer. This should increase the communication overhead
but will make the memory complexity independent of the
amount of requested samples, which is a fair tradeoff. We
will make such an implementation available on the project
website.
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