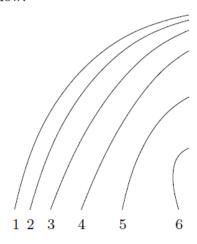

ECE271A HW2


Spring 14

Textbook problems:

3.2 Level sets of convex, concave, quasiconvex, and quasiconcave functions. Some level sets of a function f are shown below. The curve labeled 1 shows $\{x \mid f(x) = 1\}$, etc.

Could f be convex (concave, quasiconvex, quasiconcave)? Explain your answer. Repeat for the level curves shown below.

3.15 A family of concave utility functions. For $0 < \alpha \le 1$ let

$$u_{\alpha}(x) = \frac{x^{\alpha} - 1}{\alpha},$$

with dom $u_{\alpha} = \mathbf{R}_{+}$. We also define $u_{0}(x) = \log x$ (with dom $u_{0} = \mathbf{R}_{++}$).

- (a) Show that for x > 0, $u_0(x) = \lim_{\alpha \to 0} u_{\alpha}(x)$.
- (b) Show that u_{α} are concave, monotone increasing, and all satisfy $u_{\alpha}(1) = 0$.

These functions are often used in economics to model the benefit or utility of some quantity of goods or money. Concavity of u_{α} means that the marginal utility (i.e., the increase in utility obtained for a fixed increase in the goods) decreases as the amount of goods increases. In other words, concavity models the effect of satiation.

- 3.16 For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave.
 - (a) $f(x) = e^x 1$ on **R**.
 - (b) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
 - (c) $f(x_1, x_2) = 1/(x_1 x_2)$ on \mathbb{R}^2_{++} .
 - (d) $f(x_1, x_2) = x_1/x_2$ on \mathbb{R}^2_{++} .
 - (e) $f(x_1, x_2) = x_1^2/x_2$ on $\mathbf{R} \times \mathbf{R}_{++}$.
 - (f) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$, on \mathbf{R}_{++}^2 .
- 4.1 Consider the optimization problem

minimize
$$f_0(x_1, x_2)$$

subject to $2x_1 + x_2 \ge 1$
 $x_1 + 3x_2 \ge 1$
 $x_1 \ge 0, \quad x_2 \ge 0.$

Make a sketch of the feasible set. For each of the following objective functions, give the optimal set and the optimal value.

- (a) $f_0(x_1, x_2) = x_1 + x_2$.
- (b) $f_0(x_1, x_2) = -x_1 x_2$.
- (c) $f_0(x_1, x_2) = x_1$.
- (d) $f_0(x_1, x_2) = \max\{x_1, x_2\}.$
- (e) $f_0(x_1, x_2) = x_1^2 + 9x_2^2$.

Additional exercise problems:

- 1.7 Dual cones in \mathbb{R}^2 . Describe the dual cone for each of the following cones.
 - (a) $K = \{0\}.$
 - (b) $K = \mathbf{R}^2$.
 - (c) $K = \{(x_1, x_2) \mid |x_1| \le x_2\}.$
 - (d) $K = \{(x_1, x_2) \mid x_1 + x_2 = 0\}.$
- 2.2 A general vector composition rule. Suppose

$$f(x) = h(g_1(x), g_2(x), \dots, g_k(x))$$

where $h: \mathbf{R}^k \to \mathbf{R}$ is convex, and $g_i: \mathbf{R}^n \to \mathbf{R}$. Suppose that for each i, one of the following holds:

- h is nondecreasing in the ith argument, and g_i is convex
- h is nonincreasing in the ith argument, and g_i is concave
- g_i is affine.

Show that f is convex. (This composition rule subsumes all the ones given in the book, and is the one used in software systems such as CVX.) You can assume that $\operatorname{dom} h = \mathbf{R}^k$; the result also holds in the general case when the monotonicity conditions listed above are imposed on \tilde{h} , the extended-valued extension of h.

2.12 Continued fraction function. Show that the function

$$f(x) = \frac{1}{x_1 - \frac{1}{x_2 - \frac{1}{x_3 - \frac{1}{x_4}}}}$$

defined where every denominator is positive, is convex and decreasing. (There is nothing special about n = 4 here; the same holds for any number of variables.)

3.2 'Hello World' in CVX. Use CVX to verify the optimal values you obtained (analytically) for exercise 4.1 in Convex Optimization.