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Abstract. Recently, we proposed the idea of using compressed sensing
to reconstruct the 2D images produced by a rendering system, a process
we called compressive rendering. In this work, we present the natural
extension of this idea to multidimensional scene signals as evaluated by
a Monte Carlo rendering system. Basically, we think of a distributed
ray tracing system as taking point samples of a multidimensional scene
function that is sparse in a transform domain. We measure a relatively
small set of point samples and then use compressed sensing algorithms to
reconstruct the original multidimensional signal by looking for sparsity
in a transform domain. Once we reconstruct an approximation to the
original scene signal, we can integrate it down to a final 2D image which
is output by the rendering system. This general form of compressive
rendering allows us to produce effects such as depth-of-field, motion blur,
and area light sources, and also renders animated sequences efficiently.

1 Introduction

The process of rendering an image as computed by Monte Carlo (MC) render-
ing systems involves the estimation of a set of integrals of a multidimensional
function that describes the scene. For example, for a scene with depth-of-field
and motion blur, we can think of the distributed ray tracing system as taking
point samples of a 5D continuous “scene signal” f(x, y, u, v, t), where f() is the
scene-dependent function, (x, y) represents the position of the sample on the
image, (u, v) is its position on the aperture for the depth-of-field, and t which
describes the time at which the sample is calculated. The ray tracing system can
compute point samples of this function by fixing the parameters (x, y, u, v, t) and
evaluating the radiance of a ray with those parameters. The basic idea of Monte
Carlo rendering is that by taking a large set of random point samples of this
function, we can approximate the definite integral:
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which gives us the value of the final image I at pixel (i, j) by integrating over
the camera aperture from [−1, 1], over the time that the shutter is open [t0, t1],
and over the pixel for antialiasing. In rendering, we use Monte Carlo integration
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to estimate integrals like these because finding an analytical solution to these
integrals is nearly impossible for real scene functions f(). Unfortunately, Monte
Carlo rendering systems require a large number of multidimensional samples in
order to converge to the actual value of the integral, because the variance of the
estimate of the integral decreases as O(1/k) with the number of samples k. If a
small number of samples is used, the resulting image is very noisy and cannot
be used for high-end rendering applications. The noise in the Monte Carlo result
is caused by variance in the estimate, and there have been many approaches
proposed in the past for reducing the variance in MC rendering.

One common method for variance reduction is stratified sampling, wherein
the integration domain is broken up into a set of equally-sized non-overlapping
regions (or strata) and a single sample is placed randomly in each, which reduces
the variance of the overall estimate [1]. Other techniques for variance reduction
exist, but they typically require more information about f(). For example, im-
portance sampling positions samples with a distribution p(x) that mimics f() as
closely as possible. It can be shown that if p(x) is set to a normalized version
of f(), then the variance of our estimator will be exactly zero [2]. However, this
normalization involves knowing the integral of f(), which is obviously unknown
in our case. Nevertheless, importance sampling can be useful when some infor-
mation about the shape of f() is known, such as the position of light sources in
a scene. In this work, however, we assume that we do not know anything about
the shape of f() that we can use to position samples, which makes our approach
a kind of technique often known as blind Monte Carlo. The only assumption we
will make is that f() is a real-world signal that is sparse or compressible in a
transform domain.

Other kinds of variance reduction techniques have been proposed that in-
troduce biased estimators, meaning that the expected value of the estimator is
not equal to the exact value of the integral. Although methods such as strati-
fied or importance sampling are both unbiased, biased Monte Carlo algorithms
are also common in computer graphics (e.g., photon mapping [3]) because they
sometimes converge much faster while yielding plausible results. The proposed
approach in this paper also converges much more quickly than the traditional
unbiased approaches, but it results in a slightly biased result. As we shall see,
this occurs because of the discretization of the function when we pose it within
the framework of compressed sensing (CS). However, this bias is small while the
improvement in the convergence rate is considerable.

This chapter is based on ideas presented by the first two authors in work
published in the IEEE Transactions of Visualization and Computer Graphics [4]
and the Eurographics Rendering Symposium (EGSR) [5]. In the first work, we
introduced the idea of using compressed sensing as a way of filling missing pixel
information in order to accelerate rendering. In that approach, we first render
only a fraction of the pixels in the image (which provides the speedup) and
then we estimate the values of the missing pixels using compressed sensing by
assuming that the final image is compressible in a transform domain. In the
second work, we began to expand this idea to the concept of estimating an
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(a) Original image (b) 2D sparsification (c) 3D sparsification (d) 4D sparsification

Fig. 1. Showing the effect on dimensionality on the compressibility of the
signal in the Fourier domain. As the dimension of our scene function f() increases,
the compressibility of the data increases as well. Here we show a 4D scene with pixel
antialiasing (2D) and depth-of-field (2D), which we have sparsified to 98% sparsity in
the Fourier domain by zeroing out 98% of the Fourier coefficients. (a) Reference image.
(b) Image generated by integrating down the function to 2D and then sparsifying it to
98% in the Fourier domain. We can see a significant amount of ringing and artifacts,
which indicates that the 2D signal is not very compressible in the Fourier domain. This
is the reason that we use wavelets for compression when handling 2D signals (see Secs. 5
and 6). (c) Image generated by integrating down the function to 3D (by integrating
out the u parameter) and then sparsifying it to 98% in the Fourier domain. There
are less artifacts than before, although they are still visible. (d) Image generated by
sparsifying the original scene function f() to 98% in the Fourier domain. The artifacts
are greatly reduced here, indicating that as the dimensionality of the signal goes up
the transform-domain sparsity also increases.

underlying multidimensional signal which we then integrate down to produce
our final image. At the Dagstuhl workshop on Computational Video [6], we
presented initial results on applying these ideas to animated video sequences
(see Sec. 8).

This work presents a more general framework for compressive rendering that
ties all of these ideas together into an algorithm that can handle a general set
of Monte Carlo effects by estimating a multidimensional scene function from a
small set of samples. By moving to higher-dimensional data sets, we improve the
quality of the reconstructions because compressed sensing algorithms improve as
the signal becomes more sparse, and as the dimension of the problem increases
the sparsity (or technically, compressibility) of the signal also increases. The
reason for this is that the amount of data in the signal goes up exponentially
with the dimension, but the amount of actual information does not increase at
this rate. As shown in Fig. 1, a 4D signal sparsified to 98% produces a much
better quality image than a 2D signal sparsified the same amount.

To present this work, we first begin by describing previous work in render-
ing as it relates to Monte Carlo rendering and transform-domain accelerations
proposed in the past. Next, we present a brief introduction to the theory of com-
pressed sensing, since it is a field still relatively new to computer graphics. In
Sec. 4, we present an overview of our general approach as well as a simple 1D ex-
ample to compare the reconstruction of a signal from CS with those of traditional
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techniques such as parametric fitting. Secs. 5 – 10 then show applications of this
framework starting with 2D signals and building up to more complex 4D scenes.
Finally, we end the chapter with some discussion and conclusions. We note that
since this paper is in fact a generalization of two previous papers [4,5], we have
taken the liberty to heavily draw from our own text from these papers and the
associated technical report [7], often verbatim, to maintain consistency across
all the publications. We also duplicate results as necessary for completeness of
this text.

2 Previous Work

Our framework allows to produce noise-free Monte Carlo rendered images with
a small set of samples by filling in the missing samples of the multidimensional
function using compressed sensing. Similar topics have been the subject of re-
search in the graphics community for many years. We break up the previous work
into algorithms that exploit transform-domain sparsity for rendering, algorithms
that accelerate the rendering process outright, algorithms that are used to fill
in missing sample information, and finally applications of compressed sensing in
computer graphics.

2.1 Transform Compression in Rendering

There is a long history of research into transform-based compression to accelerate
or improve rendering algorithms. We briefly survey some of the relevant work
here and refer readers to more in-depth surveys (e.g., [8,9]) for more detail. For
background on wavelets, the texts by Stollnitz et al. [10] and Mallat [11] offer
good starting points.

In the area of image rendering, transform compression techniques have been
used primarily for accelerating the computation of illumination. For example,
the seminal work of Hanrahan et al. [12] uses an elegant hierarchical approach
to create a multiresolution model of the radiosity in a scene. While it does not ex-
plicitly use wavelets, their approach is equivalent to using a Haar basis. This work
has been extended to use different kinds of wavelets or to subdivide along shadow
boundaries to further increase the efficiency of radiosity algorithms, e.g., [13–15].

Recently, interest in transform-domain techniques for illumination has been
renewed through research into efficient pre-computed radiance transfer methods
using bases such as spherical harmonics [16,17] or Haar wavelets [18,19]. Again,
these approaches focus on using the sparsity of the illumination or the BRDF
reflectance functions in a transform domain, not on exploiting the sparsity of
the final image.

In terms of using transform-domain approaches to synthesize the final image,
the most successful work has been in the field of volume rendering. In this
area, both the Fourier [20, 21] and wavelet domains [22] have been leveraged
to reduce rendering times. However, the problem they are solving is significantly
different than that of image rendering, so their approaches do not map well to
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the problem addressed in this work. Finally, perhaps the most similar rendering
approach is the frequency-based ray tracing work of Bolin and Meyer [23]. Like
our own approach, they take a set of samples and then try to solve for the
transform coefficients (in their case the Discrete Cosine Transform) that would
result in those measurements. However, the key difference is that they solve for
these coefficients using least-squares, which means that they can only reconstruct
the frequencies of the signal that have sufficient measurements as given by the
Nyquist-Shannon sampling theorem. Our approach, on the other hand, is based
on the more recent work on compressed sensing, which specifies that the sampling
rate is dependent on the sparsity of the signal rather than on its band-limit. This
allows us to reconstruct frequencies higher than that specified by the Nyquist
rate. We show an example of this in Sec. 4.1 that highlights this difference.
By posing the problem of determining the value of missing samples within the
framework of compressed sensing, we leverage the diverse set of tools that have
been recently developed for these kinds of problems.

2.2 Accelerating ray tracing and rendering

Most of the work in accelerating ray tracing has focused on novel data structures
for accelerating the scene traversal [24]. These methods are orthogonal to ours
since we do not try to accelerate the ray tracing process (which involves point-
sampling the multidimensional function) but rather focus on generating a better
image with less samples. However, there are algorithms to accelerate rendering
that take advantage of the spatial correlation of the final image, which in the end
is related to the sparsity in the wavelet domain. Most common is the process of
adaptive sampling [25,26], in which a fraction of the samples are computed and
new samples are computed only where the difference between measured samples
is large enough, e.g., by a measure of contrast. Unlike our approach, however,
adaptive sampling still computes the image in the spatial domain which makes
it impossible to apply arbitrary wavelet transforms. For example, in the 2D
missing pixel case of Sec. 5 we use the CDF 9/7 wavelet transform because it
has been shown to be very good at compressing imagery. In other sections, we
use sparsity in the Fourier domain. It is unclear how existing adaptive methods
could be modified to use bases like this.

There is also a significant body of work which attempts to reconstruct im-
ages from sparse samples by using specialized data structures. First, there are
systems which try to improve the interactivity of rendering by interpolating a
set of sparse, rendered samples, such as the Render Cache [27] and the Shading
Cache [28]. There are also approaches that perform interpolation while explicitly
observing boundary edges to prevent blurring across them. Examples include
Pighin et al.’s image-plane discontinuity mesh [29], the directional coherence
map proposed by Guo [30], the edge-and-point image data structure of Bala et
al. [31], and the real-time silhouette map by Sen [32,33]. Our work is fundamen-
tally different than these approaches because we never explicitly encode edges
or use a data structure to improve the interpolation between samples. Rather,
we take advantage of the compressibility of the final multidimensional signal in
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a transform domain in order to reconstruct it and produce the final image. This
allows us to faithfully reconstruct edges in the image, as can be seen by our
results.

2.3 Reconstruction of missing data

Our approach only computes a fraction of the samples and uses compressed sens-
ing to “guess” the values of the missing samples of the multidimensional scene
function. In computer graphics and vision, many techniques have been proposed
to fill in missing sample data. In the case of 2D signals such as images, techniques
such as inpainting [34] and hole-filling [35] have been explored. Typically, these
approaches work by taking a band of measured pixels around the unknown region
and minimizing an energy functional that propagates this information smoothly
into the unknown regions while at the same time preserving important features
such as edges. Although we could use these algorithms to fill in the missing pix-
els in our 2D rendering application, the random nature of the rendered pixels
makes our application fundamentally different from that of typical hole-filling,
where the missing pixels have localized structure due to specific properties of
the scene (such as visibility) which in our case are not available until render
time. Furthermore, these methods become a lot less effective and more complex
when trying to fill the missing data for higher dimensional cases, specially as we
get to 4D scene functions or larger. Nevertheless, we compare our algorithm to
inpainting in Sec. 5 to help validate our approach.

Perhaps the most successful approaches for reconstructing images from non-
uniform samples for the 2D case come from the non-uniform sampling commu-
nity, where this is known as the “missing data” problem since one is trying to
reconstruct the missing samples of a discrete signal. Readers are referred to Ch. 6
of the principal text on the subject by Marvasti [36] for a complete explanation.
One successful algorithm is known as ACT [37] which tries to fit trigonometric
polynomials (related to the Fourier series) to the point-sampled measurements
in a least-squares sense by solving the system using Toeplitz matrix inversion.
This is related to the frequency-based ray tracing by Bolin and Meyer [23] de-
scribed earlier. Another approach, known as the Marvasti method [38], solves the
missing data problem by iteratively building up the inverse of the system formed
by the non-uniform sampling pattern combined with a low pass filter. However,
both the ACT and Marvasti approaches fundamentally assume that the image
is bandlimited in order to do the reconstruction, something that is not true in
our rendering application. As we show later in this paper, our algorithm relaxes
the bandlimited assumption and is able to recover some of the high-frequency
components of the image signal. Nevertheless, since ACT and Marvasti repre-
sent state-of-the-art approaches in the non-uniform sampling community for the
reconstruction of missing pixels in a non-uniformly sampled image, we will com-
pare our approach against these algorithms in Sec. 5. Unfortunately, neither of
these algorithms is suitable for higher dimensional signals.
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2.4 Compressed sensing and computer graphics

In this paper, we use tools developed for compressed sensing to solve the prob-
lem of reconstructing rendered images with missing pixel samples. Although
compressed sensing has been applied to a wide range of problems in many fields,
in computer graphics there are only a few published works that have used CS.
Other than the work on compressive rendering on which this paper is based [4,5],
most of the other applications of CS in graphics are in the area of light-transport
acquisition [39–41]. The important difference between this application and our
own is that it is not easy to measure arbitrary linear projections of the desired
signal in rendering, while it is very simple to do so in light transport acquisition
through structured illumination. In other words, since computing the weighted
sum of a set samples is linearly harder than calculating the value of a single
sample, our approach for a rendering framework based on compressive sensing
had to be built around random point sampling. This will become more clear
as we give a brief introduction to the theory of compressed sensing in the next
section.

3 Compressed Sensing Theory

In this section, we summarize some of the key theoretical results of compressed
sensing in order to explain our compressive rendering framework. A summary of
the notation we shall use in this paper is shown in Table 1. Readers are referred
to the key papers of Candès et al. [42] and Donoho [43] as well as the extensive
CS literature available through the Rice University online repository [44] for a
more comprehensive review of the subject.

3.1 Theoretical background

The theory of compressed sensing allows us to reconstruct a signal from only a
few samples if it is sparse in a transform domain. To see how, suppose that we
have an n-dimensional signal f ∈ R

n we are trying to estimate with k random
point samples, where k � n. We can write this sampling process with the linear
sampling equation y = Sf , where S is an k× n sampling matrix that contains a
single “1” in each row and no more than a single “1” in each column to represent
each point-sampled value, and with zeros for all the remaining elements. This
maps well to our rendering application, where the n-pixel image we want to
render (f) is going to be estimated from only k pixel samples (y).

Initially, it seems that perfect estimation of f from y is impossible, given
that there are (n− k) pixels which we did not observe and could possibly have
any value (ill-posedness). This is where we use the key assumption of com-
pressed sensing: we assume that the image f is sparse in some transform domain
f̂ = Ψ−1f . Mathematically, the signal f̂ is m-sparse if it has at most m non-
zero coefficients (where m � n), which can be written in terms of the �0 norm
(which effectively “counts” the number of non-zero elements): ‖f̂‖0 ≤ m. This
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n size of final signal
k number of evaluated samples
m number of non-zero coefficients in transform domain
f high-resolution final signal, represented by an n × 1 vector

f̂ transform of the signal, represented by a n × 1, m-sparse vector
y k × 1 vector of samples of f computed by the ray tracer
S k × n sampling matrix of the ray tracer, s.t. y = Sf

Ψ n × n “synthesis” matrix, s.t. f = Ψf̂ , and its associated inverse Ψ−1

A k × n “measurement” matrix, A = SΨ

Table 1. Notation used in this paper.

is not an unreasonable assumption for real-world signals such as images, since
this fact is exploited in transform-coding compression systems such as JPEG
and MPEG. The basic idea of compressed sensing is that through this assump-
tion, we are able to eliminate many of the images in the (n − k)-dimensional
subspace which do not have sparse properties. To formulate the problem within
the compressed sensing framework, we substitute our transform-domain signal f̂
into our sampling equation:

y = Sf = SΨf̂ = Af̂ , (2)

where A = SΨ is a k × n measurement matrix that includes both the sampling
and compression bases. If we could solve this linear system correctly for f̂ given
y, we could then recover the desired f by taking the inverse transform. Unfor-
tunately, solving for f̂ is difficult to do with traditional techniques such as least
squares because the system is severely undetermined because k � n. However,
one of the key results in compressed sensing demonstrates that if k ≥ 2m and
the Restricted Isometry Condition (RIC) condition is met (Sec. 3.4), then we
can solve for f̂ uniquely by searching for the sparsest f̂ that solves the equation.
A proof of this remarkable conclusion can be found in the paper by Candès
et al. [42]. Therefore, we can pose the problem of computing the transform of
the final rendered image from a small set of samples as the solution of the �0-
optimization problem:

min ‖f̂‖0 s.t. y = Af̂ . (3)

Unfortunately, algorithms to solve Eq. 3 are NP-hard [45] because they in-
volve a combinatorial search of all m-sparse vectors f̂ to find the sparsest one
that meets the constraint. Fortunately, the CS research community has devel-
oped fast algorithms that find approximate solutions to this problem. In this
paper we use solvers such as ROMP and SpaRSA to compute the coefficients of
signal f̂ within the context of compressed sensing. We give an overview of these
algorithms in the following two sections.

3.2 Overview of ROMP algorithm

Since the solution of the �0 problem in Eq. 3 requires a brute-force combinatorial
search of all the the f̂ vectors with sparsity less than m, the CS research commu-
nity has been developing fast, greedy algorithms that find approximate solutions
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Algorithm 1 ROMP algorithm
Input: measured vector y, matrices A and A†, target sparsity m
Output: the vector f̂ , which is an m-sparse solution of y = Af̂
Initialize: I = ∅ and r = y
1: while r �= 0 and sparsity not met do
2: u ⇐ A†r /* multiply residual by A† to approx. larger coeffs of f̂ */
3: J ⇐ sort coefficients of u in non-increasing order
4: J0 ⇐ contiguous set of coefficients in J with maximal energy
5: I ⇐ I ∪ J0 /* add new indices to overall set */
6: /* find vector of I coeffs that best matches measurement */
7: f̂new ⇐ argmin

z : supp (z)=I

‖y − Az‖2

8: r ⇐ y − Af̂new /* recompute residual */
9: end while

10: return f̂new

to the �0 problem. One example is Orthogonal Matching Pursuit (OMP) [46],
which iteratively attempts to find the non-zero elements of f̂ one at a time. To do
this, OMP is given the measured vector y and measurement matrix A as input
and it finds the coefficient of f̂ with the largest magnitude by projecting y onto
each column of A through the inner product |〈y,aj〉| (where aj is the jth column
of A) and selecting the largest. After the largest coefficient has been identified,
we assume that this is the only non-zero coefficient in f̂ and approximate its
value by solving the y = Af̂ using least-squares. The new estimate for f̂ with a
single non-zero coefficient is then used to compute the estimated signal f , which
is subtracted from the original measurements to get a residual. The algorithm
then iterates again, using the residual to solve for the next largest coefficient
of f̂ , and so on. It continues to do this until an m-sparse approximation of the
transform domain vector is found.

Despite its simplicity, OMP has a weaker guarantee of exact recovery than
the �1 methods [47]. For this reason, Needell and Vershynin proposed a modifi-
cation to OMP called Regularized Orthogonal Matching Pursuit (ROMP) which
recovers multiple coefficients in each iteration, thereby accelerating the algorithm
and making it more robust to meeting the RIC. Essentially, ROMP approximates
the largest-magnitude coefficients of f̂ in a similar way to OMP, by projecting y
onto each column of A and sorts them in decreasing order. It then finds all of
the continuous sets of coefficients in this list whose largest coefficient is at most
twice as big as the smallest member, and selects the set with the maximal en-
ergy. These indices are added to a list that is maintained by the algorithm which
keeps track of the non-zero coefficients of f̂ , and the values of those coefficients
are computed by solving y = Af̂ through least-squares assuming that these are
the only non-zero coefficients. As in OMP, the new estimate for f̂ is then used
to compute the estimated signal f which is subtracted from y to get a residual.
The algorithm continues to iterate using the residual as the input and solving
for the next largest set of coefficients of f̂ until an m-sparse approximation of
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the transform domain vector is found, an error criteria is met, or the number of
iterations exceeds a certain limit without convergence. Although the �1 problem
requires N = O(m log k) samples to be solved uniquely, in practice we find that
the ROMP algorithm requires around N = 5m samples to start locking in to
the correct solution and N = 10m to work extremely robustly. Since we use
the ROMP algorithm in both 2D signal reconstruction applications (see Secs. 5
and 6), we provide a pseudocode description for reference in Alg. 1.

3.3 Overview of SpaRSA algorithm

Another algorithm we use in this paper is known as SpaRSA. One of the key
results of recent compressed sensing theory is that the problem of Eq. 3 can be
framed as an �1 problem instead, where the �1 norm is defined as the sum of the
absolute values of the elements of the vector (‖v‖1 =

∑k
i=1 |vi|):

min ‖f̂‖1 s.t. y = Af̂ . (4)

Candès et al. [42] showed that this equation has the same solution as Eq. 3
if A satisfies the RIC and the number of samples N = O(m log k), where m is
the sparsity of the signal. This fundamental result spurred the flurry of research
in compressed sensing, because it demonstrated that these problems could be
solved by tractable algorithms such as linear programming. Unfortunately, it
is still difficult to solve the �1 problem, so researchers in applied mathematics
have been working on novel algorithms to provide a fast solution. One successful
avenue of research is to reformulate Eq. 4 into what is known as the �2 – �1
problem:

min
f̂

1
2
‖y − Af̂‖2

2 + τ‖f̂‖1. (5)

In this formulation, the first term enforces the fit of the solution to the
measured values y while the second term looks for the smallest �1 solution (and
hence the sparsest solution). The parameter τ balances the optimization towards
one constraint or the other. Recently, Wright et al. proposed a novel solution to
Eq. 5 by solving a simple iterative subproblem with an algorithm they call Sparse
Reconstruction by Separable Approximation (SpaRSA) [48]. In this work, we use
SpaRSA to reconstruct scene signals f that are 3D and larger. Unfortunately,
even a simple explanation of the SpaRSA is beyond the scope of this paper.
Interested readers are referred to the technical report associated with our EGSR
paper [7] for more information.

3.4 Restricted Isometry Condition (RIC)

It is impossible to solve y = Af̂ for any arbitrary A if k � n because the system
is severely underdetermined. However, compressed sensing can be used to solve
uniquely for f̂ if matrix A meets the Restricted Isometry Condition (RIC):

(1 − ε)||v||2 ≤ ||Av||2 ≤ (1 + ε)||v||2, (6)

with parameters (z, ε), where ε ∈ (0, 1) for all z-sparse vectors v [47]. Effec-
tively, the RIC states that in a valid measurement matrix A, every possible set



Compressive Rendering of Multidimensional Scenes 11

of z columns of A will form an approximate orthogonal set. Another way to
say this is that the sampling and compression bases S and Ψ that make up
A must be incoherent. Examples of matrices that have been proven to meet
RIC include Gaussian matrices (with entries drawn from a normal distribution),
Bernoulli matrices (binary matrices drawn from a Bernoulli distribution), and
partial Fourier matrices (randomly selected Fourier basis functions) [49].

In this paper, we can use point-sampled Fourier (partial Fourier matrices)
for all of the applications with a scene function 3D or higher, but for the 2D
cases where we are reconstructing an image, the Fourier basis does not provide
enough compression (as shown in Fig. 1) and cannot be used. In this case, we
would like to use the wavelet transform which does provide enough compression,
but unfortunately a point-sampled wavelet basis does not meet the RIC. We
discuss our modifications to the wavelet basis to improve this and allow our
framework to be used for the reconstruction of 2D scene functions in Sec. 5.
With this theoretical background in place, we can now give an overview of our
algorithm and a simple 1D example.

4 Algorithm overview

The basic idea of the proposed rendering framework is quite simple. We use a
distributed ray tracing system that takes a small set of point samples of the
multidimensional scene function f(). In traditional Monte Carlo, these samples
would be added together to estimate the integral of f(), but in our case assume
that the signal f() is sparse in a transform domain and use the compressed
sensing theory described in the previous section to estimate a discrete recon-
struction of f(). This reconstructed version is then integrated down to form our
final image.

Since the CS solvers operate on discrete vector and matrices, we first ap-
proximate the unknown function f() with a discrete vector f of size n by taking
uniform samples of f(). This approximation is reasonable as long as n is large
enough, since it is equivalent to discretizing f(). For example, if we assume that
the signal f() is sparse in the Fourier basis composed of 2π-periodic basis func-
tions, then the signal f() must also be 2π periodic. Therefore, the samples that
form f must cover the 2π interval of f() to ensure periodicity and therefore
maintain the sparsity in the Discrete Fourier Transform domain. In this case, for
example, the ith component of f is given by fi = f( 2π

k (i− 1)). By sampling the
function f() in this manner when discretizing it, we guarantee that f will also be
sparse in transform domain Ψ , where the columns of Ψ are discrete versions of
the basis functions ψi from the equations above. Note that we do not explicitly
sample f() to create f (since we do not know f() a priori), but rather we assume
a n-length vector f exists which is the discrete version of the unknown f() and
which we will solve for through CS.

We can now take our k random measurements of f , as given by y = Sf where
S is the k × n sampling matrix, by point-sampling the original function f() at
the appropriate discrete locations. Therefore, unlike traditional Monte Carlo
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Fig. 2. Results of the simple example of Sec. 4.1. (a) Plot of the signal f(x) which
we want to integrate over the interval shown. (b) Magnitude of the Fourier Transform
of f(x). Since 3 cosines of different frequencies are added together to form f(x), its
Fourier Transform has six different spikes because of symmetry (so sparsity m = 6). (c)
Linear and (d) log plots of variance as a function of the number of samples to show the
convergence of the four different integration algorithms. The faint dashed lines in the
“random” and “stratified” curves (visible in the pdf) show the theoretical variance,
which matches the experimental results. The log plot clearly shows the “waterfall”
curve characteristic of compressed sensing reconstruction, where once the adequate
number of samples are taken the signal is reconstructed perfectly every time. In this
case, we need around 70 samples, which is roughly 10× the number of spikes in (b).
(e – h) Plots of the estimated value of the integral vs. the number of samples for one
run with the different integration algorithms. The correct value of the integral (100) is
shown as a gray line. We can see that the compressed sensing begins to approximate
the correct solution around k = 5m = 30 samples and then “snaps” to the right answer
at for k > 10m = 60, which is much more quickly than the other approaches.

approaches, our random samples do not occur arbitrarily along the continuous
domain of f(), but rather at a set of discrete locations that represent the samples
of f . Once the set of samples that form measurement vector y have been taken,
we use compressed sensing to solve for the coefficients that correspond to the
non-zero basis functions f̂ . We can then take the inverse transform f = Ψf̂ and
integrate it down to get our final image. To help explain how our algorithm
works, we now look at a simple 1D example.

4.1 Example of 1D Signal Reconstruction

At first glance, it might seem that what we are proposing to do is merely just
another kind of parametric fit, somehow fitting a function to our samples to
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approximate f(). Although we are fitting a function to the measured data, com-
pressed sensing offers us a fundamentally different way to do this than the tradi-
tional methods used for parametric fitting, such as least-squares. We can see the
difference with a simple 1D example. Suppose we want to compute the definite
integral from − 1

4 to 1
4 of the following function f(x), which is unknown to us a

priori but is shown in Fig. 2(a):

f(x) = α[aπ cos(2πax)] + β[bπ cos(2πbx)] + γ[cπ cos(2πcx)].

The signal is made up of three pure frequencies, and in this experiment we set
a = 1, b = 33, and c = 101 so that there is a reasonable range of frequencies
represented in the signal. This particular function is constructed so that the
analytic integral is easy to compute; the integral of each of the terms in square
brackets over the specified interval is equal to 1. This means that in this case,
the desired definite integral is

I =
∫ 1

4

− 1
4

f(x) dx = α+ β + γ.

In this experiment, we set α = 70, β = 20, and γ = 10, so that the desired
integral I = 100. Within the context of our rendering problem, we assume that
do not know f(x) in analytical form, so our goal is to compute the integral value
of 100 simply from a set of random point samples of f(x).

The most common way to do this in computer graphics is to use Monte Carlo
integration, which takes k uniformly-distributed, random samples over the entire
interval [− 1

4 ,
1
4 ] and use these to estimate the integral. Although the answer

fluctuates based on the position of our measurements, as we add more and more
samples the estimator slowly converges to the correct answer as can be seen in
the variance curves of Fig. 2(c, d) and the results of a single run while varying
the number of samples in (e). We can compute the theoretical variance of a
random Monte Carlo approach analytically which gives us a theoretical variance
shown in Fig. 2(c, d) as a thin, dashed line. We can see that the theoretical
variance calculated matches well with the experimental results.

The slow 1
k decay of variance with random Monte Carlo is less than desirable

for rendering applications, so a common variance-reduction technique is stratified
sampling. Fig. 2(f) shows the result of one run with this method, and indeed
we notice that the estimate of the integral gets closer to the correct solution
(shown by a thin gray line) more quickly than with the random approach. The
theoretical variance of the stratified approach can be computed in software by
computing the variance of each of the strata for every size k. The resulting curve
also matches the experimental results, even predicting a small dip in variance
around k = 101. However, stratified sampling still takes considerable time to
converge, so it is worthwhile to examine other techniques that might be better.

Another way we might consider computing the integral of this function from
the random samples is to try to fit a parametric model to the measurements and
then perform the integral on the model itself. Indeed, both our approach and
the parametric fit approach require us to know something about the signal (e.g.,
that it can be compactly represented with sinusoids). However, closer observa-
tion reveals that our framework is based on fundamentally different theory than



14 P. Sen, S. Darabi, and L. Xiao

typical methods for fitting parametric models and so it yields a considerably
different result.

To see why, let us work through the process of actually fitting a paramet-
ric sinusoidal model to our measured samples. Typically, this involves solving
a least-squares problem which in this case means solving y = Af̂ for the coef-
ficients of f̂ , where A = SΨ is the sampling matrix multiplied by the Fourier
basis. Because we are solving the problem with least squares, we need to have
a “thin” matrix (or at least square) for A, which means that the number of
unknown coefficients in f̂ can be at most k, matching the number of observa-
tions at y. Since the Fourier transform of f has two sets of complex conjugate
elements in f̂ , the highest frequency we can solve for uniquely in this manner is
at most k/2. This traditional approach is closely related to the Nyquist-Shannon
sampling theorem [50], well-known in computer graphics, which states that to
correctly reconstruct a signal we must have sampled at more than twice its
highest frequency.

Indeed, trying to fit a parametric model in this traditional manner means that
we only get correct convergence of the integral we have more samples than twice
the highest frequency c = 101, or around k = 202. As can be seen in Fig. 2(g),
the estimated value of the integral bounces around with fairly high variance
until this point and then locks down to I = 100 when we start having enough
samples to fit the sinusoids correctly. However, this process is not scalable, since
it is dependent on the highest frequency of the signal. If we set c = 1, 000,
we would need ten times more samples to converge correctly. Our compressed
sensing approach, on the other hand, has the useful property that its behavior
is independent of the highest frequency.

In another approach, we might consider solving the parametric fit problem
using a “fat” A matrix, so that the number of unknown elements in f̂ , which is n,
can be much bigger than k. Perhaps this will allow us to solve for higher frequency
sinusoids even though we do not have enough samples. In this case the problem is
under-determined and there could be many solutions with the same square error.
Traditionally, these kinds of problems are solved with a least-norm algorithm,
which finds the least-squares solution that also has the least norm in the �2 sense
(where �2 is the square-root of the sum of the squares of the components). In our
case the least-norm solution is given by f̂ln = AT (AAT )−1y. Unfortunately, this
works even worse than the least-squares fit for our example. It turns out that
there are many “junk” signals that have a lower �2 norm than the true answer
(because they contain lots of small values in their frequency coefficients instead
of a few large ones), yet they still match the measured values in the least-squares
sense.

Although these traditional methods for fitting parametric models are com-
monly used in computer graphics, they do not work for this simple example
because they are dependent on the frequency content of our signal. The theory
of compressed sensing, on the other hand, offers us new possibilities since it
states that the number of samples is dependent on the sparsity of the signal, not
the particular frequency content it may have. In this example, we can apply CS
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to solve for y = Af̂ and then integrate the signal as discussed in the previous
section. The results shown in Fig. 2(h) show that we “snap” to the answer after
about 70 samples, which makes sense since we have observed empirically that
ROMP typically requires 10 times more samples than the sparsity m, which is 6
in this case. At this point, the estimated value of the integral is 100.0030, where
the 0.003 error is caused by the discretization of f as compared to f(x). This is
the bias of our estimator, but it is considerably small especially considering the
value of the integral we are computing. Finally, we note that CS is able to recon-
struct the discrete signal f perfectly and consistently with k = 75, even though
we have less than one sample per period of the highest frequency (c = 101) in
the signal, well below the Nyquist limit.

Before we finish this discussion we should mention some of the implementa-
tion details used to acquire the results of Fig. 2. While the random Monte Carlo
and stratified experiments sample the analytic versions of f(x) directly to com-
pute the integral, the parametric and CS approaches need to solve linear systems
of equations and therefore use the discrete version f . For the CS experiments we
set the size of f and f̂ to be n = 212 +1, which means that the highest frequency
that we can solve for is 2048Hz. This is not a limiting factor, however, since we
can increase this value (e.g., our later experiments for antialiasing in Sec. 6 use
n = 220). When measuring the variance curves for random Monte Carlo, strat-
ified sampling, and parametric fit, we ran 250 trials for each k to reduce their
noisiness. The compressed sensing reconstruction was more consistent and we
only used 75 trials for each k to compute its variance. Note that the variance of
the CS approach is down to the 10−24 range when it has more than 70 samples,
which after 75 independent trials means that the value of the integral is rock
solid and stable at this point.

This simple example might help motivate our approach in theory, but we
need to validate our framework by using it to solve a real-world problem in
computer graphics. We spend the rest of the chapter discussing the application
of this framework to a set of different problems in rendering.

5 Application to 2D signals – Image reconstruction

In our first example, we begin by looking at the problem of image reconstruction
from a subset of pixels. The basic idea is to accelerate the rendering process by
simply computing a subset of pixels and then reconstructing the missing pixels
using the ones we measured. We plan to use compressed sensing to do this by
looking for the pixel values that would create the sparsest signal possible in a
transform domain.

In this case, since we are working with 2D images, the suitable compression
basis would be wavelets. Unfortunately, although wavelets are very good at com-
pressing image data, they are incompatible with the point-sampling basis of our
rendering system because they are not incoherent with point samples as required
by Restricted Isometry Condition (RIC) of compressed sensing. To see why, we
note that the coherence between a general sampling basis Ω and compression
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basis Ψ can be found by taking the maximum inner product between any two
basis elements of the two:

μ(Ω,Ψ) =
√
n · max

1≤j,k≤n
|〈ωj , ψk〉|. (7)

Because the matrices are orthonormal, the resulting coherence lies in the
range μ(Ω,Ψ) ∈ [1,

√
n] [51], with a fully incoherent pair having a coherence of

1. This is the case for the point-sampled Fourier transform, which is ideal for
compressed sensing but unfortunately is not suitable for our application because
of its lack of compressibility for 2D images as shown in Fig. 1. If we use a wavelet
as the compression basis (e.g., a 642 × 642 Daubechies-8 wavelet (DB-8) matrix
for n = 642), the coherence with a point-sampled basis is 32, which is only
half the maximum coherence possible (

√
n = 64). This large coherence makes

wavelets unsuitable to be used as-is in the compressed sensing framework.
In order to reduce coherency yet still exploit the wavelet transform, we

propose a modification to Eq. 2. Specifically, we assume that there exists a
blurred image fb which can be sharpened to form the original image: f = Φ−1fb,
where Φ−1 is a sharpening filter. We can now write the sampling process as
y = Sf = SΦ−1fb. Since the blurred image fb is also sparse in the wavelet
domain, we can incorporate the wavelet compression basis in the same way as
before and get y = SΦ−1Ψf̂b. We can now solve for the sparsest f̂b:

min ‖f̂b‖0 s.t. y = Af̂b, (8)

where A = SΦ−1Ψ, using the greedy algorithms such as OMP or ROMP. Once
f̂b has been found, we can compute our final image by taking the inverse wavelet
transform and sharpening the result: f = Φ−1Ψf̂b.

In this work, our filter Φ is a Gaussian filter, and since we can represent
the filtering process as multiplication in the frequency domain, we write Φ =
FHGF , where F is the Fourier transform matrix and G is a diagonal matrix
with values of a Gaussian function along its diagonal. Substituting this in to
Eq. 8, we get:

min ‖f̂b‖0 s.t. y = SFHG−1FΨf̂b. (9)

We observe that G−1 is also a diagonal matrix and should have the values
G−1

i,i along its diagonal. However, we must be careful when inverting the Gaussian
function because it is prone to noise amplification. To avoid this problem, we use
a linear Wiener filter to invert the Gaussian [52], which means that the diagonal
elements of our inverse matrix G−1 have the form G−1

i,i = Gi,i/(G2
i,i + λ).

Since the greedy algorithms (such as ROMP) we use to solve Eq. 3 require a
“backward” matrix A† that “undoes” the effect of A (i.e., ‖A†Av‖ ≈ ‖v‖),
where A = SΦ−1Ψ, we use a backwards matrix of the form A† = Ψ−1ΦST =
Ψ−1FHGFST .

Note that for real image sizes, the matrix A will be too large to store in
memory. For example, to render a 1024× 1024 image with a 50% sampling rate,
our measurement matrix A will have k×n = 5.5×1011 elements. Therefore, our
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Fig. 3. Coherence vs. variance of Gaussian matrix G. Since G is in the frequency
domain, larger variance means a smaller spatial filter. As the variance grows, the co-
herence converges to 32, the coherence of the point-sampled, 642 × 642 DB-8 matrix.
The coherence should be as small as possible, which suggests a smaller variance for
our Gaussian filter in the frequency domain. However, this results in a blurrier image
fb which is harder to reconstruct accurately. The optimal values for the variance were
determined empirically and are shown in Table 2 for different sampling rates.

implementation must use a functional representation for A that can compute
the required multiplications such as Af̂b on the fly as needed.

The addition of the sharpening filter means that our measurement matrix
is composed of two parts: the point-samples S and a “blurred wavelet” matrix
Φ−1Ψ which acts as the compression basis. This new compression basis can be
thought of as either blurring the image and then taking the wavelet transform,
or applying a “filtered wavelet” transform to the original image. To see how this
filter reduces coherence, we plot the result of Eq. 7 as a function of the variance
σ2 of Gaussian function of G in Fig. 3 for our 642 × 642 example. Note that the
Gaussian G is in the frequency domain, so as the variance gets larger the filter
turns into a delta function in the spatial domain and the coherence approaches
32, the value of the unfiltered coherence. As we reduce the variance of G, the
filter gets wider in the spatial domain and coherence is reduced by almost a
factor of 2.

Although it would seem that the variance of G should be as small as possible
(lowering coherence), this increases the amount of blur of fb and hence the noise
in our final result due to inversion of the filter. We determined the optimal
variances empirically on a single test scene and used the same values for all our
experiments (see Table 2). In the end, the reduction of coherence by a factor of
2 through the application of the blur filter was enough to yield good results with
compressed sensing.

To test our algorithm, we integrated our compressive sensing framework into
both an academic ray tracing system (PBRT [24]) and a high-end, open source
ray tracer (LuxRender [53]). The integration of both was straightforward since
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% 1/σ2 λ % 1/σ2 λ

6% 0.000130 0.089 53% 0.000015 0.259
13% 0.000065 0.109 60% 0.000014 0.289
25% 0.000043 0.209 72% 0.000013 0.289
33% 0.000030 0.209 81% 0.000011 0.299
43% 0.0000225 0.234 91% 0.000008 0.399

Table 2. Parameters for the Gaussian (1/σ2) and Wiener filters (λ). We iterated over
the parameters of the Gaussian filter to find the ones that yielded the best recon-
struction for the ROBOTS scene at the given sampling rates (%) for 1024 × 1024
reconstruction.

we only had to control the pixels being rendered (to compute only a fraction
of the pixels), and then add on a reconstruction module that performed the
ROMP algorithm. In order to select the random pixels to measure, we used the
Boundary sampling method of the Poisson-disk implementation from Dunbar
and Humphreys [54] to space out the samples in image-space. For LuxRender,
for example, these positions were provided to the ray tracing system through
the PixelSampler class. The “low discrepancy” sampler was used to ensure that
samples were only made in the pixels selected. After the ray tracer evaluated the
samples, the measurement was recorded into a data structure that was fed into
the ROMP solver. The rest of the ray tracing code was left untouched.

The ROMP solver was based on the code by Needell et al. [47] available on
their website but re-written in C++ for higher performance. We leverage the
Intel Math Kernel Library 10.1 (MKL) libraries [55] to accelerate linear algebra
computation and to perform the Fast-Fourier Transform for our Gaussian filter.
In addition, we use the Stanford LSQR solver [56] to solve the least-squares step
at the end of ROMP. The advantage of LSQR is that it is functional-based so we
do not need to represent the entire A matrix in memory since it can get quite
large as mentioned earlier.

To describe the implementation of the functional version of the measurement
matrix A, we first recall that A = SFHG−1FΨ from Eq. 9. The inverse wavelet
transform Ψ was computed using the lifting algorithm [11], and the MKL library
was used to compute the Fourier and inverse-Fourier transforms of the signal.
To apply the filter, we simply weighted the coefficients by the Gaussian function
described in the algorithm. After applying the inverse Fourier transform to the
filtered signal, we then simply take the samples from the desired positions. This
gives us a way to simulate the effect of matrix A in our ROMP algorithm without
explicitly specifying the entire matrix. In addition, we found empirically that
ROMP behaved better when the maximum number of coefficients added in each
iteration was bounded. For the experiments in this chapter, we used a bound of
2k/i, where k is the number of pixels measured and i is the maximum number
of ROMP iterations which we set to 30.

After the renderer finishes computing the samples, ROMP operates on the
input vector y. We set the target sparsity to one fifth of the number of samples
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Scene Pre-process Full Render CS Recon %

Robots 0.25 611 11.9 1.9%
Watch 0.28 903 13.5 1.4%
Sponza 47 634 12.0 1.9%

Table 3. Timing results in minutes of our algorithm. Pre-process includes loading the
models, creating the acceleration data structures. Full render is the time to sufficiently
sample every pixel to generate the ground-truth image. CS Recon is the time it took
our reconstruction algorithm to solve for a 1024 × 1024 image with 75% of samples.
The last column shows the percentage of rays that could be traced instead of using our
approach. Because our CS reconstruction is fast, this number is fairly small. We ignore
post-processing effects because these are in the order of seconds and are negligible.
We also do not include the cost of the interpolation algorithm since it took around 10
seconds to triangulate and interpolate the samples.

k, which has been observed to work well in the CS literature [57]. ROMP uses
the Gaussian filter of Eq. 9 as part of the reconstruction process. The parameters
of the Gaussian filter were set through iterative experiments on a single scene,
but once set they were used for all the scenes in this chapter. Table 2 shows the
actual values used in our experiments. If a sampling rate is used that is not in
the table, the nearest entries are interpolated. The compression basis used in
this work is the Cohen-Daubechies-Feauveau (CDF) 9-7 biorthogonal wavelet,
which is particularly well-suited for image compression and is the wavelet used in
JPEG2000 [58]. Since we are dealing with color images, the image signal must be
reconstructed in all three channels: R, G, and B. To accelerate reconstruction, we
transform the color to YUV space and use the compressive rendering framework
for only the Y channel and use the Delaunay-interpolation (described below) for
the other two. The error introduced by doing this is not noticeable as we are
much more sensitive to the Y channel in an image than the other the two.

To compare our results, we test our approach against a variety of other al-
gorithms that might be used to fill in the missing pixel data in the renderer.
For example, we compare against the popular inpainting method of Bertalmio
et al. [34], using the implementation by Alper and Mavinkurve [59]. To compare
against approaches from the non-uniform sampling community, we implemented
the Marvasti algorithm [38] and used the MATLAB version for the ACT algo-
rithm provided in the Nonuniform Sampling textbook [36]. Finally, rendering
systems in practice typically use interpolation methods to estimate values be-
tween computed samples. Unfortunately, many of the convolution-based methods
that work so well for uniform sampling simply do not work when dealing with
non-uniform sample reconstruction (see, e.g., the discussion by Mitchell [26]).
For this work we implemented the piece-wise cubic multi-stage filter described
by Mitchell [26], with the modification that we put back the original samples
at every stage to improve performance. Finally, we also implemented the most
common interpolation algorithm used in practice, which uses Delaunay triangu-
lation to mesh the samples and then evaluates the color of the missing pixels in
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Fig. 4. Run-time complexity of our ROMP reconstruction algorithm, where n is the
total size of our image (width × height). The curve of n log n is shown for comparison.
We tested our algorithm on images of size 32×32 all the way through 2048×2048. Even
at the larger sizes, the performance remained true to the expected behavior. Note that
the complexity of the reconstruction algorithm is independent of scene complexity.

between by interpolating each triangle of the mesh, e.g., as described by Painter
and Sloan [60]. This simple algorithm provides a piece-wise linear reconstruction
of the image, which turned out to be one of the better reconstruction techniques.

The different algorithms were all tested on a Dell Precision T3400 with a
quad-core, 3.0 Ghz Intel Core2 Extreme CPU QX6850 CPU with 4GB RAM
capable of running 4 threads. The multi-threading is used by LuxRender during
pixel sampling and by the Intel MKL library when solving the ROMP algorithm
during reconstruction. Since most of the reconstruction algorithms have border
artifacts, we render a larger frame and crop out a margin around the edges. For
example, the 1000 × 1000 images were rendered at 1024 × 1024 with a 12-pixel
border.

5.1 Timing performance

In order for the proposed framework to be useful, the CS reconstruction of step
2 has to be fast and take less time than the alternative of simply brute-force
rendering more pixels. Table 3 shows the timing parameters of various scenes
rendered with LuxRender. We see that the CS step takes approximately 10 min-
utes to run for a 1024 × 1024 image with 75% samples with our unoptimized
C implementation. Since the full-frame rendering times are on the order of 6 to
15 hours, the CS reconstruction constitutes less than 2% of the total rendering
time, which means that in the time to run our reconstruction algorithm only 2%
of extra pixels could be computed. On the other hand, the inpainting implemen-
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Scene Interp Cubic ACT Marvasti Inpaint CS

Robots 2.00 4.94 1.98 2.11 4.24 1.72
Watch 6.42 11.00 6.15 6.68 15.00 5.34
Sponza 2.38 6.77 2.38 2.65 4.70 2.11

Table 4. MSE performance of the various algorithms (×10−4) for different scenes. All
scenes were sampled with 60% of pixel samples.

tation we tested took approximately one hour to compute the missing pixels,
making our ROMP reconstruction reasonably efficient by comparison.

We also examine the run-time complexity of the ROMP reconstruction as a
function of image size to see how the processing times would scale with image
size for images from 32×32 to 2048×2048 (see Fig. 4). We can see that it behaves
as O(n log n) as predicted by the model. For the image sizes that we are dealing
with (≤ 107 pixels) this is certainly acceptable, given the improvement in image
quality we get with our technique. Finally, we note that our algorithm runs in
image-space so it is completely independent of scene complexity. On the other
hand, rendering algorithms scale as O(n), but the constants involved depend on
scene complexity and have a significant impact on the rendering time. Over the
past few decades, feature film rendering times have remained fairly constant as
advances in hardware and algorithms are offset by increased scene complexity.
Since our algorithm is independent of the scene complexity, it will continue to
be useful in the foreseeable future.

5.2 Image quality

Standard measures for image quality are typically �2 distance measures. In this
work, we use the mean squared error (MSE) assuming that the pixels in the
image have a range of 0 to 1, and compare the reconstructed images from all the
approaches to the ground-truth original. Table 4 shows the MSE for the various
algorithms we tested: the first two are interpolation algorithms, followed by the
two algorithms from the non-uniform sampling community, then the result of
inpainting and finally the result of the CS-based reconstruction proposed in this
work. Our algorithm has the lowest MSE, something that we observed in all our
experiments.

A few additional points are worth mentioning. First of all, we noticed that
the inpainting algorithm performed fairly poorly in our experiments. The reason
for this is that in our application the holes are randomly positioned, while these
techniques require bands of known pixels around the hole (i.e., spatial locality).
Unfortunately, this is not easy to do in a rendering system since we cannot cluster
the samples a priori without knowledge of the resulting image. Also disappoint-
ing was Mitchell’s multistage cubic filter, which tended to overblur the image
when we set the kernel large enough to bridge the larger holes in the image.
Although the algorithms from the non-uniform sampling community (ACT and
Marvasti) perform better, they are on par with the Delaunay-interpolation used
in rendering which works remarkably well.
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Fig. 5. Log error curves as a function of the number of samples for four test scenes
using our technique and the best two other competing reconstruction algorithms. Our
CS reconstruction beats both Delaunay-interpolation (D. int) as well as ACT, requiring
5% to 10% less samples to achieve a given level of quality.

To see how our algorithm would work at different sampling rates, we compare
it against the two best competing methods (Delaunay-Interpolation and ACT)
for two of our scenes in Fig. 5. We observe that to achieve a given image quality,
Delaunay interpolation and ACT require about 5% to 10% more samples than
our approach. When the rendering time is 10 hours, this adds up to an hour
of savings to achieve comparable quality. Furthermore, since our algorithm is
completely independent of scene complexity, the benefit of our approach over
interpolation becomes more significant as the rendering time increases.

However, MSE is not the best indicator for visual quality, which is after
all the most important criterion in high-end rendering. To compare the visual
quality of our results, we refer the readers to Fig.12 at the end of the chapter.
We observe that compressive rendering performs much better than interpolation
in regions with sharp edges or those that are slightly blurred, a good property
for a rendering system. To see this, we direct readers to the second inset of the
robots scene in Fig. 12. Although the fine grooves in the robot’s arm cannot
be reconstructed faithfully by any of the other algorithms, compressed sensing is
able to do this by selecting the values for the missing pixel locations that yield
a sparse wavelet representation.

Another good example can be found on the third row of the watch scene.
Here there is a pixel missing between two parts of the letter “E,” which our
algorithm is the only one to be able to correctly reconstruct. All other techniques
simply interpolate between the samples on either side of the missing pixel and
fill in this sample incorrectly. However, since clean, straight lines are more sparse
than the jumbled noise estimated by the other approaches, they are selected by
our technique. Although the ACT algorithm performs reasonably well overall,
it suffers from ringing when the number of missing samples is high and there
is a sharp edge (see e.g., the last inset of watch) because of the fitting of
trigonometric polynomials to the point samples.
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Fig. 6. Illustration of our antialiasing algorithm. (a) Original continuous signal
f(x) to be antialiased over the 4 × 4 pixel grid shown. (b) In our approach, we first
take k samples of the signal aligned on an underlying grid of fixed resolution n. This is
equivalent of taking k random samples of discrete signal f . (c) The measured samples
form our vector of measurements y, with the unknown parts of f shown in green. Using
ROMP, we solve y = Af̂ for f̂ , where A = SΨ. S is the sampling matrix corresponding
to the samples taken, Ψ is the blurred-wavelet basis described in Sec. 5. (d) Our
approximation to f , computed by applying the synthesis basis to f̂ (i.e., f = Ψf̂). We
integrate this approximation over each pixel to get our antialiased result.

6 Application to 2D signals – Antialiasing

In this section, we present another example of 2D scene reconstruction by ap-
plying our framework to the problem of box-filtered antialiasing. The basic idea
is simple (see overview in Fig. 6). We first take a few random point samples of
the scene function f() per pixel. Unlike the previous section, we are no longer
dealing with pixels of the image but rather samples on an underlying grid of
higher resolution than the image that matches the size of the unknown discrete
function f and is aligned with its samples. We then use ROMP to approximate
a solution to Eq. 3 which can then be used to calculate f . Once we have f , we
can integrate it over the pixel to perform our antialiasing.

The observation is that if f is sparse in the transform domain, we will need
only a small set of samples to evaluate this integral accurately. Fig. 7 shows a
visual comparison of our approach against stratified and random supersampling
which are also used for antialiasing images. This is very similar to our previous
approach, except now we have introduced the notion of applying integration to
the reconstructed function to produce the final image.

7 Application to 3D signals – Motion Blur

We now describe the application of our framework to the rendering of motion
blur, which involves the reconstruction of a 3D scene. Motion blur occurs in
dynamic scenes when the projected image changes as it is integrated over the
time the camera aperture is open. Traditionally, Monte Carlo rendering systems
emulate motion blur by randomly sampling rays over time and accumulating
them together to estimate the integral [61]. Conceptually, our approach is very
similar to that of our antialiasing algorithm. We first take a set of samples of
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Fig. 7. Visual comparison for Garden scene. Each row has a different number of
samples/pixel (from top to bottom: 1, 4).

the scene y, except that now the measurements are also spaced out in time to
sample the discrete spatio-temporal volume f , which represents a set of video
frames over the time the aperture was open. We then use compressed sensing
to reconstruct f̂ , the representation of the volume in the 3D Fourier transform
domain Ψ. After applying the inverse transform to recover an approximation to
the original f , we can then integrate it over time to achieve our desired result.
An example of the computed motion blur is shown in Fig. 8.

8 Application to 3D signals – Video

An obvious extension to the motion blur application of the previous section is to
view the individual frames of the reconstructed spatio-temporal volume directly,
resulting in an algorithm to render animated sequences. This is a significant
advantage over the more complex adaptive approaches that have been proposed
for rendering (e.g., MDAS [62] or AWR [63]) which are difficult to extend to
animated scenes because of their complexity. This is the reason that these pre-
vious approaches have dealt exclusively with the rendering of static imagery. To
generate an animated sequence, these approaches render a set of static frames
by evaluating each frame independently and do not take into account their tem-
poral coherence. Our approach, on the other hand, uses compressed sensing to
evaluate a sparse version of the signal in x, y, and t in the 3D Fourier domain,
so it fully computes the entire spatio-temporal volume which we can view as
frames in the video sequence.
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Fig. 8. Visual comparison of motion blur results for the Train scene. The ref-
erence image was rendered with 70 temporal samples/pixel, while the other two where
rendered with a single random sample per pixel in time. Our result was reconstructed
assuming a spatio-temporal volume of 24 frames. Images were rendered at a resolution
of 1000 × 1000.

To demonstrate this, we show individual frames in Fig. 9 from the dynamic
train scene of Fig. 8. For comparison, we implemented an optimized linear in-
terpolation using a 3-D Gaussian kernel, which is the best convolution methods
can do when the sampling rate is so low. We also compare against our earlier
compressive rendering work [5], which reconstructs the set of static images indi-
vidually using sparsity in the wavelet domain. The second column of Fig. 9 shows
the missing samples in green, which results in an image that is almost entirely
green when we have a 1% sampling rate (only 1/100 pixels in the spatio-temporal
volume are calculated). It is remarkable that our algorithm can reconstruct a
reasonable image even at this extremely low sampling density, while the other
two approaches fail completely.

This suggests that our technique could be useful for pre-visualization, since
we get a reasonable image with 100× less samples. The reconstruction time is less
than a minute per frame using the unoptimized C++ SpaRSA implementation,
while the rendering time is 8 minutes per frame on an Intel Xeon 2.93 GHz CPU-
based computer with 16 GB RAM. This means that the ground-truth reference
128-frame video would take over 17 hours to compute. On the other hand, using
our reconstruction with only 1% of samples we get a video with a frame shown
in Fig. 9 (right image) in less than 2 hours.

9 Application to 4D signals – Depth of Field

We now show the application of our framework to a 4D scene function to demon-
strate the rendering of depth-of-field. Monte Carlo rendering systems compute
depth-of-field by estimating the integral of the radiance of incoming rays over
the aperture of the lens through a set of random points on the virtual lens [61].
This means that we must choose two additional random parameters for each
sample which tell us the position the ray passes through the virtual lens.
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Fig. 9. Reconstructing frames in an animated sequence. We can use our ap-
proach to render individual frames in an animated sequence and leverage the coherence
both spatially and temporally in the Fourier domain. The three rows represent different
frames in the train sequence with the sampling rate varied for each (1% for the top row,
10% for the middle, and 25% for the bottom). The first column shows the reference
frame of the fully-rendered sequence, the second column shows the positions of the sam-
ples (shown in white), the third column shows the samples available for this particular
frame (unknown samples shown in green), the fourth column shows a reconstruction by
convolving the samples with an optimized 3-D Gaussian kernel with variance adjusted
for the sampling rate (best possible linear filter), the fifth column shows the results
of reconstructing each frame separately using the 2D algorithm from Sec. 5, and the
last column is reconstructs the entire 3-D volume using a 3D Fourier transform. These
images are rendered at 512 × 512 with 128 frames in the video sequence.

Therefore, in this application we parameterize each sample by its image-
space coordinate (x, y) and these two additional parameters (u, v). As mentioned
in the previous sections, since our compressed sensing reconstruction works on
discrete positions, we uniformly choose the positions on the virtual lens to lie on
a grid. The proposed framework is general and therefore easy to map to this new
problem. We take our sample measurements y by sampling this new 4D space,
and then reconstruct the whole space f using compressed sensing by assuming the
sparsity in the 4D Fourier domain. For this example, we use the SpaRSA solver
to compute the sparse transform-domain signal f̂ . The final image is calculated
in the end by integrating the reconstructed 4D signal over all u and v for each
pixel. Fig. 10 shows an example of the output of algorithm for the depth-of-field.

10 Application to 4D signals – Area Light Source

We can also apply the proposed framework to reconstruct a 4D scene with an
area light source. This extension is fairly similar to that of the depth-of-field
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Fig. 10. Visual comparison of depth-of-field results for the Dragon scene. The
reference image was rendered with 256 samples per pixel. Our result was generated by
reconstructing a signal of size 340× 256× 16× 16 and integrating the 16× 16 samples
over (u, v) for each of the 340 × 256 pixels.

effect, with the only difference in that here the two random variables represent
points on the area light source. In this way, we parametrize each sample by its
image-space coordinate (x, y) along with the position on the area light source
(p, q). Again, we sample this 4D space and reconstruct it with SpaRSA assuming
the sparsity in the 4D Fourier domain. Finally, we integrate over the area light
coordinates p and q for each pixel in the reconstructed space to determine the
final pixel color. Fig. 11 shows an example of the result of the algorithm for an
area light source.

11 Discussion

The framework proposed in this chapter is fairly general and as shown in these
last few sections it can reconstruct a wide range of Monte Carlo effects. How-
ever, there are some issues that currently affect its practical use for production
rendering. One of the current limiting factors for the performance of the system
is the speed of the reconstruction by the solver. In this work, we used C++
implementations of ROMP [47] and SpaRSA [48], but these were still relatively
slow (requiring tens of minutes for some of the reconstructions) which decreases
the performance of the overall system. However, the applied mathematics com-
munity is constantly developing new CS solvers, and there are already solvers
that appear to be much faster than ROMP or SpaRSA that we are just starting
to experiment with. There is also a possibility to implement the CS solver on
the GPU, which would give us a further speed up for our algorithm.

Another issue is the memory usage of the algorithm. Currently, the solvers
need to store the entire signal f (or its transform f̂) in memory while the solver
is calculating its components. As the dimension of our scene function grows, the
size of f grows exponentially. For example, if we want to do compressive rendering
for a 6D scene with depth-of-field and an area light source, say with an image
resolution of 1024 × 1024 and sample grids of 16 × 16 for a lens and an area
light source, we would have to store an f of size n = 236 entries, which would
require 256 GB of memory. Therefore, our current approach suffers from the
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Fig. 11. Visual comparison of area light source results for the Buddha scene.
The reference image was rendered with 256 samples per pixel. Our result was generated
by reconstructing a signal of size 300×400×16×16 and integrating the 16×16 samples
over (p, q) for each of the 300 × 400 pixels.

“curse of dimensionality” that can plague other approaches for multidimensional
signal integration. We are currently working on modifying the solvers to ease the
memory requirements of the implementation.

Nevertheless, this chapter presents a novel way to look at the Monte Carlo
rendering by treating it as a multidimensional function that we can reconstruct
fully by assuming that it is sparse in a transform domain using the tools from
compressed sensing. This work might encourage other researchers to explore new
ways to solve the rendering problem.

12 Conclusion

In this chapter, we have presented a general framework for compressive rendering
that shows how we can use a distributed ray tracing system to take a small
set of point samples of a multidimensional function f(), which we then can
approximately reconstruct using compressed sensing algorithms such as ROMP
and SpaRSA by assuming sparsity in a transform domain. After reconstruction,
we can then integrate the signal down to produce the final rendered image. This
algorithm works for a general set of Monte Carlo effects, and we demonstrate
results with motion-blur, depth-of-field, and area light sources.
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13. Gortler, S.J., Schröder, P., Cohen, M.F., Hanrahan, P.: Wavelet radiosity. In:
SIGGRAPH ’93. (1993) 221–230

14. Lischinski, D., Tampieri, F., Greenberg, D.P.: Combining hierarchical radiosity
and discontinuity meshing. In: SIGGRAPH. (1993) 199–208
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Fig. 12. Results of scenes with the reconstruction algorithms, each with a different % of
computed samples. From top to bottom: robots (60%), watch (72%), sponza (87%).
The large image shows the ground truth (GT) rendering to show context. The smaller
columns show the ground truth (GT) of the inset region and the ray-traced pixels
(unknown pixels shown in green), followed by the results of Delaunay interpolation (D.
int), ACT, inpainting, and compressed sensing (CS). It can be seen that our algorithm
produces higher-quality images than the others.


