ECE271A HW3

Textbook problems:

3.36 Derive the conjugates of the following functions.
(a) Maz function. f(z) = max;—1,...,

3.49 Show that the following functions are log-concave.

(a) Logistic function: f(z) =e€"/(1+ €*) with dom f = R.

3.54 Log-concavity of Gaussian cumulative distribution function. The cumulative distribution
function of a Gaussian random variable,
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is log-concave. This follows from the general result that the convolution of two log-concave
functions is log-concave. In this problem we guide you through a simple self-contained
proof that f is log-concave. Recall that f is log-concave if and only if f"(z)f(z) < f"(m)?
for all =

(a) Verify that f”(z)f(x) < f'(z)? for > 0. That leaves us the hard part, which is to
show the inequality for = < 0.

(b) Verify that for any t and & we have t2/2 > —a?/2 + xt.
(c) Using part (b) show that et /2 < ¢ /27t Conclude that

/ et/ dt < € /2/ e Tt dt.
— oo —0o

(d) Use part (c) to verify that f'(z)f(z) < f'(x)? for x < 0.



4.8 Some simple LPs. Give an explicit solution of each of the following LPs.

(a)

(b)

Minimizing a linear function over an affine set.

minimize ¢z
subject to Az =b.

Minimizing a linear function over a halfspace.
... T
minimize ¢ @
subject to a’z < b,
where a # 0.
Minimizing a linear function over a rectangle.
... T
minimize ¢ @
subject to [ <z = u,
where [ and u satisfy | < u.

Minimizing a linear function over the probability simplex.

minimize ¢l x
subject to 1Tz =1, =z~ 0.

What happens if the equality constraint is replaced by an inequality 17z < 17

We can interpret this LP as a simple portfolio optimization problem. The vector
x represents the allocation of our total budget over different assets, with x; the
fraction invested in asset i. The return of each investment is fixed and given by —c;,
so our total return (which we want to maximize) is —¢’ 2. If we replace the budget

constraint 17 # = 1 with an inequality 17 < 1, we have the option of not investing
a portion of the total budget.

Minimizing a linear function over a unit box with a total budget constraint.
minimize ¢ @
subject to 1Tz =a, 0<z<1,

where « is an integer between 0 and n. What happens if « is not an integer (but
satisfies 0 < a < n)? What if we change the equality to an inequality 1Tz < a?



4.15 Relaxation of Boolean LP. In a Boolean linear program, the variable x is constrained to
have components equal to zero or one:

minimize clx
subject to Az = b (4.67)
i €{0,1}, 1=1,...,n.

In general, such problems are very difficult to solve, even though the feasible set is finite
(containing at most 2™ points).

In a general method called relazation, the constraint that z; be zero or one is replaced
with the linear inequalities 0 < z; < 1:

minimize x
subject to Az = b (4.68)
O0<ae;, <1, i=1,...,n.

We refer to this problem as the L P relazation of the Boolean LP (4.67). The LP relaxation
is far easier to solve than the original Boolean LP.

(a) Show that the optimal value of the LP relaxation (4.68) is a lower bound on the
optimal value of the Boolean LP (4.67). What can you say about the Boolean LP
if the LP relaxation is infeasible?

(b) It sometimes happens that the LP relaxation has a solution with z; € {0,1}. What
can you say in this case?

5.1 A simple ezample. Consider the optimization problem

minimize 2 +1
subject to (z —2)(z —4) <0,

with variable z € R.

(a) Analysis of primal problem. Give the feasible set, the optimal value, and the optimal
solution.

(b) Lagrangian and dual function. Plot the objective z? +1 versus . On the same plot,
show the feasible set, optimal point and value, and plot the Lagrangian L(z, A) versus
x for a few positive values of A. Verify the lower bound property (p* = inf, L(x, A)
for A = 0). Derive and sketch the Lagrange dual function g.

(¢) Lagrange dual problem. State the dual problem, and verify that it is a concave
maximization problem. Find the dual optimal value and dual optimal solution A*.
Does strong duality hold?

(d) Sensitivity analysis. Let p*(u) denote the optimal value of the problem
minimize z® + 1
subject to  (z — 2)(z — 4) < u,

*

as a function of the parameter u. Plot p*(u). Verify that dp*(0)/du = —A".



Additional problems:

3.18 Heuristic suboptimal solution for Boolean LP. This exercise builds on exercises 4.15 and 5.13 in

13.3

Conver Optimization, which involve the Boolean LP

minimize Iz

subject to Ax <
r; €{0,1}, i=1,...,n,

with optimal value p*. Let 2™ be a solution of the LP relaxation

minimize ol x
subject to Az <b
0=<=r=<1,

T, .l :

so L = ¢T'2™ is a lower bound on p*. The relaxed solution '™

can also be used to guess a Boolean
point Z, by rounding its entries, based on a threshold ¢ € [0, 1]:

PO B g
"7 ] 0 otherwise,

for i = 1,...,n. Evidently & is Boolean (i.e., has entries in {0, 1}). If it is feasible for the Boolean
LP, i.e., if AT < b, then it can be considered a guess at a good, if not optimal, point for the Boolean
LP. Its objective value, U = ¢! #, is an upper bound on p*. If U and L are close, then # is nearly

optimal; specifically, & cannot be more than (U — L)-suboptimal for the Boolean LP.
This rounding need not work; indeed, it can happen that for all threshold values, & is infeasible.
But for some problem instances, it can work well.

Of course, there are many variations on this simple scheme for (possibly) constructing a feasible,

good point from ™.

Finally, we get to the problem. Generate problem data using

rand(’state’,0);
n=100;

m=300;

A=rand (m,n);
b=A*ones(n,1)/2;
c=-rand(n,1);

Simple portfolio optimization. We consider a portfolio optimization problem as described on pages
155 and 185-186 of Conver Optimization, with data that can be found in the file simple_portfolio_data.m.
(a) Find minimum-risk portfolios with the same expected return as the uniform portfolio (z =
(1/n)1), with risk measured by portfolio return variance, and the following portfolio con-
straints (in addition to 1Tz = 1):
e No (additional) constraints.
e Long-only: = = 0.
e Limit on total short position: 17 (x_) < 0.5, where (x_); = max{—ux;,0}.
Compare the optimal risk in these portfolios with each other and the uniform portfolio.

(b) Plot the optimal risk-return trade-off curves for the long-only portfolio, and for total short-
position limited to 0.5, in the same figure. Follow the style of figure 4.12 (top), with horizontal
axis showing standard deviation of portfolio return, and vertical axis showing mean return.



