ECE 154A
Introduction to Computer Architecture

Introduction
What this class is about

Coordination of many levels of abstraction

Hardware
- Processor
- Memory
- I/O system
- Datapath & Control
- Digital Design
- Circuit Design
- Transistors

Software
- Application (ex: browser)
- Compiler
- Assembler
- Operating System
- (Mac OS X)

Instruction Set Architecture

ECE 154A

Coordination of many *levels of abstraction*
Few historical trends

- EDSAC, University of Cambridge, UK, 1949
 - On of the first digital store-program computer
 - Mercury delay lines for memory
 - Derated vacuum tubes for logic
 - Up to ~800 36-bit words

- Intel Core i7-2600K Sandy Bridge (2011-)
 - 32 nm process
 - 1.16 billion transistors
 - Chip area 216 mm²
 - 64 bit
 - 3.4 GHz
 - 4 cores
 - 8M cache

How did we get there?
Few historical trends

- EDSAC, University of Cambridge, UK, 1949
- Intel Core i7-2600K Sandy Bridge (2011-)

- On of the first digital store-program computer
- Mercury delay lines for memory
- Derated vacuum tubes for logic
- Up to ~800 36-bit words
- Intel Core i7-2600K Sandy Bridge (2011-)

- ~2x trans. per chip every 2 years
- 32 nm process
- 1.16 billion transistors
- Chip area 216 mm²
- 64 bit
- 3.4 GHz
- 4 cores
- 8M cache
Few historical trends
What is next?

- Need for novel computer architectures due to
 - emergence of new computing classes

- Emerging challenges:
 - Looming end of Moore’s law
 - “Power Wall” due to the end of Dennard scaling (as transistors get smaller the power density no longer remains constant)
 - “Memory Wall” due to growing gap in performance metrics between memory and logic components

Bell’s law of computing classes

“Roughly every decade a new, lower priced computer class forms based on a new programming platform, network, and interface resulting in new usage and the establishment of a new industry.” (Gordon Bell)